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ABSTRACT

The protein encoded by the Gene Associated with Retinoid-Interferon-Induced Mortality-19 
(GRIM-19) is located in the mitochondrial inner membrane and is homologous to the 
NADH dehydrogenase 1-alpha subcomplex subunit 13 of the electron transport chain. 
Multiple sclerosis (MS) is a demyelinating disease that damages the brain and spinal cord. 
Although both the cause and mechanism of MS progression remain unclear, it is accepted 
that an immune disorder is involved. We explored whether GRIM-19 ameliorated MS by 
increasing the levels of inflammatory cytokines and immune cells; we used a mouse model of 
experimental autoimmune encephalomyelitis (EAE) to this end. Six-to-eight-week-old male 
C57BL/6, IFNγ-knockout (KO), and GRIM-19 transgenic mice were used; EAE was induced 
in all strains. A GRIM-19 overexpression vector (GRIM19 OVN) was electrophoretically 
injected intravenously. The levels of Th1 and Th17 cells were measured via flow cytometry, 
immunofluorescence, and immunohistochemical analysis. IL-17A and IFNγ expression 
levels were assessed via ELISA and quantitative PCR. IL-17A expression decreased and IFNγ 
expression increased in EAE mice that received injections of the GRIM19 OVN. GRIM-
19 transgenic mice expressed more IFNγ than did wild-type mice; this inhibited EAE 
development. However, the effect of GRIM-19 overexpression on the EAE of IFNγ-KO mice 
did not differ from that of the empty vector. GRIM-19 expression was therapeutic for EAE 
mice, elevating the IFNγ level. GRIM-19 regulated the Th17/Treg cell balance.
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INTRODUCTION

The Gene Associated with Retinoid-Interferon-Induced Mortality-19 (GRIM-19) encodes 
a nuclear protein homologous to the NADH dehydrogenase 1-alpha subcomplex subunit 
13 (NDUFA13), and tends to induce apoptosis in interferon (IFN)- and all-trans-retinoic 
acid (RA)-induced tumor cells (1). GRIM-19 was showed that the inhibitor of tumor cells 
by activating IFN family and retinoic acid (2). GRIM-19 gene is located in chromosome 19 
in genomic DNA in human, GRIM-19 binds to STAT3 directly in the cytosol and locates 
mitochondrial membrane (3,4). GRIM-19 is a protein of the mitochondrial inner membrane, 
being a component of the five electron transport chain complexes that produce cellular 
energy. GRIM-19 is closely involved in early embryonic development (5), controlling normal 
tissue development and suppressing tumor formation (6). GRIM-19 controls cell growth 
and death by targeting multiple proteins/pathways. Cell death is induced by GRIM-19 
overexpression; cell growth is induced when GRIM-19 is suppressed (7). Not only is GRIM-
19 associated with the development of tumors including osteosarcoma (8), hepatocellular 
carcinoma (9), lung cancer (10), cervical cancer (11), and prostate cancer (12) but the protein 
may also be associated with spontaneous abortion (13).

The etiology of multiple sclerosis (MS), an inflammatory, demyelinating, chronic 
neurodegenerative disorder of the central nervous system, remains elusive (14-17), but is 
widely thought to reflect abnormal T cell autoimmune destruction of oligodendrocytes 
and neurons (18). About 2.3 million people are affected globally; approximately 20,000 
die annually (19). MS develops between the ages of 20 to 50 years and is more common in 
females (20). Although some drugs that slow the progression or alleviate the symptoms, 
no drugs have been developed to cure and the mechanism of disease onset is still unclear 
(21,22). The causes of MS include vitamin D deficiency, Epstein-Barr virus infection, 
intestinal bacterial flora, western diets and tobacco (23). To treat MS, use mesenchymal stem 
cells, anthracenedione antineoplastic agents, IL-1β inhibitors and α4-integrin humanized Abs 
(15,24,25). However, there is no clear cure method.

Of the several MS animal models, the autoimmune pathogenesis characteristic of MS 
is replicated in the model of experimental autoimmune encephalomyelitis (EAE) (26) 
characterized by the development of Abs targeting central nervous system (CNS) Ags 
such as the MBP-PLP fusion protein (MP4) and the Myelin Oligodendrocyte Glycoprotein 
(MOG35–55 peptide) (27). EAE is an inflammatory demyelinating disease of the CNS (28) and 
serves as the prototype model of T cell-mediated autoimmune disease (29). We used the 
MOG35–55 peptide to trigger EAE in C57BL/6 mice; this is a Th17 cell-dependent model (30). 
EAE models can be used to explore the mechanisms potentially involved in autoimmune 
conditions involving the CNS (31), including disease of the spine. Here, we used an EAE 
mouse model to determine the clinical significance of GRIM-19 expression and associated 
interferon production. Myelin-reactive T cells that produce IFNγ, IL-17, and GM-CSF are 
associated with the disabilities of EAE (32-37). Such disabilities are reduced by lowering 
the levels of pro-inflammatory cytokines including IFNγ and IL-17 (38-40). We induced 
EAE in GRIM-19 transgenic (GRIM19 TG) mice and IFNγ-knockout (KO) mice. We found a 
significant association between GRIM-19 and IFNγ status. We used GRIM-19 gene therapy to 
treat EAE mice; it may be possible to improve EAE employing such therapy.
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MATERIALS AND METHODS

Animals
Six-to-eight-week-old male mice (strains C57BL/6 and IFNγ-KO) mice were purchased 
from Jackson Laboratory. Mouse GRIM-19 transgenic mice (C57BL/6 background) were 
purchased from Macrogen (Seoul, Korea). To establish this mouse line, a GRIM-19 fragment 
was inserted into the pcDNA3.1+ vector (Invitrogen, Waltham, MA, USA) containing 
the cytomegalovirus promoter by GenScript Corporation (Piscataway, NJ, USA) and 
microinjected by Macrogen. All animals were maintained under specific pathogen-free 
(SPF) conditions with free access to standard mouse chow (Ralston Purina, St. Louis, MO, 
USA) and water. The Animal Care Committee of The Catholic University of Korea approved 
the experimental protocol. All experimental procedures were evaluated and carried out in 
accordance with the protocols approved by the Animal Research Ethics Committee at the 
Catholic University of Korea (ID number: CUMC-2017-0304-02). All procedures performed 
followed the ethical guidelines on animal use.

EAE model
EAE was induced by subcutaneous injection of 500 ng MOG35–55 peptide in incomplete 
Freund's adjuvant (Chondrex, Redmond, WA, USA) with 500 ng inactivated Mycobacterium 
tuberculosis (Difco, Franklin Lakes, NJ, USA) supplemented by intravenous injection of 200 
ng pertussis toxin (Sigma, St. Louis, MO, USA) on days 0 and 2. The mice were observed 
and scored on a scale of 0–5 (with gradations at intervals of 0.5, thus allowing intermediate 
scores): 0, no clinical signs; 1, loss of tail tone; 2, wobbly gait; 3, hindlimb paralysis; 4, 
hindlimb and forelimb paralysis; and 5, death. Scoring of pathology was conducted by 2 
proficient technicians by a blind test. Each group contained 5 mice and all experiments were 
repeated 3 or more times.

Injection of GRIM-19
To produce a mouse GRIM-19 overexpression vector (GRIM19 OVN), a mouse GRIM-19 
fragment (RefSeq: NM_023312.3) was synthesized by TOP Gene Technologies (Quebec, 
Canada); the codons were optimized for expression in mammalian cells. The construct 
was subcloned between the BamHI and XhoI sites of pcDNA3.1+. Mice were intravenously 
injected with 100 µg of this mouse GRIM19 OVN in 1 mL saline. The vector which was applied 
control groups was used empty mock vector. All vectors were injected per weekly, a total five 
injections. The vectors were delivered following hydrodynamic gene delivery (41). Then, mice 
were sacrificed and analyzed. The sequential experimental process were represented (Fig. 1A).

Immunohistochemistry
Spinal cord tissues were paraffin-embedded and 4-µm-thick sections stained with H&E. The 
spleens were fixed in 4% (v/v) paraformaldehyde, embedded in paraffin, and 4-µm-thick 
sections were deparaffinized in xylene and dehydrated in ascending baths of 70%–100% 
(v/v) ethanol. At least four sections from each tissue were analyzed. Immunohistochemistry 
employed the Vecta ABC kit (Vector Laboratories, Burlingame, CA, USA). Tissue sections 
were incubated with primary anti-IL-17A Ab overnight at 4°C, followed by a biotinylated 
secondary Ab and a streptavidin-peroxidase complex for 1 h. The final color was developed 
using 3,3-diaminobenzidine (Dako, Carpinteria, CA, USA) and the sections counterstained 
with Mayer's hematoxylin. Images were captured by a DP71 digital camera (Olympus, Center 
Valley, PA, USA) fitted to an Olympus BX41 microscope.
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Immunostaining for confocal microscopy
Spleen cryosections (5-µm-thick) were stained with phycoerythrin (PE)-conjugated rat 
anti-mouse CD4 (45-0042-82; eBioscience, Waltham, MA, USA), PE-conjugated mouse 
anti-mouse GRIM-19 (sc-365978; Santa Cruz Biotechnology, Santa Cruz, TX, USA), FITC-
conjugated rat anti-mouse IL-17A (11-7177-81; eBioscience), FITC-conjugated rat anti-mouse 
IFNγ (505810; BioLegend, San Diego, CA, USA), FITC-conjugated rat anti- mouse CD25 
(102006; BioLegend), and rat allophycocyanin (APC)-conjugated mouse anti-Foxp3 (77-
5775-40; eBioscience) Abs overnight at 4°C and the stained sections observed under a Zeiss 
confocal microscope (LSM 510 Meta; Carl Zeiss, Jena, Germany). Numbering of stained-cells 
was conducted by 2 proficient technicians by a blind test. Each group contained 5 mice and 
all experiments were repeated three times.

Western blotting
Lysates were centrifuged, proteins were loaded onto 10% (w/v) polyacrylamide gels, 
subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transferred 
to nitrocellulose membranes (Invitrogen). Membranes were blocked with 5% (w/v) skim 
milk in Tris-buffered saline with 0.1% (v/v) Tween-20 (TBST) for 1 h at room temperature. 
Abs against GRIM-19 and β-actin were added, followed by incubation at 4°C overnight. The 
membranes were reacted with goat anti-mouse HRP-conjugated Abs. Immunoreactivity 
was determined using an enhanced chemiluminescence system (Amersham Biosciences, 
Piscataway, NJ, USA).
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Figure 1. The IL-17A level decreased and that of IFNγ increased in mice with EAE that overexpressed GRIM-19 (n=5). (A) Schematic representation of the 
experiments. (B) Mock and GRIM19 OVN were assessed by western blotting. (C) The clinical scores of mock-injected and GRIM-19-injected mice. (D) After 5 wk, 
the mice were sacrificed and the splenocytes of the mice were isolated and analyzed. Th17 and Treg cell numbers in splenocyte populations were measured 
via ex vivo cell flow cytometry. (E) The IL-17A, IL-10, and IFNγ levels (as revealed by ELISA) in the culture media of mouse splenocytes cultured under conditions 
triggering Th17 differentiation (n=5). 
*p<0.05, **p<0.01.
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Quantitative PCR (qPCR) analysis
Total RNA was isolated with the TRIzol reagent (Molecular Research Center, Cincinnati, OH, 
USA). The concentrations of RNA were measured using a NanoDrop ND-1000 instrument 
(Thermo Fisher Scientific, Waltham, MA, USA). The 2-µg of RNA was reverse-transcribed 
into cDNA using a Transcriptor First-Strand cDNA Synthesis Kit (Roche Applied Science, 
Penzberg, Germany). The levels of mRNA were analyzed by qPCR employing a FastStart 
SYBR Green Master Mix (Roche Applied Science) and a StepOnePlus kit (Applied Biosystems, 
Foster City, CA, USA) following the manufacturers' instructions. The relative mRNA levels 
were normalized to those of β-actin. The primer sequences are listed in Table 1.

Measurement of 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarboc
yanine iodide (JC-1) by immunofluorescence
Splenocytes were isolated on 48-well plates and pretreated with 100 μm H2O2 for 2 h. After 
washing with PBS, the cells were stained with JC-1 (Invitrogen) solution for 30 min at 37°C and 
washed 3 times with PBS. The fluorescence intensity was detected by a CytoFluor multiwell plate 
reader at 514 nm for excitation and 529 nm for emission for green (monomer form) fluorescence, 
and 585 nm for excitation and 590 nm for emission for red (aggregate form) fluorescence.

Measurement of intracellular ROS and mitochondrial superoxide production
Mitochondrial superoxide levels were measured by mitoSOX RED staining according to the 
manufacturer's instructions. The splenocytes were treated with DOX and BAY60-2770, and 
then incubated with 2 μM of mitoSOX RED for 30 min at 37°C. After washing with PBS, red 
fluorescence was quantified with a fluorescence reader at excitation/emission wavelengths of 
510/580 nm.

Flow cytometry
Cells that were for analysis of Th1 and Th17 population were stimulated with PMA and 
ionomycin with the GolgiSotp for 4 h (BD Biosciences, San Jose, CA, USA). To quantify 
Th1-, Th17-, and Foxp3-positive Treg cells, splenocytes were immunostained using a PerCp-
conjugated anti-CD4 Ab (eBioscience) and fixed and permeabilized using a Cytofix/Cytoperm 
Plus kit (BD Biosciences). Following the manufacturer's instructions, splenocytes were 
stained with FITC-conjugated anti-IL-17A and APC-conjugated anti-IFNγ Abs (eBioscience). 
To identify Treg cells, splenocytes were surface-labeled with PerCp-conjugated anti-CD4 and 
APC-conjugated anti-CD25 Abs, followed by fixation, permeabilization, and intracellular 
staining with a PE-conjugated anti-Foxp3 Ab. All cells were detected using a FACS Calibur 
device (BD Pharmingen, Franklin Lakes, NJ, USA).

T-cell isolation, Th17 differentiation, and ELISAs
To determine the levels of IFNγ, IL-17A, and IL-10 expressed under conditions of Th17 
differentiation, murine splenocytes were cultured in RPMI 1640 medium supplemented with 
5% (v/v) FBS. CD4-positive T cells were sorted employing CD4-coated magnetic beads and 
a magnetically activated cell sorting (MACS) separation column (Miltenyi Biotec, Bergisch 
Gladbach, Germany). CD4-positive T cells were stimulated by addition of anti-CD3 (0.5 μg/mL) 
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Table 1. The PCR primers used
Gene Sense (5′→3′) Anti-sense (3′→5′)
β-actin GAA ATC GTG CGT GAC ATC AAA G TGT AGT TTC ATG GAT GCC ACA G
IL-17A CCT CAA AGC TCA GCG TGT CC GAG CTC ACT TTT GCG CCA AG
IFNγ GAA AAT CCT GCA GAG CCA GA TGA GCT CAT TGA ATG CTT GG
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and soluble anti-CD28 Abs (1 μg/mL; both from BD Biosciences), anti-IFNγ (2 μg/mL) and 
anti-IL-4 (2 μg/mL) Abs (Invitrogen), recombinant TGF-β (2 ng/mL), and recombinant IL-6 
(20 ng/mL) (R&D Systems, Minneapolis, MN, USA) for 3 days. Culture supernatants were 
subjected to sandwich ELISAs (R&D Systems). Alkaline phosphatase (Sigma) was used for 
color development. Absorbance was determined at a wavelength of 405 nm using an ELISA 
microplate reader (Molecular Devices, San Jose, CA, USA).

Statistical analysis
All between-group comparisons were made using the nonparametric Mann-Whitney U test; 
all among-group (3 or more) comparisons were conducted via 1-way analysis of variance with 
Bonferroni's post hoc test. GraphPad Prism software (ver. 5.01) was employed for all analyses. 
A p-value <0.05 was considered statistically significant. Data are expressed as means±SDs.

RESULTS

The severity of EAE pathology was reduced by GRIM-19 overexpression via 
reduction of IL-17A levels
First, the pcDNA3.1+ hosting GRIM-19 (GRIM19 OVN) vector and mock vector were injected 
to EAE mice for 5 wk at 1-wk intervals (Fig. 1A). GRIM19 OVN vector and mock vector were 
transfected in HEK293 cells. Then, the lysates of cells were determined by western blotting for 
verifying of overexpression of GRIM-19 (Fig. 1B). To explore whether GRIM-19 overexpression 
reduced EAE pathology, we injected GRIM19 OVN into EAE mice. The clinical score was 
significantly lower in GRIM19 OVN- than mock vector-injected mice (Fig. 1C). Splenocytes 
were subjected to flow cytometry (Fig. 1D). The proportion of Th1 cells was significantly 
increased and that of Th17 cells markedly decreased in GRIM19 OVN-injected-mice. Under 
conditions of Th17 differentiation, the IL-17A level fell in GRIM19 OVN injected-mice and 
that of IL-10 increased. Although the IFNγ level increased somewhat in the former mice, 
the between-group difference was not significant (Fig. 1E). Thus, GRIM-19 overexpression 
ameliorated EAE pathology.

GRIM-19 overexpression was therapeutically efficacious
To investigate the lymphocyte transition, spleen cryosections were stained using anti-
GRIM-19, -IL-17A, -CD25, and -Foxp3 Abs for immunofluorescence analyses. In GRIM19 OVN 
mice, GRIM-19 expression was significantly elevated in splenic lymphocytes and the Th17 
population was significantly decreased. However, the Foxp3-positive Treg cell numbers did 
not differ significantly between mice injected with the empty vector and the GRIM19 OVN 
construct (Fig. 2A). Lymphocyte infiltration into the spinal cord of mock-injected mice was 
higher in the former than the latter mice (Fig. 2B). The paraffin sections revealed spinal 
cord damage. The spinal cord surface of empty vector-injected EAE mice was damaged by 
lymphocyte infiltration; the spinal cord of mice injected with the GRIM19 OVN construct 
was not. Immunohistochemical images revealed lower IL-17A expression in the spinal cord of 
GRIM19 OVN than empty vector-injected mice (Fig. 2C). The H&E staining data showed the 
hippocampal neurons in the mock injected mice and GRIM19 OVN injected mice (Fig. 2D). 
The neurons of in the GRIM19 OVN group exhibited clear cell layer compared to mock group. 
Thus, GRIM-19 overexpression reduced spinal cord and brain damage in EAE mice.
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EAE pathology was inhibited in GRIM TG mice via elevation of the IFNγ level 
and Treg cell numbers
We used GRIM19 TG mice to determine whether GRIM-19 overexpression inhibited the 
development of EAE symptoms. First, we established GRIM19 TG mice for experiments. 
GRIM-19 protein level was higher than WT mice in GRIM19 TG mice (Fig. 3A). The EAE 
clinical score of GRIM19 TG mice was significantly lower than that of the C57BL/6 EAE mice 
(Fig. 3B). The lymphocytes of the spleen and draining lymph nodes (dLNs) of each mouse 
were analyzed via flow cytometry. The populations of Treg cells were markedly higher in the 
spleen and dLNs of GRIM19 TG mice than control mice (Fig. 3C). In splenocytes, the Th1 
cell population was significantly increased and Th17 level was reduced in GRIM19 TG mice 
(Fig. 3D). The serum levels of total IgG, IgG1, and IgG2a were significantly lower in GRIM19 
TG mice than control C57BL/6 EAE mice (Fig. 3E). The population of IL-17 positive cells was 
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Figure 2. GRIM-19 overexpression was therapeutic in EAE mice. (A) After end of the experiment, immunofluorescent spleen images derived via confocal microscopy. 
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decreased in GRIM19 TG mice compared to WT (Fig. 3F). The H&E staining data showed 
the hippocampal neurons, the neurons of in the GRIM19 TG mice exhibited clear cell layer 
compared to WT mice (Fig. 3G). Thus, GRIM-19 inhibited EAE pathology by increasing the 
IFNγ level.

The mitochondrial function was improved in GRIM19 TG mice
To determine which difference has inhibition of EAE development in GRIM19 TG mice, 
we considered mitochondria change in GRIM19 TG mice to be different and investigated 
mitochondrial functions. Although there were no significant differences, the mitochondrial 
membrane potential was improved in GRIM19 TG mice through JC-1 staining (Fig. 4A). The 
population of mitochondria of splenocytes was increased in GRIM-19 TG mice (Fig. 4B). 
Besides, the mitochondrial superoxide was decreased in GRIM-19 TG mice significantly 
(Fig. 4C). The immunofluorescence images of transgenic mice showed a higher GRIM-
19 expression of CD4-positive cells compared to WT mice (Fig. 4D). Therefore, this data 
suggested that the improvement of mitochondrial functions of GRIM19 TG mice may affect 
CD4-positive T cells.

EAE pathology was not inhibited in IFNγ-deficient mice injected with the 
GRIM-19 vector
To explore whether GRIM-19 overexpression reduced EAE pathology by elevating the IFNγ 
level, we established an IFNγ-KO mouse line. In such mice, neither the GRIM19 OVN 
construct nor the empty vector affected the clinical EAE score (Fig. 5A). The Th17 cell 
population was increased in the spleen of GRIM19 OVN injected IFNγ-KO mice, but the 
Treg cell population was not (Fig. 5B). Flow cytometry data of splenocytes showed that the 
population of Th1 and Th17 cells was slightly increased in GRIM19 OVN injected IFNγ-KO 
mice. However, there were no significant differences (Fig. 5C). The levels of mRNAs encoding 
IFNγ and IL-17A were measured via qPCR. The level of mRNA encoding IFNγ was markedly 
increased and that encoding IL-17A decreased in GRIM19 OVN injected WT mice. However, 
the mRNA expression of IFNγ and IL-17A of IFNγ-KO mice has no significant differences 
between mock and GRIM10 OVN injection groups (Fig. 5D). Thus, GRIM-19 overexpression 
did not affect EAE symptoms under IFNγ-deficient conditions.

DISCUSSION

We showed that GRIM-19 inhibited EAE progression. GRIM-19 overexpression reduced 
the Th17 population in EAE mice. Notably, GRIM-19 inhibited EAE development only in 
the presence of IFNγ. In previous studies, GRIM-19 increases interferon family as cell 
death regulatory protein through inhibition of STAT3 (1,4). GRIM-19 elevates the IFNβ 
and combination of retinoic acid, it regulates cell death related genes (42). GRIM-19 
overexpression increased the IFNγ level to alleviate EAE pathology in EAE mice. GRIM-19 
is a subunit of an NADH dehydrogenase that plays a critical role in the mitochondrial inner 
membrane (43). Although GRIM-19 was first used to inhibit cancer cell proliferation, recent 
studies found that GRIM-19 played roles in chronic inflammatory diseases including Crohn's 
disease and inflammatory bowel disease; GRIM-19 expression was reduced in such patients 
(44). GRIM-19 acts as an anti-bacterial regulator in the context of CARD15-mediated innate 
mucosal responses; GRIM-19 modulates the intestinal epithelial cell responses to microbial 
infection (45). However, it is unclear how GRIM-19 regulates inflammation. Thus, we 
explored the relevance of GRIM-19 in another inflammatory disease, EAE.
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We previously showed that GRIM-19 reduced progression of inflammatory bowel disease, 
graft-versus-host disease, and autoimmune arthritis, by regulating Th17 and Treg cell numbers 
(46-48). To explore whether GRIM-19 overexpression regulated the clinical pathology of EAE 
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mice, we injected a GRIM-19 overexpression construct (32) and the empty vector into EAE 
mice via intravenous electrophoresis. Notably, the IFNγ level increased and that of IL-17A 
decreased in such mice. These data were confirmed in vitro using splenocytes that were Th17-
differentiated. Lymphocyte infiltration into the spinal cord was reduced in GRIM19 OVN-
injected mice; GRIM-19 protected the spinal cord by inhibiting lymphocyte infiltration.

We used GRIM19 TG mice to explore whether GRIM-19 overexpression delayed EAE 
development. The EAE clinical score of such mice was much lower than that of control 
mice. In the former animals, the numbers of splenic IFNγ-expressing CD4-positive T cells 
increased. Although the IL-17A levels did not differ significantly between the groups, the level 
was somewhat lower in GRIM19 TG mice (Fig. 3D). Treg cell numbers increased in the spleen 
and dLNs of GRIM19 TG mice, and the serum IgG level decreased. Together, the data indicate 
that GRIM-19 overexpression regulated the immune response of EAE mice by modulating 
Th17 and Treg cell numbers. In both GRIM19 OVN-injected and GRIM19 TG mice, the IFNγ 
level was elevated.

We previously showed that an increased IFNγ level retarded the progression of rheumatoid 
arthritis (an autoimmune disease) by reducing Th17 cell numbers (49). Rheumatoid arthritis 
progression was more rapid in IFNγ-KO mice (50). IFNγ affects the innate and adaptive 
immune cells of EAE mice differently (51). The mechanism of IFNγ remains unclear. 
Although IFNγ has two-faced function in autoimmune diseases, induction of IFNγ has 
protective effect in EAE mouse (52) and decreases the level of IL-17A (51). IFNγ deficient 
mice which were IFNγ KO and anti-IFNγ Ab injected mice had severe EAE pathology and 
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an increase of immune cells in IFN gamma KO mice and anti-IFN-gamma injected mice 
(53). Especially, the treatment of IFNγ in EAE mice decreased clinical symptoms under the 
conditions that type I (IFNα and IFNβ) IFN exists (54).

Some studies found that GRIM-19 expression affected interferon levels (5,55). We 
hypothesized that GRIM-19 expression might correlate to that of IFNγ; we explored this 
possibility using IFNγ-KO mice. As expected, GRIM-19 overexpression exerted no therapeutic 
effect in IFNγ-KO EAE mice. Th1 cell numbers were reduced in the spleen tissue cells and 
splenocytes of IFNγ-KO mice, but the Th17 cell numbers increased. At the mRNA level, IFNγ 
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expression decreased and that of IL-17A increased in IFNγ-KO mice. We found that GRIM-19 
inhibited the development of EAE in mice by regulating the levels of IFNγ and IL-17A and 
protecting the spinal cord against lymphocyte infiltration.

The GRIM-19 study focused primarily on inhibiting cancer cell growth (56,57). In particular, 
it is widely known to inhibit tumors through the increase of the IFN family (13,58). Our study 
suggested that GRIM-19 overexpression decreased the pathology of EAE symptoms through 
elevating of IFNγ levels. Overexpression of GRIM-19 reduced the level of IL-17A. Taken 
together, these results showed that the GRIM-19 expression has potentially therapeutic in 
autoimmune disease patients. However, we have not shown how GRIM-19 regulates IL-17A 
and IFNγ in detail mechanism. Further work is required.
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