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ABSTRACT The availability of genomes across the tree of life is highly biased toward vertebrates,
pathogens, human disease models, and organisms with relatively small and simple genomes. Recent
progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly
expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The
increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented
the complexity of de novo genome sequencing projects in nonmodel organisms. To reduce the costs and
challenges in de novo genome sequencing projects and streamline their experimental design and analysis,
we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding
the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four
key steps of a de novo genome sequencing project: data generation (through simulation), data quality
control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied
to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range
of experimental designs available for genome sequencing projects, and supports all major sequencing
technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design
of de novo genome sequencing projects, and evaluate the performance of a wide variety of user-specified
sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a
detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS.
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Whole genome sequences are rich sources of information about organ-
isms that are superbly useful for addressing a wide variety of evolutionary
questions, such as measuring mutation rates (Kumar and Subramanian
2002), characterizing the genomic basis of adaptation (Roux et al. 2014),
and building the tree of life (Rokas et al. 2003; Salichos and Rokas 2013).
Until now, however, organismal diversity has been highly unevenly cov-
ered, and most sequenced genomes correspond to model organisms,
organisms of medical or economic importance, or ones that have rela-
tively small and simple genomes (Reddy et al. 2015).

The rapid advance of DNA sequencing technologies has dramatically
reduced the labor and cost required for genome sequencing, which is

evidenced by the burst of large-scale genome projects in recent years
that includes, for example, the 1000 Fungal Genomes (1KFG) Project
(Grigoriev et al. 2011), the Yeast 1000 Plus (Y1000+) Project
(Hittinger et al. 2015), the Insect 5K Project (Robinson et al. 2011),
and the Genome 10K Project (Genome 10K Community of Scientists
2009). Some of these projects have already begun to fuel important
discoveries in evolution and other fields (Zhang et al. 2014). Equally
importantly, high-throughput DNA sequencing has made it possible
for single investigators to perform de novo genome sequencing in vir-
tually any organism they are interested in (Rokas and Abbot 2009).
Such sequencing efforts may target various organisms with a large
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diversity of genome architectures. Therefore, to achieve optimal results,
the choice of sequencing strategy (i.e., the combination of sequencing
technology [e.g., Illumina or Pacific Biosciences (PacBio)], sequencing
assay (e.g., paired-end or mate-pair), and other variables, such as se-
quencing depth and assembly protocols (e.g., assemblers and the associ-
ated parameters) should ideally be tailored to the characteristics of a given
genome, such as size and GC/repeat content (Nagarajan and Pop 2013).

The vast majority of de novo sequenced genomes have been gener-
ated using the Illumina technology, either solely or in combination with
other technologies (Reddy et al. 2015). This is largely due to the Illu-
mina technology’s ability to quickly generate tens to hundreds of mil-
lions of highly accurate short sequence reads of up to 300 bases per run
at very low per base cost (Glenn 2011). Additionally, the Illumina
technology offers two powerful sequencing assays, paired-end (PE)
and mate-pair (MP), which generate sequence read pairs that span
short (hundreds of base-pairs) and relatively long (thousands of
base-pairs) genomic regions, respectively. Mixing multiple PE and
MP libraries with different insert sizes allows for highly flexible se-
quencing strategies, and several state-of-the-art assembly algorithms
have been developed that exploit all these advantages. For instance,
the de novo genome assembler ALLPATHS-LG can generate high qual-
ity draft assemblies for mammalian-size genomes using only Illumina
short-read data by including both MP and overlapping PE libraries
(Gnerre et al. 2011). On its own, however, the Illumina technology
performs less well for more complex genomes, mainly due to the short
lengths of Illumina sequence reads and the technology’s bias against
certain genomic regions (e.g., GC-rich regions) (Ross et al. 2013).

ThePacBio technologygenerates sequence reads thatare substantially
longer and have much less sequencing bias, albeit at the cost of a
substantially lower per-read accuracy; the average read length increases
to above 10 kbwith the latest chemistry but displays only�87%accuracy
(Koren and Phillippy 2015). Thus, this technology is particularly useful
for the sequencing of complex genomes (Koren and Phillippy 2015).
Recent developments in both sequencing chemistry and assembly algo-
rithms have enabled PacBio-only de novo assembly for microbial ge-
nomes (Koren et al. 2013), but the high sequence coverage required for
this approach remains cost-prohibitive for large eukaryotic genomes.
Nevertheless, in combination with more affordable Illumina short-read
data, PacBio long reads—even at low coverage—can lead to significantly
improved assemblies (Utturkar et al. 2014; McIlwain et al. 2016).

De novo genome sequencing projects are further complicated by the
large array of assembly software tools, which differ in many aspects,
such as algorithmic design, supported/required data types, and com-
putational efficiency (Nagarajan and Pop 2013; Simpson and Pop
2015). Systematic evaluations of assembly programs show that no sin-

gle assembler is the best across all circumstances; rather, an assembler’s
performance critically depends on genome complexity and the se-
quencing strategy adopted (Earl et al. 2011; Bradnam et al. 2013).
Moreover, many assemblers use adjustable parameters (e.g., the
k-mer size for de Bruijn assemblers), the values of which can critically
affect the assembly quality. In practice, such parameters are often se-
lected intuitively or through the time-consuming process of testing
multiple values.

The great number of possible ways to combine sequencing technol-
ogies, assays, and assembly algorithms poses a great challenge for the
experimental design and data analysis in de novo genome sequencing
projects, which in turn can sometimes lead to poor quality or downright
incorrect assemblies (Denton et al. 2014). As a consequence, several
pipelines have been developed to automate specific steps in the process;
for example, the recently developed iMetAMOS (Koren et al. 2014) and
RAMPART (Mapleson et al. 2015) have been specifically designed to
automate genome assembly. However, as de novo genome sequencing is
increasingly adopted by single investigator laboratories, there is an
urgent need for streamlined approaches that enable investigators to
not only efficiently generate high-quality draft genome assemblies
but also to predict (via simulation) and identify the most suitable
design(s) [i.e., the most suitable combination(s) of sequencing strategy
and assembly protocol] currently available for a specific genome.

To address this need, we have developed an automated pipeline for
the design and execution of de novo genome sequencing projects that
we name iWGS (in silicoWhole Genome Sequencer and Analyzer). To
approximate the performance of different sequencing strategies and
assembly protocols, iWGS simulates high-throughput genome se-
quencing on user-provided reference genomes (e.g., genomes that
closely represent the characteristics of the real targets), facilitating the
identification of optimal experimental designs. iWGS allows users to
experiment with various combinations of sequencing technologies, as-
says, assembly tools, and relevant parameters in a single run. iWGS is
also designed to work with real data and can be used as a convenient
tool for automated selection of the best assembly or genome assembler.
Finally, using three case studies, each one focused on specific challenges
frequently encountered in de novo genome sequencing studies (e.g.,
high repeat content and biased nucleotide composition, etc.), we illus-
trate how iWGS can be applied to guiding the design and analysis of
de novo genome sequencing studies.

RESULTS

The design of iWGS
iWGS encompasses all major steps of a typical de novo genome se-
quencing study, including the generation of sequence reads, data qual-
ity control, de novo assembly, and evaluation of assemblies (Figure 1).

Simulation: iWGS uses the realistic high-throughput sequencing (HTS)
read simulators ART (Huang et al. 2012), pIRS (Hu et al. 2012), and
PBSIM (Ono et al. 2013) to generate Illumina and PacBio sequence
reads from a given user-specified genome. These programs can simu-
late all popular data types, including Illumina PE and MP sequence
reads, as well as PacBio continuous long sequence reads. The distribu-
tions of read quality and read length are easily adjustable for both
Illumina and PacBio data. Furthermore, these simulators mimic se-
quencing errors and nucleotide composition biases in real data by using
empirical profiles of these artifacts, which can be easily customized to
stay current with upgrades in sequencing technologies. For instance, we
have created a quality-score frequency profile learned from sequence
reads generated by the latest PacBio chemistry to better reflect the
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improved sequence read accuracy. This simulation step can be omitted
when the goal is the analysis of real data. Alternatively, the users may
choose to perform only the simulation and use the simulated data for
other analyses.

Quality control: HTS data generated by all technologies contain errors
and artifacts, which may sometimes substantially compromise the
quality of the assembly (Zhou and Rokas 2014). Therefore, iWGS
includes an optional step to perform preprocessing of the data, includ-
ing trimming of low-quality bases, removal of adapter contamina-
tions, and correction of sequencing errors. Since some assemblers
[e.g.ALLPATHS-LG (Ribeiro et al. 2012)] have their own preprocess-
ing modules, iWGS automatically determines for each assembly pro-
tocol whether to use the original or the processed data.

Assembly: Tomaximize users’ flexibility in experimental design, iWGS
supports 15 de novo genome assembly tools [ABYSS (Simpson et al.
2009), ALLPATHS-LG (Ribeiro et al. 2012), Celera Assembler (Myers
et al. 2000; Berlin et al. 2015), Canu (Koren et al. 2016), DBG2OLC (Ye
et al. 2014), DISCOVAR (Weisenfeld et al. 2014), Falcon (Chin et al.
2016), MaSuRCA (Zimin et al. 2013), Meraculous (Chapman et al.
2011), Minia (Salikhov et al. 2013), Platanus (Kajitani et al. 2014),
SGA (Simpson and Durbin 2012), SOAPdenovo2 (Luo et al. 2012),
SPAdes (and a diploid-aware version called dipSPAdes) (Bankevich
et al. 2012), and Velvet (Zerbino and Birney 2008)], most of which
have participated in recent large-scale assembler comparisons
(Bradnam et al. 2013; Magoc et al. 2013). These supported assemblers
allow users to carry out de novo assembly using only Illumina short-
read data (e.g., SOAPdenovo2) and only PacBio long-read data (e.g.,
Canu and Falcon), or to perform hybrid assembly that uses both (e.g.,
SPAdes and DBG2OLC). To achieve the best possible results while
avoiding the computationally expensive process of testing multiple
combinations of parameters, iWGS takes advantage of successful as-
sembly recipes (i.e., recommended settings for each assembler) estab-
lished in studies such as Assemblathon 2 (Bradnam et al. 2013) and
GAGE-B (Magoc et al. 2013), and uses KmerGenie to determine the
optimal k-mer size (Chikhi and Medvedev 2014). In addition, assem-
blies generated from different underlying data and/or assembly algo-
rithms can be merged using Metassembler (Wences and Schatz 2015)
to achieve a potentially better final assembly.

Evaluation: iWGS uses QUAST (Gurevich et al. 2013) to evaluate all
generated assemblies. In addition to providing basic statistics like N50
(the largest contig/scaffold size wherein half of the total assembly size is
contained in contigs/scaffolds no shorter than this value), QUAST
compares each assembly against the reference genome (in the case of
simulations) and generates a number of highly informative quality
matrices, such as misassemblies, assembled sequences not present in
the reference (and vice versa), and genes recovered in the assembly if
the reference genome is annotated. At the end, iWGS ranks all assem-
blies based on selectedmatrices in theQUAST report using a previously
described weighting strategy (Abbas et al. 2014). This ranking, along
with the detailed QUAST report, helps users to identify the best overall
assembly, as well as the corresponding combination of sequencing
strategy and assembly protocol. REAPR, which utilizes the sequence
data itself for assembly evaluation, is also implemented to better suit
real data analysis (Hunt et al. 2013).

iWGS is designed with flexibility and ease-of-use in mind to allow
users to readily examine various experimental designs; eachdata setmay
be used multiple times in different assembly protocols, and each
assemblermay be run repeatedly with different input data sets.Multiple
sequencing strategies and assembly protocols can be specified in a
straightforward fashion in a single configuration file; only a few param-
eters are required for each strategy/protocol, while other settings (e.g.,
quality profiles for read simulation) are globally shared across strategies/
protocols of the same type. Alternatively, advanced users can opt to

Figure 1 iWGS workflow. A typical iWGS analysis consists of four
steps: (1) data simulation (optional); (2) preprocessing (optional); (3) de
novo assembly; and (4) assembly evaluation. iWGS supports both Illu-
mina short reads and PacBio long reads, and a wide selection of as-
semblers to enable de novo assembly using either or both types of
data. Users can start the analysis simulating data drawn from a refer-
ence genome assembly or, alternatively, use real sequencing data as
input and skip the simulation step. iWGS, in silico Whole Genome
Sequencer and Analyzer; MP, mate-pair; PacBio, Pacific Biosciences;
PE, paired-end.
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customize the strategies/protocols so that, for example, each sequenc-
ing data set is simulated with different quality settings. Furthermore,
iWGS rigorously checks the configurations for issues such as the
compatibility between sequencing strategies and assembly protocols.

iWGS is a lightweight pipeline written in Perl. The source code,
detailed documentation, and example test sets are freely available at
https://github.com/zhouxiaofan1983/iWGS. Like many other bioinfor-
matics pipelines, iWGS inevitably relies on a number of third-party
software tools to carry out individual analyses such as data simulation
and genome assembly. However, most of the tools, including at least
one for each of the four major steps aforementioned, either have pre-
complied executables or can be compiled locally with ease. For the
convenience of users, we also include in the package scripts to automate
the acquisition and installation of most software dependencies. The
users can also customize the selection of tools to install according to
their own needs and computational environments.

Case studies
To demonstrate the use of iWGS and provide examples of its utility, we
developed three case studieswhere iWGSwas used toguide the selection
of sequencing strategy for genomes representing a wide range of sizes
and complexity levels (Supplemental Material, Table S1). The compet-
ing strategies were selected to enable both Illumina-only and PacBio-
only assemblies, as well as hybrid assembly of the two data types (Table 1).
To examine the effectiveness of the simulation step of our approach,
we also analyzed real sequencing data that largelymatch our simulation
settings.

Case study I (repeat-content issue):Wefirst compared the sequencing
of two fungi, Zymoseptoria tritici (synonym:Mycosphaerella graminicola)
(Goodwin et al. 2011) and Pseudocercospora fijiensis (synonym:
M. fijiensis) (Ohm et al. 2012), which both belong to the class
Dothideomycetes yet have dramatically different repeat contents;
the estimated repeat contents are�15 and�50% for the two genomes,
respectively. Our simulations showed that, while good quality assem-

blies can be obtained for Z. tritici using either data type, the PacBio-
only assembly for Ps. fijiensis vastly outperforms assemblies based on
Illumina data alone or in combination with low-coverage PacBio data
(Figure 2). The results are consistent with the notion that PacBio long
reads are particularly powerful in resolving repeats (Koren et al. 2013).
We then further tested if these results are informative for guiding the
sequencing of another highly repetitive Dothideomycetes genome,
Cenococcum geophilum, which has a repeat content of�76% (http://
genome.jgi.doe.gov/Cenge3). For C. geophilum, the PacBio-only assem-
bly was again found to be the best, while the hybrid assembly using
DBG2OLC and the Illumina-only assembly using ALLPATHS-LG
were next in rank (Figure 2 and Table S2), nicely recapitulating the
results of Ps. fijiensis. We also performed meta-assembly of
Illumina-only assemblies ILMN1 to ILMN7 (Table 1) on all three
genomes using Metassembler. While the meta-assembly approach
substantially improved the assembly continuity for Z. tritici, no
improvement was observed for Ps. fijiensis and C. geophilum (Figure
2 and Table S2). These results suggest that the use of iWGS would
provide critical information to help end users choose a successful
sequencing of highly repetitive genomes that share similar charac-
teristics. Importantly, since simulated assemblies are recoverable,
the likely impact of the different assembly strategies on genes, gene
families, or pathways of interest could also be examined in detail.

Case study II (GC-content and mtDNA assembly issue): We next
examined the de novo assembly of mitochondrial genomes from whole
genome sequencing data of Saccharomyces cerevisiae (Mewes et al.
1997; Foury et al. 1998). Yeast mitochondrial genomes are valuable
resources for evolutionary and functional studies (Freel et al. 2015),
yet the acquisition of finished mitochondrial genome assemblies is not
trivial because of their very low GC-content (�17%). We simulated a
genome sequencing experiment using the nuclear and mitochondrial
genomes of S. cerevisiae. We tested two ratios of nuclear to mitochon-
drial genome copy numbers representing low (1:50) and high (1:200)
mitochondrial contents, respectively (Solieri 2010). iWGS analysis

n Table 1 Sequencing strategies (top) and assembly protocols (bottom) evaluated in the three case studies

Name Read Type Parameters for Read Simulation

LIB1 Illumina PE Depth: 50 ·; read length: 100 bp; insert size: 180 6 9 bp
LIB2 Illumina MP Depth: 50 ·; read length: 100 bp; insert size: 8000 6 400 bp
LIB3 Illumina PE Depth: 50 ·; read length: 250 bp; insert size: 450 6 23 bp
LIB4 PacBio CLR Depth: 60 ·; read accuracy: 0.87 6 0.03; read length: 11,500 6 8000 bp
LIB5 PacBio CLR Depth: 10 ·; read accuracy: 0.87 6 0.03; read length: 11,500 6 8000 bp

Name Assembler Sequencing strategies used for assembly

ILMN1 ABYSS LIB1, LIB2 (Illumina-only)
ILMN2 ALLPATHS-LG
ILMN3 MaSuRCA
ILMN4 SGA
ILMN5 SOAPdenov2
ILMN6 SPAdes
ILMN7 Velvet
META Metassembler
ILMN8 DISCOVAR LIB3 (Illumina-only)
PACB1 Celera Assembler LIB4 (PacBio-only)
PACB2 Canu
PACB3 FALCON
HYBR1 SPAdes LIB1, LIB2, LIB5 (Hybrid)
HYBR2 DBG2OLCa LIB1, LIB5 (Hybrid)

PE, paired-end; MP, mate pair; PacBio, Pacific Biosciences; CLR, continuous long-read.
a
SparseAssembler (Ye et al. 2012) was used to assemble LIB1 into contigs, which in turn were then used as input for DBG2OLC.
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showed that the S. cerevisiae mitochondrial genome was fully recovered
at both low and high mitochondrial contents using Illumina data
(Table 2). Consistent with recent observations made during the assem-
bly of the S. eubayanus genome, only certain assemblers performed
well; for example, ALLPATHS-LG performed surprisingly poorly,
while SPAdes performed quite well (Baker et al. 2015). Importantly,
the complete mitochondrial genome can be obtained as a single contig
using only Illumina or only PacBio data, or using both data types (Table
2). Similarly, both Illumina and PacBio data resulted in good quality
assemblies of the nuclear genome (Table S2). At the same time, different
assemblers exhibited widely different performances even with the same
input data (Table 2).

Case study III (genomic architecture issue): Lastly, we applied iWGS
tothreemodel eukaryotic genomes fromdifferent kingdoms andwith
different genomic architectures. Specifically, we analyzedDrosophila
melanogaster (Adams et al. 2000) and Arabidopsis thaliana
(Arabidopsis Genome Initiative 2000), which aremedium-sized animal
and plant genomes, respectively, as well as Plasmodium falciparum 3D7
(Gardner et al. 2002), a smaller protist genome with extremely low
GC-content (�19%). For all three genomes, the best assembly was
generated by using only PacBio data (Table 3). In D. melanogaster
and A. thaliana, several Illumina-only assemblies were of relatively
high-quality (i.e., corrected scaffold N50 $ 100 kb; Table S2), among
which the best two were generated by ALLPATHS-LG and DISCOVAR
(Table 3). However, all Illumina-only assemblies of Pl. falciparum 3D7
had considerably lower corrected scaffold N50 values, except for
DISCOVARwhose sequencing strategy is unique in requiring a PE library
with a limited insert size.

To examine how well the simulation-based predictions made by
iWGS are supported by empirical data, we collected four real genome

sequencing data sets from a previous study of Pl. falciparum IT [one
overlapping 100 bp PE library, one overlapping 250 bp PE library, one
MP library, and one PacBio library from (Otto et al. 2014); Table S1]
that were a goodmatch to our simulated data sets, and ran the same set
of assembly protocols. The best assembly was again generated by
PacBio data alone, and the assemblies generated by ALLPATHS-LG,
DISCOVAR (both are Illumina-only), and DBG2OLC (hybrid) were
ranked next, while all other Illumina-only assembly protocols per-
formed poorly (Table 3 and Table S2). The results are largely consistent
with our simulation study, suggesting that our simulation-based ap-
proach is indeed informative.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

DISCUSSION
The design and analysis of de novo genome sequencing experiments
is not trivial. On the design front, one has to balance between the
complexity of the target genome, the strengths and weaknesses of each
sequencing technology, and, importantly, the cost. Analysis is also
challenging, as one is faced with multiple different algorithms and
dozens of parameters. Although substantial efforts have been made
to benchmark different approaches for genome assembly (Earl et al.
2011; Salzberg et al. 2012; Bradnam et al. 2013; Magoc et al. 2013),
much less attention has been paid to investigating start-to-finish opti-
mal sequencing strategies for a given genome [see (Chakraborty et al.
2016) for one example].

iWGS is an automated tool that allows users to explicitly compare
alternative experimental designs by using simulated sequencing data,
even allowing users to estimate costs when these are known for the

Figure 2 Performance comparison of five represen-
tative experimental designs on three Dothideomy-
cetes genomes. The five designs shown include
three Illumina-only designs (ILMN2: ALLPATHS-LG,
META: Metassembler, and ILMN8: DISCOVAR), the
best performing PacBio-only design (PACB2: Canu),
and the best performing hybrid design (HYBR2:
DBG2OLC) for each genome. The statistics on the
assembled fraction of the reference genome, scaf-
fold N50, and largest scaffold size are all after
correction for assembly errors using the reference
genome as reported by QUAST in GAGE mode. By
default, QUAST (in GAGE mode) corrects contigs/
scaffolds by breaking them at assembly errors larger
than 5 bp. Scaffold N50 and largest scaffold size are
shown in log10 scale.
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generation of each data type. We have illustrated the utility of iWGS in
several case studies onmitochondrial andnuclear genomeswith varying
levels of complexity. For instance, our simulations suggest that Illumina-
only sequencingstrategiesmaybeeconomical choices for the sequencing
of relatively simple genomes (e.g., Z. tritici; Table S2), whereas PacBio
data would be highly desirable for genomes of greater complexity (e.g.,
Ps. fijiensis, C. geophilum, and Pl. falciparum). Although not done here,
iWGS could also be used to evaluate different combinations of sequenc-
ing assays (e.g., PE and MP libraries), read quality, read lengths, and
sequencing depths. Empirical studies of both short- and long-read data
have shown that these parameters are critical determinants of the qual-
ity of de novo genome assemblies (Utturkar et al. 2014; Chakraborty
et al. 2016).

One key function of iWGS is the use of simulation data generated
from a related reference genome to inform the experimental design for
organisms lacking genomic data. A similar concept was previously used
to evaluate sequencing strategies for cacao by using the rice genome as
the reference (Haiminen et al. 2011). In principle, one could apply
iWGS on one or more related reference genomes that resemble the
characteristics (e.g., genome size, repeat content, and sequence compo-
sition) of the sequencing target. However, if such reference genome is
lacking, one solution is to start with a closely related reference genome
and tune it toward the target (e.g., adjust GC- and repeat contents) by

using third-party tools that simulate genome-wide evolution (Arenas
and Posada 2014) before running iWGS. Alternatively, onemay simply
use iWGS with reference genomes that are of comparable complexity
(e.g., similar in size and repeat content) regardless of the evolutionary
relatedness. As suggested by previous studies, these factors not only
influence the difficulty of genome assembly, but can also be excellent
predictors of the assembly quality (Lee et al. 2014). Therefore, iWGS
could also be informative in evaluating the performance of alternative
experimental designs on genomes with similar characteristics to the
sequencing target.

Other important features of iWGS include the support for both
Illumina short, andPacBio long, sequence reads and, correspondingly, a
wide selection of software tools compatible with these data types, as well
as the ability to analyze real data. In comparison, the support for third
generation sequencing data are relatively limited in iMetAMOS and
currently lacking in RAMPART. Given the increasing importance of
long sequence reads in de novo genome assembly, iWGS aims to allow
users to fully exploit the strength of long-read data and explore alter-
native ways of data analysis. Along these lines, several further develop-
ments can be envisioned. First, support for additional sequencing
technologies, such as Oxford Nanopore, can be added as technologies
become commercially available. In fact, the Celera Assembler, Canu,
and SPAdes assemblers, which are supported by iWGS, can already

n Table 2 Performance of all experimental designs evaluated in case study II

Nuclear:Mitochondrial
Genome Ratio

Performance of Strategiesa

Complete, Single Contig
Assembly of the

Mitochondrial Genome

Assembled Fraction of
Mitochondrial

Genome $ 99%

20% # Assembled Fraction
of Mitochondrial
Genome , 99%

Assembled Fraction of
Mitochondrial

Genome , 20%

1:50 (low mitochondrial
content)

ILMN1, ILMN6, ILMN8,
PACB2, HYBR1, HYBR2

ILMN7 ILMN2, ILMN4, ILMN5,
PACB1, PACB3

ILMN3

1:200 (high mitochondrial
content)

PACB2, HYBR1, HYBR2 ILMN6, ILMN7 ILMN1, ILMN8,
PACB1, PACB3

ILMN2, ILMN3,
ILMN4, ILMN5

a
The de novo assembly generated by each strategy was compared against the reference mitochondrial genome of S. cerevisiae using both QUAST and BLASTN.
Unless a single contig was found to represent the complete mitochondrial genome, the assembled fraction of mitochondrial genome was determined based on the
number of “missing reference bases” reported by QUAST, and further confirmed by the BLASTN result.

n Table 3 Summary of top-ranking assemblies generated in case study III

Organism (Genome Size)
Best Assembly from

Each Sequencing Strategy

Assembly Statisticsa

Scaffold
N50 (kb)

Largest
Scaffold (kb)

Assembled Fraction of the
Reference Genome

D. melanogaster (137.55 Mb) ILMN2 169.7 1,007.9 89.1%
ILMN8 155.0 1,007.7 91.8%
PACB2 5107.5 13,108.3 99.3%
HYBR2 279.3 1,536.8 89.7%

A. thaliana (119.15 Mb) ILMN2 307.0 1,789.4 97.3%
ILMN8 266.6 2,533.4 98.5%
PACB2 2065.7 8,552.9 99.7%
HYBR2 289.3 1,412.2 97.4%

Pl. falciparum 3D7 (23.29 Mb) ILMN2 28.0 146.2 96.7%
ILMN8 222.0 729.9 98.4%
PACB2 282.9 1,378.8 99.6%
HYBR2 15.5 91.5 97.4%

Pl. falciparum IT (real data) ILMN2 167.1 641.7 .100%
ILMN8 141.2 631.4 97.6%
PACB3 1574.7 3,355.3 97.7%
HYBR2 198.4 602.1 92.2%

a
The statistics for simulation-based analysis of D. melanogaster, A. thaliana, and Pl. falciparum 3D7 are after correction for assembly errors using the reference
genome, as reported by QUAST in GAGE mode. By default, QUAST (in GAGE mode) corrects contigs/scaffolds by breaking them at assembly errors larger than
5 bp. The statistics for real data based analysis of Pl. falciparum IT are calculated from the original de novo assemblies.
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utilize nanopore reads (Bankevich et al. 2012; Berlin et al. 2015). Sim-
ilarly, realistic simulation of nanopore data will be possible once the
patterns of errors and biases are better characterized using real data.
Second, iWGSwill continue to expand its functionality to achieve better
assemblies. For instance, a number of assembly polishing tools can be
integrated in iWGS to improve the quality of the final output, including
Pilon (Walker et al. 2014), Quiver (Chin et al. 2013), and Nanopolish
(Loman et al. 2015), which use Illumina, PacBio, and nanopore data,
respectively. In addition, iWGS currently uses Metassembler for meta-
assembly; in the future, other meta-assembly tools that support assem-
blies based on PacBio data alone, such as quickmerge (Chakraborty
et al. 2016), could be added. Lastly, it would be beneficial to enable users
to add new software tools to iWGS in order to stay up-to-date with the
rapid advances in genome assembly and other aspects of HTS data
analysis. We intend to provide periodic updates, and the expert user
can edit iWGS on their own. In summary, iWGS is a flexible, expand-
able, and easy to use pipeline that will aid in the design and execution of
genome assembly experiments across the tree of life.
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