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Purpose: The canine is an important large animal model of human retinal genetic disorders. Studies of ganglion cell
distribution in the canine retina have identified a visual streak of high density superior to the optic disc with a temporal
area of peak density known as the area centralis. The topography of cone photoreceptors in the canine retina has not been
characterized in detail, and in contrast to the macula in humans, the position of the area centralis in dogs is not apparent
on clinical funduscopic examination. The purpose of this study was to define the location of the area centralis in the dog
and to characterize in detail the topography of rod and cone photoreceptors within the area centralis. This will facilitate
the investigation and treatment of retinal disease in the canine.
Methods: We used peanut agglutinin, which labels cone matrix sheaths and antibodies against long/medium wavelength
(L/M)- and short wavelength (S)-cone opsins, to stain retinal cryosections and flatmounts from beagle dogs. Retinas were
imaged using differential interference contrast imaging, fluorescence, and confocal microscopy. Within the area centralis,
rod and cone size and density were quantified, and the proportion of cones expressing each cone opsin subtype was
calculated. Using a grid pattern of sampling in 9 retinal flatmounts, we investigated the distribution of cones throughout
the retina to predict the location of the area centralis.
Results: We identified the area centralis as the site of maximal density of rod and cone photoreceptor cells, which have
a smaller inner segment cross-sectional area in this region. L/M opsin was expressed by the majority of cones in the retina,
both within the area centralis and in the peripheral retina. Using the mean of cone density distribution from 9 retinas, we
calculated that the area centralis is likely to be centered at a point 1.5 mm temporal and 0.6 mm superior to the optic disc.
For clinical funduscopic examination, this represents 1.2 disc diameters temporal and 0.4 disc diameters superior to the
optic disc.
Conclusions: We have described the distribution of rods and cone subtypes within the canine retina and calculated a
predictable location for the area centralis. These findings will facilitate the characterization and treatment of cone
photoreceptor dystrophies in the dog.

The domestic dog, Canis lupus familiaris, is a genetically
diverse species. Generations of line breeding have resulted in
hereditary dystrophies manifesting in particular breeds. The
dog is an important large animal model for human retinal
disease. A range of gene defects responsible for inherited
retinal diseases with close homology to human disorders have
been identified [1–9]. Few inherited retinal defects have been
characterized in other commonly used large animal models,
such as the cat [10–12], and none have been described in the
nonhuman primate. Recent clinical trials have reported
successful use of gene replacement therapy for a hereditary
form of childhood blindness, offering new hope for people
with inherited retinal disease [13–15]. Safety and efficacy in
Briard dogs with a similar genetic defect was central to the
preclinical development of this work [16–18]. The canine eye
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enables the use of standard retinal surgical techniques for
delivery of therapy into the subretinal space [19]. Vision can
be assessed using behavioral analysis [20], and the longevity
of the dog facilitates long-term evaluation [21,22].

Cone photoreceptor specific genetic mutations similar to
those causing cone dystrophies in humans have been
described in the canine species [2,23–25]. The development
of new therapies for cone dystrophies will require a detailed
understanding of the distribution of cones and cone subtypes
in the canine retina. As therapy becomes more sophisticated,
methods to target particular cell types within the eye will
become more important, to increase the specificity and
efficacy and limit potential side effects. The use of viral
vectors with cone subtype specific promoters has been
reported in the canine [26], further highlighting the need to
establish the distribution of these cells within the large retinal
area.

The mouse is the most commonly used small animal
model for human genetic retinal disorders. The distribution of
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cone photoreceptors in this species has important differences
to the human including the absence of a cone-rich region,
differential distribution of cone subtypes in a superior/inferior
gradient [27], and substantial coexpression of cone opsins
[28]. Previous studies in the dog have examined the ganglion
cell layer and have defined a visual streak of high ganglion
cell density superior to the optic disc [29–33]. Within the
visual streak, a temporal area of peak density is defined as the
area centralis, which has important similarities to the human
macula and is responsible for high visual acuity [29]. The
location of the highest density of cones in the macula has well
established anatomic landmarks in the human–the macular
pigment and foveal avascular zone. In contrast, anatomic
landmarks for identifying the area centralis in the dog have
not been identified. The ability to predict confidently the
location of highest cone density in the area centralis is
therefore important when studying disorders involving cone
photoreceptors and developing new therapeutic approaches.

The dog has two discrete cone subtypes [28]: the two cone
opsins are sensitive to long/medium wavelength light (555 nm
spectral sensitivity; red/green or L/M-opsin) and short
wavelength light (429 nm spectral sensitivity; blue or S-opsin)
[34,35]. Previous studies have examined cone density in
retinal cross sections [26,36]. Unlike the detailed
characterization of cone distribution in other species [28,37–
39], cone subtype distribution in retinal flatmounts has only
been examined qualitatively in dogs [30], and the location of
the area centralis has not been accurately defined.

In this study we have performed a detailed quantitative
evaluation of the distribution and density of the cone
photoreceptors and subtypes in the beagle dog retina by
immunohistochemical analysis. These findings will facilitate
the experimental and preclinical development of new
treatments for cone dystrophies.

METHODS
Animals and tissue: Eyes for this study were from
ophthalmoscopically normal research beagle dogs euthanized
at Covance Research Laboratory Plc. (Harrogate, UK).
Animals were obtained originally from Harlan UK Limited,
Bicester, UK. We used the beagle exclusively for this study
as it is of mesocephalic index, and a common research breed
of dog. We examined a total of 18 eyes from 9 animals. Eyes
were obtained immediately after euthanasia, and handled as
described in the following section. Measurements of the

zygomatic width and occiput to nose tip length were taken
after euthanasia to calculate cephalic index as previously
described [30] in addition to recording the age and sex of the
animal. Age, sex, and skull measurements as previously
described [30] were recorded at the time of euthanasia.
Tissue preparation: The dorsal-most point of the limbus was
marked to facilitate orientation of the isolated eyes, before
enucleation. Approximately 0.5 ml of 2% paraformaldehyde
(PFA) in phosphate buffered saline (PBS; Oxoid Ltd.
Basingstoke UK; 8 g NaCl, 0.2 g KCl, 1.15 g Na2HPO4; 0.2
g KH2PO4), pH 7.4, was injected into the vitreal cavity via a
pars plana injection site. Eyes were immersed in 2% PFA at
4 °C overnight. For flatmount analysis, retinas were dissected
after removal of the lens and vitreous, and washed in PBS
before immunohistochemistry. For retinal cryosections, the
eyecup was cryoprotected in 20% sucrose for 12 h at 4 °C and
embedded in optimal cutting temperature medium (Tissue
Tek OCT medium; Raymond Lamb, Eastbourne, UK) before
freezing. Sagittal 10 μm cryosections of the whole eyecup
were taken in a superior-inferior orientation, facilitating
comparison between the superior tapetal retina containing the
visual streak and area centralis with the inferior non-tapetal
retina on the same section.
Immunohistochemistry: We studied retinal flatmounts and
10 μm retinal cryosections. Tissue was blocked overnight at
4 °C in a solution of PBS containing 1% normal goat serum,
5% BSA (BSA), and 0.1% Triton X-100. All antibodies were
diluted in blocking solution. Table 1 lists the reagents and
antibodies used in this study.

Retinal flatmounts were incubated with primary
antibodies for 3 days at 4 °C with agitation. Retinal sections
were incubated with primary antibodies overnight at 4 °C. We
used all secondary antibodies at 1:1,000 dilutions (polyclonal
goat antibodies, AlexaFluor conjugated; Invitrogen
Molecular Probes, Paisley, UK). We incubated flatmounts
with secondary antibody for 16 h in blocking solution at 4 °C
with agitation and sections for 2 h at room temperature.

Flatmounts were mounted in aqueous fluorescent
mounting medium (Dako Ltd., Ely, UK), and imaged as
detailed in the next section. Retinal cryosections were
counterstained using Hoechst 33342 nuclear counter stain,
and mounted using fluorescent mounting medium.
Imaging and analysis:

Mapping the cone density of retinal flatmounts—For
density mapping of flatmounts using peanut agglutinin (PNA)

TABLE 1. REAGENTS AND ANTIBODIES

Reagent Details Source Dilution
Peanut agglutinin (PNA) [52] biotin conjugated PNA Vector Laboratories, Peterborough, UK 1: 1000
L/M opsin polyclonal rabbit antibody Chemicon Europe, Chandlers Ford, UK 1: 2000
S opsin polyclonal rabbit antibody Chemicon Europe, Chandlers Ford, UK 1: 2000

Manufacturers and dilutions of reagents used for PNA and opsin staining of retinal flatmounts and cryosections.
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only, we quantified fluorescent microscopy images that were
taken using a Leitz Diaplan fluorescent microscope (Leica
Microsystems Ltd. Milton Keynes, UK) at 40X magnification
in a grid pattern at 2 mm intervals throughout the retina,
centering on the optic disc. Images were loaded unmodified
into an image analysis program (Image Pro Plus, Media
Cybernetics, Bethesda, MD). The total area of the image in
mm2 was calculated by imaging a graticule (100 and 10 μm
gradations) with the same objective lens and using the spatial
calibration tool in the image analysis program. The total
number of cones in the image was counted, and the number
represented as a density per mm2. A total of 9 retinas from 5
animals were analyzed in this manner. Retinal area was
calculated by scanning the flatmounts at high resolution and
using the magic wand tool in the image analysis program to
delineate the retinal area. One retina was imaged at 10X
magnification with an Olympus FluoView 1000 confocal
microscope (Olympus UK Ltd. Watford UK) with an
automated stage. Multi-area time lapse was used to create a
stitched image of a large portion of the retina including the
visual streak and area centralis.

The whole optic nerve had been preserved during
preparation in 7 of the 9 retinas. The optic nerve was imaged
using a single x-y plane at 5X magnification on a Zeiss LSM
510 confocal (Carl Zeiss Ltd. Welwyn Garden City, UK)
microscope. Images were loaded into an image analysis
program (Image Pro Plus, Media Cybernetics, Media
Cybernetics, Bethseda, MD), and a mean diameter for each
optic nerve head was calculated by averaging 3 values. An
average value for the optic nerve head diameter was calculated
and used in subsequent calculations.

Differential interference contrast analysis of rod and
cone inner segment size and density—We subsequently
used 6 of the previously described 9 retinas for differential
interference contrast (DIC) analysis. A Zeiss Axiophot
fluorescence microscope (Carl Zeiss Ltd.) with a 100X DIC
compatible lens was used. The rod and cone inner segments
were used as the focal plane. Based on the analysis outlined
in the previous section, the area centralis was identified; 3
images were taken from the retina in the area centralis and 3
images were taken from the inferior peripheral retina. DIC
images were overlain with fluorescent PNA staining to allow
positive identification of cone inner segments. Images were
calibrated using a graticule image as outlined in the previous
section. Images were cropped to 500 pixels square. The cross-
sectional area of each cone inner segment within this field was
measured using the image analysis program, and an average
cross-sectional area per cone inner segment was calculated.
In addition, a minimum of 5 rod inner segments per image
were outlined, and an average cross-sectional area per rod
inner segment was calculated. Using these data, we analyzed
the large uncropped image for cone number, and cone and rod
density.

Opsin subtype distribution—To map the opsin
subtypes in retinal flatmounts, we examined flatmounts
stained with PNA and either L/M or S cone opsin as detailed
in the previous section. Confocal microscope z-stack
projections were taken through the retinal inner and outer
segments using a Zeiss LSM 510 confocal microscope at 63X
magnification. Ten images were taken from each retina (3
retinas each for L/M and S opsin). Five images were taken at
0.5 mm intervals around the area centralis, and 5 images were
taken at 0.5 mm intervals in the inferior peripheral retina,
10 mm inferior to the area centralis location. Images were
loaded unmodified into an image analysis program; images
were quantified for total cone number (PNA positive inner/
outer segments) and opsin positive cones (PNA and opsin
positive inner/outer segments). From these data, calculations
were made for cone density per mm2, opsin positive cone
density per mm2, and percentage opsin expression. An average
value for the area centralis and inferior periphery was
calculated for each eye and used in subsequent statistical
analysis. To verify the flatmount data, we examined 10 μm
retinal cryosections spanning the predicted area centralis
location (1–2 mm temporal to the optic disc). Serial sections
were stained with either L/M or S opsin antibody in addition
to peanut agglutinin. Sections were viewed using a Leitz
Diaplan microscope at 100X magnification. We counted
entire PNA positive cone inner/outer segments and opsin
positive inner/outer segments; the percentage of cone opsin
positive cones was calculated. Three sections per eye were
quantified; in each section, 3 high power fields (HPF) were
counted in the area centralis and 3 HPF in the inferior
periphery. A total of 3 eyes were examined. An average value
per eye was calculated and used in subsequent statistical
analysis.
Statistical and mathematical analysis: An unpaired t-test with
Welch’s correction was used to compare all data. Grid data
from retinas stained with PNA were analyzed in MatLab
R2007a (The MathWorks, Cambridge, UK). Data sets were
translated to place the optic nerve head at the origin, and data
were rotated, reflected, and overlaid to calculate a mean
image.

RESULTS
We examined 18 retinas from 9 beagle dogs. Of these retinas,
15 were examined as flatmounts and 3 by retinal cryosection
analysis. We recorded the age at euthanasia and cephalic index
for each animal. We measured the retinal area for all
flatmounts. A summary of these data are shown in Table 2.

Rod and cone inner segment cross-sectional area and
density: We compared the cross-sectional area and density of
cone and rod photoreceptor inner segments in the area
centralis with the inferior peripheral retina by quantifying DIC
microscopy images of 6 retinal flatmounts from these areas
(Figure 1). The focal plane of the DIC images was at the level
of the rod and cone inner segment.
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Figure 1. Comparison between rod and cone inner segment size, density, and ratio in the area centralis versus the inferior periphery. Six eyes
from 3 animals were examined. On retinal flatmounts stained with peanut agglutinin (PNA; green) we identified a clear visual streak superior
to the optic nerve, with a temporal area centralis. A representative retinal flatmount is shown in A illustrating a clear visual streak superior to
the optic nerve head (ONH). Orientation is depicted: nasal (N), temporal (T), superior (S), and inferior (I), and representative magnified images
from the highlighted areas of the retina are shown. The area centralis contained a higher density of smaller rods and cones than the inferior
periphery. B shows representative differential interference contrast (DIC) images of flatmounts from the area centralis and the inferior
periphery. PNA was used as a positive marker of the cone inner segment (green). Six areas per retina were examined (3 area centralis, 3 inferior
periphery) and average calculations for the rod and cone inner segment cross sectional area and number were made. C shows that the inner
segment area of both cones and rods was significantly smaller in the area centralis (cone: p=0.0028, rod: p=0.0034). The density of both rods
and cones was significantly higher in the area centralis than in the periphery (D, cone: p<0.0001, rod: p<0.0005). Note the difference in scale
of each y-axis. E shows the ratio between rods and cones in the areas of the retina; the ratio was significantly lower in the area centralis
(p<0.0001). Using an unpaired t test, significant values are marked with asterisks **** p<0.0001, *** p<0.001, ** p<0.01. In all graphs, the
inferior periphery bars are marked in red.
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We identified the visual streak and peak area of cone
density (area centralis) in each retinal flatmount using
fluorescent labeling of cone matrix sheaths with peanut
agglutinin (a representative low power image is shown in
Figure 1A). We quantified both the inner segment cross-
sectional area and the density of rods and cones using
differential interference contrast images from the flatmounts
(representative images are shown in Figure 1B). Both rod and
cone inner segment cross-sectional area was significantly
smaller in the area centralis than the inferior periphery (Figure
1C; cone: 6.82±0.62 μm2 area centralis, 11.46±0.90 μm2

inferior periphery, p=0.0028; rod: 1.73±0.06 μm2 area
centralis, 3.22±0.28 μm2 inferior periphery, p=0.0034). Both
cone and rod density was significantly higher in the area
centralis than the inferior periphery (Figure 1D; cone:
23,080±1,593 per mm2 area centralis, 7,465±726 per mm2

inferior periphery, p<0.0001; rod: 501,000±20,180 per mm2

area centralis, 30,4800±28,700 per mm2 inferior periphery
p<0.0005). Rod to cone ratio (Figure 1E) was significantly
lower in the area centralis than the inferior periphery (rod:
cone 22.8±1.7 area centralis, 41.4±0.9 inferior periphery
p<0.0001) due to a combination of a smaller inner segment
cross-sectional area and a higher density. We identified no
areas where cone inner segments were present exclusively and
rod inner segments were absent.

Cone opsin subtype distribution: We investigated the
distribution of cone subtypes by immunohistochemistry using
cone opsin specific antibodies in combination with peanut
agglutinin in 6 retinal flatmounts (Figure 2). Confocal
microscopy z-projection images were analyzed to identify the
proportion of each cone subtype as a percentage of total cone
number. In each retina we compared the area centralis with
the inferior peripheral retina. Results were verified by
immunohistochemistry of retinal cryosections in 3 eyes. We
quantified each cone subtype in the area centralis and the
inferior peripheral retina as a percentage of total cone number.

The majority of cones in the retinas expressed L/M opsin;
S cones represented a small proportion of cones. In retinal
flatmounts (representative images are shown in Figure 2A),
absolute numbers of L/M cones were significantly higher in
the area centralis (Figure 2B; density 18,820±1,913 per mm2

area centralis, 5,276±777 per mm2 inferior periphery
p=0.0225), which closely matched the difference in total cone

density in these areas (Figure 2B 20,850±1,220 per mm2 area
centralis, 8,116±633 per mm2 inferior periphery, p<0.0001).
The density of S cones was not significantly different between
the two areas examined (Figure 2B; 1,842±371 per mm2 area
centralis, 1,461±318 per mm2 inferior periphery, p=0.49). The
proportion of S cones as a percentage of total cones was higher
in the inferior periphery, but this difference was not significant
(Figure 2C; 18.3±3.4% versus 9.9±1.7, p=0.16). The
percentage of L/M cones was not significantly different
between the inferior periphery and the area centralis (Figure
2C; 80.5±2.8% versus 88.0±1.9%, p=0.12). Calculations of
cone subtype percentages from retinal cryosections confirmed
the flatmount data (representative images are shown in Figure
2D); there was no significant difference in the percentage of
either cone subtype between the area centralis and the inferior
periphery (Figure 2E; L/M opsin: 93.6±1.2% area centralis,
86.0±2.5% inferior periphery p=0.11, S opsin: 11.9±1.3%
area centralis, 15.4±1.5% inferior periphery, p=0.18).

Predicting the location of the area centralis: We
examined 9 retinal flatmounts from 5 beagle dogs. We took
fluorescent microscopy images of peanut agglutinin staining
in a grid pattern throughout the retina centering on the optic
disc. Images were quantified for total cone number and the
cone density per mm2 was calculated. Cone density was
consistently highest in an area temporal to the optic disc (9/9
eyes) and lowest in the inferior periphery in the majority of
retinas (5/9 eyes). A summary of cone density data for the area
centralis and retinal periphery is presented in Table 3.

We analyzed and presented the data from each retina
using the mathematical software MatLab. Grids were rotated
and reflected to represent all eyes as right eyes. A clearly
defined area of high cone density was evident superior to the
optic disc in all retinas (Figure 3A). A pronounced visual
streak extended nasally and temporally in 7 of 9 retinas,
whereas a more moderate streak was present in 2 of 9 retinas,
which did not extend nasally beyond the optic disc. The area
centralis was identified as a peak of highest cone density
located temporal to the optic disc in all 9 eyes. Those eyes
with a moderate streak had a similar density and location of
the area centralis to those with a pronounced streak.

Having measured the cone density in each of the 9 retinas
examined, we calculated the mean distribution to predict the
likely location of the area centralis in dogs of this breed

TABLE 2. SUMMARY OF ANIMAL DATA AND RETINAL FLATMOUNT AREA

 n minimum maximum mean SEM
Age (months) 9 8 15 10.6 1.1
Cephalic index 9 47.5 61.1 53.8 1.5
Retinal area (mm2) 15 706.2 837 746.8 11.4

Summary of data collected on age at euthanasia, cephalic index and measured retinal area for retinal flatmounts. Maximum and
minimum values are represented with a mean value and Standard error of the mean (SEM).
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Figure 2. Comparison of opsin subtype distribution in the beagle retina. Nine eyes from 5 animals were examined. A-C: retinal flatmounts
stained with peanut agglutinin (PNA; blue) and either long wavelength (L/M) or short wavelength (S) cone opsin (red) were analyzed.
Representative images are shown in A. Absolute L/M cone density was significantly higher in the area centralis (B; p=0.0225), there was no
difference in S cone density between the 2 areas examined (B; p=0.49). Quantification of L/M and S cones as a percentage of total cone
number showed no statistical difference between the two areas examined (C; S cones p=0.16, L/M cones p=0.12). D-E: Serial 10 μm retinal
cryosections were stained with PNA (green) and either L/M or S opsin (red) in a similar manner. Representative images are shown in D. The
following areas in cross section are identified in D: outer nuclear layer (ONL), inner/outer segments (OS), retinal pigment epithelium (RPE),
tapetum lucidum (TL) Nuclei are identified with Hoechst 33342 in blue. Analysis of cryosections for L/M and S cone percentage in the two
areas examined showed no significant difference, supporting the flatmount data (E; S cones p=0.18, L/M cones p=0.11). Using an unpaired
t-test, significant values are marked with asterisks **** p<0.0001, * p<0.05. In all graphs, the inferior periphery bars are marked in red.
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(Figure 3B). The mean location of the area centralis from the
9 retinas was calculated as 0.6±0.1 mm superior to the optic
disc, and 1.5±0.2 mm temporal to the optic disc. Using the
mean of all 9 retinas, an area of high cone density around the
visual streak with greater than 1.0x104 cones per mm2

extended on average 6 mm nasally, 4.8 mm temporally and
extended 4.2 mm superior to the optic disc. In the 7 retinas
imaged, the mean optic nerve head diameter was
1.39±0.03mm. On average, the area centralis was located
1.1±0.3mm temporal and 0.4±0.1 optic nerve head diameters
superior to the optic nerve head.

DISCUSSION
We have described in detail the distribution of the rod and
cone photoreceptor subtypes and defined the likely location
for the area centralis in the beagle dog. Both cone and rod
densities are highest in the area centralis; cone and rod inner
segments have a smaller cross-sectional area reflecting the
higher density in this location compared with the peripheral
retina. The majority of cones express L/M opsin. S opsin may
be expressed in a higher proportion of cones in the peripheral
retina than in the area centralis.

The area centralis contains a higher density of both rods
and cones, and the inner segments of cells in this area have
smaller cross-sectional areas. The inferior peripheral retina
typically has the lowest cone density of the whole retina. It is
likely therefore that the visual acuity is lowest in this location.
Evidence from examination of visual fields from other
species, including elasmobranchs [40] and artiodactyl
mammals [41], have suggested that there is a close
relationship between the location of high photoreceptor
density visual fields and evolutionary adaptation. The low
cone density in the inferior retina identified in this study may
reflect evolutionary pressures: since the canine has few
airborne predators or prey, visual acuity in the superior field
may be of low priority. In the canine retina, L/M cone subtypes
significantly outnumber S cones, particularly in the area
centralis. L/M cone dominance enables better spatial and
achromatic vision [42]. S cones comprise a relatively constant
percentage of cones (9%–12% in the area centralis), although
there is a suggestion that the percentage is higher in the
inferior retina (15%–18%), consistent with the distribution of
S cones found in the cat retina [43]. The low proportion of S
cones compared with L/M cones may be a consequence of an
evolutionary advantage of high resolution achromatic vision.

Results presented here are consistent with other
investigations suggesting that the dog central retina is rod-
dominant, even within the highest cone density region of the
area centralis [44]. We provide further evidence to support the
conclusion that the canine visual system is adapted for high
performance in low light levels, but retains good function in
higher light intensities [45]. We have determined that the cone
photoreceptor area centralis is in a temporal location superior
to the optic disc, within the tapetal fundus. The temporal
location for this region of highest cone density may be relevant
for enhancing binocular vision [29]. Previous studies have
concluded that visual acuity in dogs is limited by the retina,
not the optical properties of the eye, or higher processing in
the brain [46]. The distribution of ganglion cells is well
known, and here we provide evidence that the distribution of
cone photoreceptors reflects that of ganglion cells. While we
do not know the exact degree of convergence of cone
photoreceptors to ganglion cells, the high peak concentration
of cones in the area centralis is likely to support estimates of
visual acuity of up to 20/65 previously described in the dog
[47].

The distribution of ganglion cells within the visual streak
of the canine retina has two distinct phenotypes: a
“pronounced streak” and a “moderate streak” that may be
breed-specific [29]. Our data suggest that cone distribution
within the visual streak may have two similar phenotypes,
with the majority of retinas from our beagle population
demonstrating a pronounced streak phenotype. However, the
visual streak cone distribution phenotype did not affect the
location or the peak cone density of the area centralis. Other
breeds of dog may also have variations in the visual streak
cone distribution, but our data suggest that the location and
cone density within the area centralis may be subject to less
variation. By identifying the location of the area centralis in
relation to the diameter of the optic nerve head, we provide
clinically relevant information to those examining the canine
fundus. Focal retinal thinning involving this location may
affect high acuity color and bright light day vision. The density
of rod photoreceptors in this location is also high, and
degenerations affecting the area centralis may therefore have
profound effects on vision as a whole. For this study we have
developed a novel method to predict the location of the area
centralis. Using detailed and quantitative imaging and

TABLE 3. SUMMARY OF CONE GRID DENSITY ANALYSIS

 n minimum maximum mean SEM
Area centralis cone density per mm2 9 20635 29848 26299 1138
Peripheral retina cone density per mm2 9 1872 4083 3053 259

A summary of cone density data in the area centralis and the retinal periphery from 9 retinal flatmounts analyzed in a 2 mm grid
pattern. Maximum and minimum values are represented with a mean value and Standard error of the mean (SEM).

Molecular Vision 2008; 14:2518-2527 <http://www.molvis.org/molvis/v14/a290> © 2008 Molecular Vision

2524

http://www.molvis.org/molvis/v14/a290


analysis techniques, it may be possible to automate these
methods to facilitate high throughput analysis.

Our findings provide new information on the comparative
retinal anatomy of the dog and human. The dog has important
advantages as a model of human disease over the mouse,
which lacks an area of high density cones, although the dog
is not directly comparable to the human which has a 100–
150 μm diameter S cone-free macula [48]. In the dog, we
found no peripheral ring of increased S cone density, which
is present in humans [49]. We did not directly investigate
coexpression of cone opsins; however, the proportions of
photoreceptors expressing each cone opsin suggest that the
extent of coexpression is low in the dog retina, which may be
more analogous to the human in this respect. The proportion
of S cones in the cone-rich area centralis is approximately 10%
—similar to the human and macaque parafoveal area, which
has a cone population comprising 8%–10% S cones [48,49].

We have identified several important differences between
the dog and the human. Although the number of rods per cone
was lower in the area centralis compared with the periphery,
we identified no rod-free foveal area. This difference is a
potential limitation of the dog as a model of human macular
dystrophies. The data presented here suggest that the ratio
between ganglion cells and cones is substantially lower in the
dog than in the human or nonhuman primate. Humans and
macaque monkeys have approximately 3 ganglion cells per
foveal cone [50,51]. Previous studies of retinal flatmounts in
the dog have estimated that the total ganglion cell number in
the retina is 1.15×105, and peak density in the area centralis is
approximately 6,400–14,400 per mm2 [29]. Ganglion cells
were not examined during this study, although the average

density of cones in the area centralis was estimated at between
2 and 3×104 per mm2. It is likely that more extensive
summation of cone-derived signals occurs in dog visual
processing in comparison with the primate.

We have illustrated that the visual streak extends nasally
and temporally in a similar pattern to the tapetal region, and
have defined a predicted location for the area centralis.
Correlation of methods described with electrophysiological
and behavioral assessments will provides a means of
evaluating cone survival and function in disease models. The
methods described will enhance the evaluation of the impact
of new therapeutic interventions.
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