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The properties of metallic materials have been extensively studied, and

nowadays the tensile properties testing techniques of metallic materials still

have not found a suitable research method. In this paper, the neural Turing

machine model is first applied to explore the tensile properties of metallic

materials and its usability is demonstrated. Then the neural Turing machine

model was improved. The model is then improved so that the required

results can be obtained faster and more explicitly. Based on the improved

Neural Turing Machine model in the exploration of tensile properties of

metal materials, it was found that both H-NTM and AH-NTM have less

training time than NTM. A-NTM takes more training time than AH-NTM.

The improvement reduces the training time of the model. In replication,

addition, and multiplication, the training time is reduced by 6.0, 8.8, and 7.3%,

respectively. When the indentation interval is 0.5–0.7mm, the error of the initial

indentation data is large. The error of the tensile properties of the material

obtained after removing the data at this time is significantly reduced. When the

indentation interval is 0.8–1.5mm, the stress is closer to the real value of tensile

test yield strength 219.9 Mpa and tensile test tensile strength 258.8 Mpa. this

paper will improve the neural Turingmachinemodel in the exploration ofmetal

material tensile properties testing technology has some application value.

KEYWORDS

neural Turing machine, metallic material, tensile experiment, inspection technique,

hard sigmoid

Introduction

As a material, metallic materials are widely used in human production, life and social

development (Stock et al., 2018). Metallic materials have many properties, such as high

elasticity, high toughness, and high hardness (Kumar et al., 2020). In the metal industry,

metallic materials are usually divided into pure metals and alloys (Suryanarayana,

2019). The physical properties of metal materials are usually tested when making the

corresponding materials and equipment. The physical testing of metals is carried out

according to industry standards and using scientific methods. Therefore, it is necessary

to strengthen the research on the physical properties testing technology of metals and to

improve the corresponding technical measures (Xu et al., 2021).
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The effects on the properties of metallic materials are usually

reflected within the metallic material. When people process

metal materials, the metal material is easily affected by the

tensile speed. Generally metal inclusions, metal crystals and

other impurities are present inside the metallic material. These

magazines lead to problems such as crystal misalignment and

poor bonding within the metallic material (Ford et al., 2019).

Metallic materials generally have a relatively consistent overall

performance, but the tensile properties of metallic materials

will be affected when external elastic deformation or plastic

deformation occurs during processing (Khalid et al., 2022).

According to Regan et al. (2020), who studied plastic materials,

it was found that plastic deformation of materials can be

accomplished by stretching. The external processing can cause

the relative sliding of the metal material beyond the slip

threshold, and this phenomenon will cause the crystalline and

crystallographic motion of the metal crystal. This process will

have a velocity of motion. When the metal material is stretched,

the strength will also increase when the stretching temperature

increases, and there will be a time lag in the stretching process.

At a slow rate of stretching, the technical material can withstand

a tensile force of 200 kN.

When the stretching speed is increased, applying 200 kN

tension to the metal material will cause dislocation intensive

reduction of the material tensile properties and fracture of the

metal material. Yuan and Fan (2019) found that a reasonable

choice of speed and pressure is required when stretching metal

materials. When the metal is stretched, this operation needs to

ensure that the metal crystal slip is produced and the tensile

properties of the material are taken into account. And to

avoid the fracture of the metal material during the operation.

The properties of metallic materials have been widely studied,

but for their tensile properties testing techniques, they are

currently difficult to find a suitable method for researchers

to explore simple, accurate and fast testing techniques for

the tensile properties of metallic materials. In today’s era of

exponential growth of data, the value laws behind the data are

often buried under the vast amount of information. How to

uncover the potential value through the surface phenomenon

and exploit it has become the focus of current technology

research (Bai et al., 2022). Yao and Guan (2018) stated that

natural language processing is a popular area of data research. In

terms of algorithm implementation, machine learning methods

have received wide attention from scholars both at home and

abroad. Neural networks have features such as automatic feature

extraction and strong description ability (Ning et al., 2022).

Among many machine learning methods, neural networks have

become a dark horse in the machine learning community.

Neural networks have made breakthroughs in many research

areas. In the research of Neural Turing Machine (NTM), a

Neural Turing Machine (NTM) is a kind of neural network with

Turing-complete properties. It has the ability to fit functions

and can theoretically implement any function. According to

Gangal et al. (2021), it was found that the most important

difference between NTM and physical Turing machines is

that a Neural Turing Machine is an algorithm that can

pass gradients backwards. The physical concept of a Turing

machine uses the 0 or 1 representation of data in a computer

to compute all logical functions (Malekmohamadi Faradonbe

et al., 2020). The same feature as all algorithms is that neural

Turing machines, like all neural network algorithms, use mainly

real numbers (Boce et al., 2022). Neural Turing machines

use activation functions with smoother function images to

make the neural network properties appear continuously non-

linear. Such non-linear neural networks composed of real

numbers are easier to train (Huang et al., 2020). Neural Turing

machines combine physical Turing machine ideas and smooth

activation functions to perform the operations associated in

physical Turing machines. Another difference from physical

Turing machines is that physical Turing machines read the

instructions to be executed continuously in one direction in

a sequential manner (Mühlhoff, 2020). In contrast, during the

addressing of a neural Turing machine, the neural Turing

machine can computationally generate a displacement that shifts

the center of gravity of the current attention to the left or

right, rather than simply to one direction (Faradonbeh and Safi-

Esfahani, 2019). The focus of NTM is on the management of

external memory. NTM extends the functionality of standard

controllers by reading and writing external memory as a result

of addressing. Thus, they can make the NTM implement the

memory management function. According to Sharma et al.

(2020), it was found that the addressingmechanism of NTM also

makes the controller in NTM to generate certain attention. Thus,

NTM can improve the model’s ability to process sequences.

Deep Reinforcement Leaning (DRL) is used to solve the

problem of too many states in reinforcement learning (Wang

et al., 2022). Deep reinforcement learning methods construct

a function with parameters to fit the value assessment of

state actions (Quan et al., 2020). Deep reinforcement learning

obtains action chains with corresponding values by trying

different strategies, which in turn can tune the parameters of

the value function. Thus, they can make the prediction of

the value function converge to the actual value (Bai et al.,

2021). It has also become a trend to add deep learning to

NTM as the optimal strategy can be obtained through the

value function (Wang et al., 2021). In the study by Gross

et al. (2021), this study used the NTM mechanism to improve

the network model structure. A data copy experiment and a

data repetitive copy experiment were designed in the study.

The effectiveness of the attention mechanism generated by

NTM was verified from the experimental results. The metal

material tensile property testing technique has been widely

explored, so combining neural network applied tometal material

tensile property testing technique is rarely studied and the

applicability study under this combined neural Turing model is

almost absent.
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In summary, this problem is explored for the tensile

properties testing technique of metal materials. In this study,

an improved neural Turing machine model is proposed. The

model uses the Hard sigmoid function instead of the sigmoid

activation function in NTM. This approach makes the model

computationally simple and easy to optimize. This approach

ensures that the core structure of the NTM remains unchanged,

while reducing the computational effort of the model and

speeding up the model training. In this paper, the improved

neural Turing machine model is applied to the problem of

exploring the tensile properties testing technology for metal

materials. In the study, it is found that the improved neural

Turing machine can reduce the training time of the model.

When the indentation interval of metal material is 0.5–0.7mm,

the error of the tensile property results obtained after removing

the initial indentation data is significantly reduced and is closer

to the real value. When the indentation interval is 0.8–1.5mm,

the accuracy of fitting the results using the default range

is higher.

System model

Introduction to the neural turing
machine model and formulas

Introduction of neural turing machine

A neural Turing machine is a neural network architecture

with the addition of an external storage matrix. The external

storage matrix enhances the neural network’s ability to

remember long input sequences, forming an attention

mechanism similar to the Seq2Seq model. This external

memory-based architecture is consistent with computer Turing

machines. Only in contrast to computer Turing machines, an

end-to-end microscopic neural network model of NTM can be

trained using gradient descent method for network modeling.

The main components of the NTM are the controller, the

read/write side, and an external memory (Urien, 2019). The

controller in the NTM is equivalent to the CPU in a computer,

and the external memory is equivalent to the memory of a

computer. The read/write side is equivalent to the IO device of

the computer. The controller modifies and reads the memory

blocks through the read/write side. During the operation of

the computer, the CPU addresses the data according to the

control signals from the controller, and the CPU determines

where in the memory to read and write the data information.

Unlike actual machines, there is no concept of bootability

for computer operations on memory. In NTM, all read and

write operations to the memory block matrix are derivable

(Vishwakarma and Lee, 2018).

The output of the NTM controller controls the entire

workflow of the NTM. The implementation of the controller

is a neural network. This means that it can be a recurrent

neural network. It can also be a fully connected or convolutional

network. It is the neural network controller that interacts with

the entire system input and output. The read and write sides

of the NTM calculate the weights of each vector in the external

memory matrix for the current state based on the control signals

from the controller. The values of the memory matrix in the

NTM are affected by all the inputs up to the current moment.

the memory matrix in the NTM is a real matrix. the memory

matrix in the NTM is the object of direct operations by the

read and write side. The process of reading and writing against

the memory matrix in the sequence model is represented as an

attention mechanism.

Formulation of the neural turing machine

M(t) denotes the memory matrix of size N× E at moment t,

where N denotes the number of memory cells and E denotes the

size of each memory cell. w(t) denotes the weight vector output

through the read head at the moment of t. w(t) whose the i-th

dimensional element w
(t)
i represents the weight occupied by the

i-th memory cell and satisfies the following constraint.

N
∑

i= 1

w
(t)
i = 1, 0 ≤ w

(t)
i ≤ 1, i = 1, 2, . . .N (1)

Then the reading vector r(t) at moment t is calculated

according to Equation (2).

r(t) = w(t)M(t) (2)

At the moment of t, the write head outputs the weight

vector w(t), the E dimensional elimination vector e(t) and the

E dimensional a(t). e(t) each element belongs to the interval

(0, 1). Then the value of the memory matrix can be calculated

according to Equations (3)–(5) as follows:

e(t) = σ (Weh(t) + be) (3)

a(t) = Wah(t) + ba (4)

M(t) = M(t−1)|1− w(t)(e(t))
T
| + w(t)(a(t))

T
(5)

where, 1 in Equation (5) denotes an all-1 matrix of size

N× E, denotes the output of the controller at the moment of

t, We, be, Wa, and ba are the weights and biases corresponding

to the elimination vector and the additive vector, respectively.

From Equation (5), it can be seen that each element of the

memory matrix is reset to 0 when each element of e(t) and w(t)is

equal to 1, and then a new memory vector is written.

When each element of e(t) and w(t) is equal to 0, each

element of the memory matrix remains unchanged.

The addressing mechanism based on location addressing is

introduced into NTM. In this paper, the addressing mechanism
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of NTM, that is, the weight vector occupied by the ith memory

unit, is summarized as the following four formulas:

C
(t)
i =

exp
(

β(t)k(k(t),M
(t)
i )

)

∑

j exp
(

β(t)k(k(t),M
(t)
i )

) (6)

G
(t)
i = g(t)C

(t)
i +

(

1− g(t)
)

w
(t−1)
i (7)

w̃
(t)
i =

N−1
∑

j=0

G
(t)
j s

(t)
i−j (8)

w
(t)
i =

w̃
(t)y(t)
i

∑

j w̃
(t)γ (t)
j

(9)

The K function in Equation (6) represents the cosine

similarity function.

k(u, v) =
u · v

||u||||v||
(10)

Equations (6) and (9) involves the five parameters k(t), β(t),

g(t), s(t) ,γ (t) and according to the previous section, have their

specific physical meaning. In the structure of NTM, they each

correspond to a single layer of neural networks whose inputs

are controller outputs h(t). Where k(t) corresponds to a linear

activation function, β(t), g(t), s(t), γ (t) corresponding to the

activation functions 1+ReLU, sigmoid, softmax, and 1+ReLU,

respectively. the following equation gives the definition of these

five parameters:

k(t) = Wkh(t) + bk (11)

β(t) = 1+ ReLU
(

Wβh(t) + bβ
)

(12)

g(t) = sigmoid
(

Wgh(t) + bg
)

(13)

s(t) = softmax
(

Wsh(t) + bs
)

(14)

γ (t) = 1+ ReLU
(

Wγ h(t) + bγ
)

(15)

shows the output of the time-step t controller, and the

W and b appearing in Equation are the weights and biases

corresponding to each parameter, respectively.

Improvement of neural Turing machine

In order to speed up the training of the model, this

paper uses hard sigmoid function instead of sigmoid activation

function in NTM. Hard sigmoid function has the main

properties of sigmoid activation function. Hard sigmoid

function also has the characteristics of simple calculation and

easy optimization of relu activation function. The hard sigmoid

function is used as the activation function, which ensures that

the core structure of NTM does not change. It also reduces the

calculation of the model.

The relu activation function is defined as follows:

g (x) = max (0, x) (16)

Relu is a piecewise linear function. When x is a negative

number, G (x) is equal to zero; When x is >0, G (x) is equal

to X.

Sigmoid activation function. The activation function related

to this article is sigmoid function. It is defined as follows:

σ (x) =
1

1+ e−x
(17)

Its characteristics are: the value range of the function is an

interval (0, 1), the function is derivable, and the exp function

and division must be calculated for both the function value and

the derivative value. Compared with linear function, sigmoid

activation function has a huge amount of computation and

saturation at both ends of the function.

According to literature (Mao, 2020), this paper notes that

Kaiser et al. introduced the truncation mechanism in N-GPUs.

Gate truncation mechanism used by Kaiser means that in the

gate mechanism of N-GPUs, the sigmoid function is replaced by

the function defined in Equation (18).

σ ′(x) = max(0,min(1, 1.2σ (x)− 0.1)) (18)

Hard sigmoid function is a piecewise linear approximation

function of sigmoid function. Its definition is shown in Equation

(19). According to the introduction of literature (Darabi et al.,

2018), this definition comes from courbariaux.

σ ′(x) = max(0,min(1, (x+ 1)/2)) (19)

Introduction and formula of tensile
properties of metal materials

Tensile properties are one of the important mechanical

properties of metallic materials, the yield strength, tensile

strength, elongation and sectional shrinkage of metals can be

measured by tensile tests and other performance indicators. The

relationship between elongation and section shrinkage during

the uniform deformation phase has been derived in previous

studies under the assumption of constant volume; after necking,

the “true stress-strain” curve is also plotted under incorrect

strain values.

The stress-strain relationship of the hardening section of

power hardening and line hardening metal materials is shown

in Equations (20) and (21), respectively.
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σR = KεnR (20)

K is the strength coefficient of power hardening material,

which is fitted by the least square method.

σR = E2ε + b (21)

E2 is the tangent modulus of linear hardening material,

and b is the material constant. For metallic materials satisfying

the linear elastic power hardening model, the yield strength is

the intersection of the elastic deformation line and the plastic

deformation curve. Generally, it is determined by the offset of

0.2% of the elastic segment. The tensile strength is calculated by

the concept of tensile instability:

σy = E
(

εy − 0.002
)

= Kεny (22)

σu = k
(n

e

)n
(23)

In the formula, the elastic modulus E has been calculated

by indentation contact stiffness, contact projection circle area

and other indentation parameters before calculation. E is the

base of natural logarithm. For metal materials that meet the

line hardening model, the yield strength can be obtained by

Meyer’s law. The tensile strength is obtained according to the

concepts of volume incompressibility and instability during

tensile deformation (Ye et al., 2020).

σy = βmA (24)

σu =
E2

exp[(E2 − b)/E2]
(25)

A is the Meyer index and the material yield parameter,

respectively, which is obtained by non-linear regression of

the Meyer equation. m is the material constant, which is

related to the type of metal material. For carbon steel and

austenitic stainless steel, this value is usually taken as 0.2285

and 0.1910.

Analysis and discussion

Analysis and discussion of neural turing
machine

The experiments introduced in this section compare the

performance of different models in algorithm learning tasks,

including RNN, LSTM, GRU, and NTM. The experimental tasks

include replication, addition andmultiplication. Each task trains

a model independently. In the copy task, the model trained

50,000 Batches; In the addition task, the model trained 150,000

Batches; In the multiplication task, the model trained 300,000

batches. The performance differences of different models are

compared in Figure 1.

The training time of different models is compared in

Figures 1A–C. In Figures 1A–C, from top to bottom are copy,

addition and multiplication, respectively. The models include

RNN, LSTM, GRU, and NTM. The unit of time is minutes.

Pink represents RNN, orange represents LSTM, blue represents

GRU, and purple represents NTM. It can be seen from the

figure that training NTM takes the longest time and training

RNN takes the least time. The training time increases in the

order of RNN, GRO, LSTM and NTM. In the replication task,

it takes 28min to train RNN, 46min to train Gru, 49min

to train LSTM, and 101min to train NTM; In addition to

this task, it takes 267min to train RNN, 188min to train

Gru, 200min to train LSTM, and 658min to train NTM; In

multiplication tasks, it takes 140min to train RNN, 374min to

train GRU, 439min to train LSTM and 1,829min to train NTM.

Although the accuracy of NTM on the test set is higher than

GRU, LSTM and NTM, the performance of the model is still

relatively poor.

NTM has a long training time. In the replication task, the

time required to train NTM is between 2 and 5 times that of

other models. In addition to task, the time needed to train

NTM is between 3 and 6 times that of other models. In the

multiplication task, the time required to train NTM is between 4

and 9 times that of other models.

Improved neural turing machine analysis
discussion

Figures 1D–F show the comparison of the training time of

different models. four network structures are involved in this

experiment as follows: (1) ordinary NTM. (2) NTM using Hard

sigmoid activation function, which is referred to as H-NTM

in the experiment. (3) NTM trained using adaptive curriculum

learning strategy based on adaptive curriculum scaling, referred

to as A-NTM. (4) H-NTM trained using adaptive curriculum-

based scaling of curriculum learning strategies, referred to as

AH-NTM. In Figures 1D–F, from top to bottom, are replication,

addition, and multiplication, respectively. The models include

AH-NTM,A-NTM,H-NTM, andNTM. Time units areminutes.

Orange represents AH-NTM, yellow represents A-NTM, cyan

represents NTM, and purple represents H-NTM. As can be seen

from the figure, the time required to train NTM and A-NTM is

very close, and the time required to train H-NTM and AH-NTM

is very close. In the replication task, NTM takes 101min; A-

NTM takes 103min; H-NTM takes 93min; and AH-NTM takes

95min. In the addition task, NTM takes 658min; A-NTM

both take 657min; H-NTM takes 604min and AH-NTM takes
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FIGURE 1

Comparison of training time of di�erent models, (A) replication; (B) addition; (C) multiplication; (D) replication; (E) addition; (F) multiplication.

600min. In the multiplication task, NTM requires 1,829min;

both A-NTM require 1,801min; H-NTM requires 1,688min,

and AH-NTM requires 1,694 min.

Figures 1D–F shows that the training time of H-NTM and

AH-NTM is less than that of NTM and A-NTM takes more

training time than AH-NTM. The specific figures are as follows:
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in the copying task, the training time of H-NTM is 8.0% less

than that of NTM; the training time of AH-NTM is 6.0% less

than that of NTM. In the addition task, the training time of H-

NTM was reduced by 8.2% compared to NTM, and the training

time of AH-NTM was reduced by 8.8% compared to NTM.

In the multiplication task, the training time of H-NTM was

reduced by 7.7% compared to NTM, and the training time of

AH-NTMwas reduced by 7.3% compared to NTM. In summary,

the training time of the model is reduced by using the Hard

sigmoid activation function instead of the sigmoid activation

function in the NTM. The combination of the Hard sigmoid

activation function and the adaptive course scaling-based course

learning strategy reduces the training time of the model.

Analysis and discussion of tensile
properties of metal materials

In this experiment, the indentation interval is small

and taken as 0.5, 0.55, 0.6, and 0.65mm variables for the

experimental study. The results of the second indentation test

in this study were mainly influenced by the raised material

surface. Its initial indentation load value is much larger than

the true value, and the calculated distribution pattern of the

characterized stress-strain data points deviates from the power-

law intrinsic structure relationship of the aluminum alloy

material. In order to improve the accuracy of the fitting results

of this experiment. In this study, the results corresponding to the

small initial indentation depth can be excluded. On this basis, the

data points in the latter part of the study were selected to bemore

reasonably distributed for fitting. The smaller number of test

points means that more initial data points are eliminated. For

example, the 14 points represent the remaining 14 data sets after

removing the stress-strain points obtained at the indentation

depth of 10µm. The indentation results at 0.5mm indentation

interval were used for the experimental analysis. The influence

of the data selection range on the fitting and calculation results

was investigated. The experimental study found that the most

significant effect was caused by the first indentation at this

working condition. As shown in Figure 2A, the stress of tensile

strength and yield strength showed an increasing trend with the

increase of fitting data points. As the number of points increases,

the further away from the true value of the test. The true value

of tensile test yield strength stress is 219.9 Mpa. The true value

of the tensile strength stress of another group of tensile tests

is 258.8 Mpa. This indicates that the indentation results with a

small indentation depth are the main factor affecting the final

calculation results. However, the number of test fitting points

should be >10.

The yield strength obtained from this experiment using a

10-point fit was 4.32%. The relative error of the tensile strength

was 4.17%. The relative errors of the initial results in the

experiment were 15.17 and 14.68%. The comparison of the

initial results with the 10-point fit indicates that reducing the

choice of fitted data points in this case can significantly improve

the accuracy of the calculated results. The 10-point fits were

performed separately for the indentation results at different

indentation intervals in the experiments. The variations of

the calculated yield strength and tensile strength results are

shown in Figure 2B. From the results, it can be obtained that

the error of the initial indentation data is larger when the

indentation interval is 0.5–0.7mm. The error of the material

tensile property results obtained after removing this section of

data is significantly reduced and is closer to the true value. The

data obtained were closer to the true value of the tensile test

yield strength of 219.9 Mpa. another set of data was closer to the

tensile test tensile strength of 258.8 Mpa. when the indentation

interval was 0.8–1.5mm, the accuracy of fitting the results using

the default range was higher. The test stress data is infinitely

closer to the true value with less error. Reducing the fitted

data points will increase the calculated value of indentation and

reduce its accuracy to some extent.

Conclusion

Nowadays, metal material properties have become a hot

research problem. Based on the assistance of neural Turing

machine model, an improved neural Turing machine model is

proposed in this paper. The model is applied to the exploration

of tensile properties testing techniques for metallic materials.

The model allows us to get the required results faster and more

explicitly. It is found that the accuracy of fitting the results using

the default range is higher when the press-in interval is 0.8

mm-1.5mm. The specific findings of this study are as follows.

(1) In the experiments of neural Turing machine, the training

time of four different models, RNN, LSTM, GRU and

NTM, was compared for three different experimental tasks

of replication, addition and multiplication. The analysis

reveals that the training time of NTM is longer. In the

replication task, the time required to train NTM is 2–5 times

longer than the other models, respectively. In the addition

task, it took 3–6 times as long to train as the others. In the

multiplication task, it took 4–9 times longer to train than

the others.

(2) In the experiments of the improved neural Turing

machine, the training time was compared for four different

models, NTM, H-NTM, A-NTM, and AH-NTM, for three

different experimental tasks of replication, addition, and

multiplication. The analysis shows the training time of

H-NTM and AH-NTM is less than that of NTM. The

training time of A-NTM is more than that of AH-NTM.

The improvement of them reduces the training time of

the models. In replication, the training time of AH-NTM

is reduced by 6.0% compared to NTM, respectively. In
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FIGURE 2

Calculated results of metal tensile properties, (A) material tensile properties for di�erent data ranges at 0.5mm press-in interval; (B) re-choice of

fitted data.

addition, its training time was reduced by 8.8%, and in

multiplication, its training time was reduced by 7.3%.

(3) When the indentation interval is 0.5–0.7mm, the error of

the initial indentation data is larger. This value is closer to

the real value of the tensile test yield strength 219.9 Mpa

and the real value of tensile test tensile strength 258.8 Mpa.

When the indentation interval is 0.8–1.5mm, the accuracy

of fitting the results with the default range is higher, whose

values are infinitely close to the true values. Reducing the

number of fitted data points will increase the calculated

value of indentation and reduce its accuracy to some extent.
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