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ABSTRACT Most genomic-enabled prediction models developed so far assume that the response variable is
continuous and normally distributed. The exception is the probit model, developed for ordered categorical
phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal
regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of
genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this
reason, in this paper we propose a BLOR model using the Pólya-Gamma data augmentation approach that
produces a Gibbs sampler with similar full conditional distributions of the BPORmodel and with the advantage
that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using
simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing
ordinal data in the context of genomic-enabled prediction with the probit or logit link.
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Genomic-enabled prediction models are revolutionizing animal and
plant breeding. There is some evidence that they are powerful for pre-
dicting the genomic merit of animals and plants based on high-density
single-nucleotide polymorphism (SNP) marker panels and are being
recommended increasingly for genomic prediction in human health
(Yang and Tempelman 2012). However, most genomic-enabled predic-
tion models assume a continuous and normally distributed phenotype.
Because often this assumption is not fulfilled, researchers normally
approach phenotypes in three ways: (a) they ignore the lack of normal-
ity in the phenotypes; (b) they transform the non-normal phenotype to
approximate it to normality; or (c) they use generalized linear mixed
models (GLMMs) to model the appropriate distribution of the pheno-
type (Stroup 2015).

The use of the first approach is justified for large sample sizes with the
central limit theorem, which states that treatment means have an approx-
imatenormaldistributionif thesamplesize is largeenough.However, there
is a lot of evidence indicating that thefirst approachproduceshighly biased
results for small- and moderate-sample sizes (Stroup 2012, 2015). Trans-
formations introduced by Bartlett (1947) for non-normal data were pro-
posed for variance-stabilization to fulfill the assumption of homogeneous
variance; they are still considered standard procedures in many agricul-
tural disciplines. Implementation with transformations is equal to that for
phenotypes normally distributed (based on the linear model). However,
there is mounting evidence that transformations do more harm than
good for the models required by most agricultural research, because the
use of the linearmodel with or without transformed data produces a great
loss of accuracy and power (Stroup 2015), mostly in small sample sizes.

Nelder andWedderburn (1972) introduced generalized linearmod-
els, a major departure from the usual approach to non-normal data.
GLMMs extend the linear model theory to accommodate non-normal
data with heterogeneous variance and even correlated observations.
Viewed through the GLMM lens, the pre-1990s understanding of
non-normal data––still pervasive in the agricultural research commu-
nity––is antiquated at best, obsolete at worst. Today, small sample
investigations are providing an increasing body of evidence that
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GLMMs work as well in practice as they do in theory because they
produce more accuracy and power than approaches (a) and (b). Also,
now there are textbooks and software available for the implementation
of GLMMs, although the implementation of approaches (a) and (b) is
still dominant in agricultural research (Stroup 2015). In genomic-en-
abled prediction, the use of GLMMs is still in its early stages because
their implementation is not straightforward given that the number of
observations (n) is usually smaller than the number of covariates (p)
included in the model. In addition, a complex dependence structure is
observed among covariates (markers) and observations (lines) due to
the joint involvement of biological processes and pathways.

To overcome this situation in the pregenomic era, Gianola (1980,
1982) and Gianola and Foulley (1983) proposed a probit (threshold)
model for dealing with ordinal categorical traits in animal breeding. This
probit model was extended to deal with p.. n in the genomic era by
González-Recio and Forni (2011) and Villanueva et al. (2011) for binary
trials, and byWang et al. (2012) andMontesinos-López et al. (2015) for
more than two ordinal categories. Also, BGLR (Bayesian generalized
linear regression), software developed for genomic-enabled prediction
that is able to deal with normal, binary, ordinal, and censored data (de
los Campos and Perez-Rodriguez 2013; Perez-Rodriguez and de los
Campos 2014), is now available. However, no GLMMs are available
for genomic-enabled prediction for counts and percentage phenotypes.

For modeling ordinal categorical phenotypes, the ordinal logistic
regression model is often preferred over the ordinal probit model in
statistical applications, because it provides regression coefficients that are
more interpretable due to their connection to odds ratios (Zucknick and
Richardson 2014). However, in genomic-enabled prediction (when
p .. n), only the Bayesian probit model is frequently implemented,
given that Bayesian methods that introduce sparseness through addi-
tional priors on the model size are very well-suited to this problem.
Therefore, because of the lack of a Bayesian logistic ordinal model anal-
ogous to the Bayesian probit ordinal model that uses a data augmenta-
tion approach, the logistic model is not practical for genomic selection.

Both logistic and normal distributions are symmetric with a basic,
unimodal “bell curve” shape. The only difference is that the logistic
distribution has a somewhat heavier tails, which means that it is less
sensitive to outlying data (and hence somewhatmore robust formodeling
mis-specifications or erroneous data). This is another advantage of logis-
tic regression over probit regression. Because of its easy implementation,
the use of BPOR is extremely common, even though it is less robust for
modeling mis-specifications and its coefficients are less interpretable.
Because of the aforementioned properties of the logistic model, some
researchers have proposed approximations to logit regression. For exam-
ple, Bartholomew and Knott (1999) proposed logitðuÞ ¼ k·F21ðuÞ,
where F is the cumulative density function for the standard normal
distribution and k ¼ 1:814, whereas Camilli (1994) proposed using k =
1.702, obtained by minimizing the maximum distance between two cu-
mulative distribution functions. Although Amemiya (1981) proposed
a value of k = 1.6 and computed tables for representative values of the
density function for different values of k, he did not explain why he used
k ¼ 1:6. More recently, Savalei (2006) obtained a value of k = 1.75 based
on minimizing the Kullback-Leibler information. However, although
some of these approximations do a reasonable job of approximating
the logistic distribution, they are only approximations, and it goeswithout
saying that an exact solution is preferred.

In this paper, we propose a Bayesian logistic ordinal regression
(BLOR) model for genomic-enabled prediction by using a data aug-
mentation approach. We illustrate our proposed method with simula-
tion and real data. We compare the BLOR with the Bayesian probit
ordinal regression (BPOR) model with and without approximation.

MATERIALS AND METHODS

Gray leaf spot (GLS) and Septoria data sets
GLS is one of themost important foliar diseases ofmaize worldwide. The
GLSdata set is composed of 278maize lines; the ordinal traitmeasured in
each line was GLS [1 (no disease), 2 (low infection), 3 (moderate
infection), 4 (high infection), 5 (complete infection)] causedby the fungus
Cercospora zeae-maydis, evaluated in three environments (México, Zim-
babwe, and Colombia). These data are part of a data set previously
analyzed by Crossa et al. (2011), González-Camacho et al. (2012), and
Montesinos-López et al. (2015). Genotypes of all 278 lines were obtained
using the 55k SNP Illumina platform. SNPs with.10% missing values
or aminor allele frequency of # 0.05 were excluded from the data. After
line-specific quality control (applying the same quality control to each
line separately), the maize data still contained 46,347 SNPs.

On the other hand, the Septoria data set contains 268 wheat lines
planted in Toluca, México, in 2010, and the trait (Septoria scores) was
measured using an ordinal four-point scale. Genotypes of these lines
were obtained with 45,000 genotype by sequencing (GBS), following
the protocol of Poland et al. (2012). We kept only 13,913 GBS that had
,50%missing data; after filtering for minor allele frequency, we ended
up with 6787 GBS that were used in the analysis.

For the implementation of the proposed model, we formed five data
sets from these two real data sets (GLS and Septoria), four from the GLS
data set and one from the Septoria data set. The first three data sets
formed from GLS correspond to each environment in which they were
evaluated for GLS; the last one was formed by pooling the data from the
three environments (information from the three environments without
taking into account the environments as covariates).

Bayesian logistic ordinal regression
Let y ¼ fyijg (i ¼ 1; . . . ; I; j ¼ 1; 2; . . . ; niÞ; where i represents
the genotype and j denotes the number of replicates or experimental
units of each genotype. The total number of observations is
n ¼PI

i¼1 ni: In other words, the observed vector yi contains ni ele-
ments, and the n-dimensional vector y of all responses can be written as
yT ¼ ðyT1 ; yT2 ; . . . ; yTI Þ. The response variable yij represents an assign-
ment into one of C mutually exclusive and exhaustive categories that
follow an order. Therefore, the ordinal logistic regression model can be
written in terms of a latent response variable lij as follows:

lij ¼ xTijbþ bi þ eij (1)

where lij are called “liabilities”, eij � Lð0; 1Þ, where Lð:Þ denotes the
logistic distribution, and the vectors xij (p · 1) are explanatory var-
iables associated with the fixed effects b. The random effect
bi � Nð0;s2

bÞ. In genomic-enabled prediction, b ¼ ðb1; . . . ; bIÞT
� Nð0;Gs2

bÞ: Since lij are unobservable and can be measured in-
directly by an observable ordinal variable yij, then lij can be defined by:

yij ¼

8>><
>>:

1 if   2N, lij , g1;
2 if   g1 , lij , g2;

⋮
C if   gC2 1 , lij ,N

This means that lij is divided by thresholds into C intervals, corre-
sponding to C ordered categories. The first threshold, g1; defines the
upper bound of the interval corresponding to observed outcome 1.
Similarly, threshold gC2 1 defines the lower bound of the interval
corresponding to observed outcome C. Threshold gc defines the
boundary between the interval corresponding to observed outcomes
c 2 1 and c for (c = 1,2,. . ., C 2 1). Threshold parameters are
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gT ¼ ðgmin , g1 ,⋯, gC2 1 , gmaxÞ with gmin ¼ 2N,
and gmax ¼ N:

Assuming that the error term eij of the latent response lij is distrib-
uted as Lð0; 1Þ, the cumulative response probability for the c category of
the ordinal outcome yij is:

Pðyij # cjb; bÞ ¼pijðcÞ ¼ Pðlij # gcjb; bÞ ¼P
�
xTijbþ bi þ eij # gc

�

¼ P
�
eij # gc2 xTijb2 bi

�
;

for c ¼ 1; 2; . . . ;C2 1.

¼ expðgc2 xTijb2 biÞ
1þ expðgc2 xTijb2 biÞ

(2)

Similarly, model (2) can be written as a cumulative logit model:

log

 
pijðcÞ

12pijðcÞ

!
¼ gc 2 xTijb2 bi; for c ¼ 1; 2; . . . ;C2 1:

This GLMM model is described by: (1) two distributions, one for
observations in the response variable ðyijð1Þ; yijð2Þ; . . . ; yijðCÞ
jb; bÞ �Multinomial ð1;pijð1Þ;pijð2Þ; . . . ;pijðCÞ), where b is the
p · 1 vector of fixed effects, and another for the random effects,
bi � Nð0;s2

bÞ or b � Nð0;Gs2
bÞ; where bi is the effect of line i; (2)

linear predictor hijðcÞ ¼ gc 2 xTijb2 bi, where hijðcÞ denotes the cth link
(c = 1,2,. . ., C2 1) for the fixed and random effects combination, gc is
the intercept (threshold) for the cth link, and xTij are known row in-
cidence vectors corresponding to fixed effects in b. Because there are
C categories, a total of C2 1 link functions are required to fully specify
themodel; and (3) link function: cumulative logit {hijðcÞ ¼ log

�
pijðcÞ

12pijðcÞ

�
,

(c = 1,2,. . ., C 2 1)}.
Using the inverse link for this model, we can calculate

Pðyij ¼ c
��b; bÞ ¼ pijðcÞ as follows:

pijðcÞ ¼ P
�
gc21 , lij , gc

�
¼ expðgc2 xTijb2 biÞ

1þ expðgc 2 xTijb2 biÞ
2

expðgc21 2 xTijb2 biÞ
1þ expðgc21 2 xTijb2 biÞ

:

Since we have latent variables lij distributed as LðxTijbþ bi; 1Þ and we
observe yij ¼ c if, and only if, gc21 , lij , gc, then the joint posterior
density of the parameter vector and latent variable becomes

P
�
b;g;b;s2

b;s
2
b; ljy

�
} Pðyjl;gÞPðljb; bÞPðgÞ

· P
�
bjs2

b

�
P
�
bjs2

b

�
Pðs2

b

�
P
�
s2
b

�
:

Let’s assume a scaled independent inverse chi-square x22ðnb; SbÞ
prior for s2

b, a normal prior distribution for b
��s2

b � Nðb0;S0s
2
bÞ,

a normal prior distribution for b
��s2

b � Nð0;Gs2
bÞ, and also

a x22ðnb; SbÞ prior for s2
b (Gianola 2013). Following Sorensen et al.

(1995), the prior for the C2 1 unknown thresholds has been given as
order statistics from U(gmin, gmaxÞ distribution,

PðgÞ ¼ ðC2 1Þ!
�

1
gmax2gmin

�C21

Iðg 2 TÞ

where T ¼ fðg1; . . . ; gmaxÞjgmin , g1 ,⋯, gC21 , gmaxg.

The fully conditional posterior distributions are provided below and
details of all derivations are given in Appendix A.

Liabilities and Pólya-Gamma values
The fully conditional posterior distribution of liability lij is a truncated
normal distribution and its density is

P
�
lijjELSE

� ¼ f
�
xTijbþ bi; 1

	 ffiffiffiffiffiffi
vij

p �
F
�
gc 2 xTijb2 bi

�
2F

�
gc21 2 xTijb2 bi

� (3)

For simplicity, ELSE is the data and the parameters, except the one in
question. fð:Þ is a normal density with parameters as indicated in the
argument,F is the cumulative distribution function of a normal den-
sity with mean xTijbþ bi and variance 1=

ffiffiffiffiffiffi
vij

p
, and the fully condi-

tional posterior distribution of vij is

vij
��ELSE � PG

�
2;2 lij þ xTijbþ bi

�
(4)

Regression coefficients (b)
The fully conditional posterior of b is as follows:

bjELSE � Np

�
~b0;

~S0

�
(5)

where ~S0 ¼ ðS21
0 s22

b þ XTDvXÞ21, ~b0 ¼ ~S0ðS21
0 s22

b b0 2
XTDvZbþ XTDvlÞ. With l ¼ ½lT1 ; . . . ; lTI �T , li ¼ ½lTi1; . . . ; lTini �T ,
X ¼ ½XT

1 ; . . . ; X
T
I �T , Xi ¼ ½xi1; . . . ; xini �T ,

Z ¼
1n1 0
0 1n2

⋯
⋯

0
0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1nI

2
664

3
775, Dv ¼ diagðDv1; ::;DvIÞ, Dvi ¼

diagðvi1; . . . ; viniÞ. It is important to point out that if we use a prior

for b}Constant (improper uniform distribution), then in ~S0 and ~b0

we need to make 0 the term S2 1
0 s2 2

b .

Polygenic effects (b)
Now the fully conditional posterior of b is given as

b
��ELSE � NI

�
~b ¼ F

�
ZTDvl2ZTDvXb

�
;

F ¼ �s22
b G21 þ ZTDvZ

�21
�

(6)

Variance of polygenic effects
Next, the fully conditional posterior of s2

b is

s2
b

��ELSE � x22ð~nb ¼ nb þ I;~Sb ¼ ðbTG21bþ nbSbÞ
	
nb þ IÞ

(7)

Threshold effects (g)
The density of the fully conditional posterior distribution of the cth

threshold, gc, is
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Variance of regression coefficients
The fully conditional posterior of s2

b is

s2
bjELSE � x22ð~nb ¼ nb þ p;~Sb

¼ �ðb2b0ÞTS21
0 ðb2b0Þ þ nbSb

�	
nb þ pÞ (9)

The Gibbs sampler
The Gibbs sampler is implemented by sampling repeatedly from the
following loop:

1. Sample liabilities from the truncated normal distribution in (3).
2. Sample vij values from the Pólya-Gamma distribution in (4).
3. Sample the regression coefficients from the normal distribution in

(5).
4. Sample the polygenic effects from the normal distribution in (6).
5. Sample the variance effect (s2

bÞ from the scaled inverted x2 distri-
bution in (7).

6. Sample the thresholds from the uniform distribution in (8).
7. Sample the variance of regression coefficients (s2

bÞ from the scaled
inverted x2 distribution in (9).

8. Return to step 1 or terminate if chain length is adequate to meet
convergence diagnostics.

In the absence of polygenic effects (b), the aforementioned
Gibbs sampler can be used only by ignoring steps 4 and 5. If all
marker effects are taken into account in the design matrix, X, with
a prior b�Npð0; Ips2

bÞ for the beta regression coefficients, we
end up with a threshold Bayesian ridge regression. This is a ver-
sion for ordinal categorical data of the ridge estimator of Hoerl
and Kennard (1970), since the posterior expectation of b is
equal to EðbjELSEÞ ¼ ðXTDvX þ Ips22

b Þ21XTDvl with pseudo-
response l. Another important point is that by setting each
vij ¼ 1; the aforementioned Gibbs sampler for the BLOR with
the logistic link is reduced to the Gibbs sampler for the BPOR
with the probit link proposed by Albert and Chib (1993). This
implies that the proposed BLOR model is more general and

n Table 1 Simulated data set 1: Average values (Mean) and SD of MLEs and the Bayesian estimators, with four sample sizes (ni)

ni Parameter True Value
BLOR BLOR� MLLOR MLLOR�

Mean SD Mean SD Mean SD Mean SD

b1 26 -6.141 1.935 26.711 2.117 26.380 2.489 26.826 2.668
b2 25 -4.957 2.262 25.546 2.726 25.596 2.731 25.927 2.872
b3 7 7.550 2.746 7.815 3.112 6.659 2.698 7.110 2.885

5 g1 20.842 -0.851 0.190 20.937 0.152 20.883 0.177 20.942 0.185
g2 20.253 -0.254 0.154 20.271 0.142 20.277 0.167 20.298 0.179
g3 0.253 0.274 0.170 0.328 0.171 0.262 0.203 0.281 0.218
g4 0.842 0.878 0.171 0.967 0.151 0.863 0.211 0.920 0.220
b1 26 26.224 1.562 26.534 1.650 -6.118 1.673 26.480 1.767
b2 25 -4.987 1.825 25.433 1.901 24.717 1.500 25.022 1.619
b3 7 7.306 1.971 7.762 1.825 6.606 1.836 7.038 1.939

10 g1 20.842 -0.843 0.100 20.926 0.147 20.847 0.127 20.907 0.135
g2 20.253 -0.239 0.097 20.284 0.131 20.273 0.110 20.296 0.119
g3 0.253 0.276 0.113 0.272 0.123 0.233 0.110 0.249 0.120
g4 0.842 0.861 0.116 0.920 0.124 0.841 0.115 0.897 0.123
b1 26 26.122 1.063 26.278 1.390 -6.030 0.936 26.422 1.017
b2 25 -5.099 1.262 25.538 1.103 25.181 0.962 25.488 1.019
b3 7 7.271 1.114 7.479 1.394 7.243 1.118 7.669 1.183

20 g1 20.842 20.849 0.108 20.917 0.100 -0.847 0.073 20.905 0.077
g2 20.253 -0.252 0.106 20.291 0.094 20.250 0.069 20.270 0.074
g3 0.253 0.259 0.091 0.261 0.099 0.254 0.068 0.272 0.073
g4 0.842 0.860 0.097 0.883 0.106 0.850 0.079 0.907 0.084
b1 26 -6.058 0.804 26.467 0.924 26.199 0.719 26.563 0.783
b2 25 25.175 0.817 25.231 0.879 24.804 0.791 -5.101 0.856
b3 7 7.163 0.815 7.674 0.958 7.093 0.867 7.528 0.904

40 g1 20.842 20.844 0.065 20.911 0.069 -0.841 0.051 20.899 0.055
g2 20.253 -0.258 0.053 20.278 0.064 20.248 0.05 20.267 0.056
g3 0.253 0.255 0.052 0.267 0.060 0.252 0.044 0.271 0.048
g4 0.842 0.856 0.054 0.900 0.071 0.835 0.047 0.893 0.050

BLOR� and MLLOR� use the parameter estimates of BPOR and MLLOR and approximate BLOR and MLLOR with logitðuÞ ¼ 1:75·F21ðuÞ. The best model has the
value for the parameter closer to the true value; these are presented in bold. MLEs, maximum likelihood estimators; BLOR, Bayesian logistic ordinal regression;
MLLOR, maximum likelihood logistic ordinal regression.

PðgcjELSEÞ ¼
1

min
n
min

�
lijjyij ¼ cþ 1

�
; gcþ1; gmax

o
2max

n
max

�
lijjyij ¼ c

�
; gc2 1; gmin

o (8)
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includes the Gibbs sampler for the BPOR model as a particular
case.

Simulation study
The purpose of this simulation study is twofold: (1) to compare the
performance of the proposed BLOR with: (a) the approximation
resulting from using the estimates of the BPOR with
logitðuÞ ¼ 1:75 ·F21ðuÞ; denoted as BLOR�, (b) with the results
of using maximum likelihood estimators (MLEs) with logit link
for ordinal data (MLLOR), and (c) the approximation resulting
from multiplying the MLEs with probit link for ordinal data by
1.75, denoted as MLLOR�; (2) to evaluate the performance of the
BLOR in the presence of outliers. We used the value 1:75 because,
according to the literature review, it is the most reasonable value
(Savalei 2006).

To reach these two goals, two data sets were simulated. Both
simulation studies were carried out with the following liability:

lij ¼ xTi bþ eij;

where i ¼ 1; . . . ; 40 and j ¼ 1; . . . ; ni, b
T ¼ ½2 6; 5; 7� and the vec-

tors xTi ¼ ½xi1; xi2; xi3� have been drawn independently, with com-
ponents following a uniform distribution within the interval [20.1,
0.1]. The threshold parameters used were g1=20.8416, g2=20.2533,
g3= 20.2533, and g4= 20.8416. Then the response variable was
generated as follows:

yij ¼

8>><
>>:

1 if   2N, lij , g1;
2 if   g1 , lij , g2;

⋮
5 if   g4 , lij ,N

For simulated data set 1, we used four values of sample size ni = 5,
10, 20, and 40 and all the eij were drawn independently from a
L(0,1), whereas for simulated data set 2, we used only one sample
size (ni = 40) and the error terms (eij) were obtained from two
distributions [L(0,1) and a student’s t distribution with four
degrees of freedom, denoted as t4]. We studied four scenarios:
Scenario 1, the percentage of outliers (PO) from the t4 was 5%
and the remaining percentage was obtained from the L(0,1) dis-
tribution; Scenario 2: the PO from the t4 was 10%, and 90% from
the L(0,1); Scenario 3: the PO from the t4 was 20%, and 80% from
the L(0,1); and Scenario 4: the PO from the t4 was 30%, and 70%
from the L(0,1).

The MLE estimates for the ordinal regression were obtained
using the polr function of the MASS package in R (R Core Team
2015). It is important to point out that the priors used for
the Bayesian methods were not informative for bjs2

b�NðbT
0 ¼

½0; 0; 0�; 10000 · I3Þ, and for the hyperparameters for thresholds,
we used gmin ¼ 24 and gmax ¼ 4. We computed 20,000 Markov
chain Monte Carlo (MCMC) samples. Bayes estimates were com-
puted using 10,000 samples because the first 10,000 were dis-
carded as burn-in.

n Table 2 Simulated data set 2: average values (Mean) and SD of MLEs and Bayesian estimators, with four POs

PO Parameter True Value
BLOR BLOR� MLLOR MLLOR�

Mean SD Mean SD Mean SD Mean SD

b1 26 -5.994 0.824 26.525 0.915 26.230 0.723 26.608 0.766
b2 25 25.088 0.880 25.678 0.864 -5.015 0.763 25.324 0.815
b3 7 7.183 0.802 7.607 0.893 7.111 0.651 7.535 0.689

5 g1 20.842 20.862 0.066 20.923 0.067 -0.853 0.050 20.910 0.053
g2 20.253 20.263 0.071 20.281 0.059 -0.256 0.048 20.276 0.051
g3 0.253 0.258 0.068 0.285 0.051 0.261 0.040 0.281 0.043
g4 0.842 0.861 0.067 0.928 0.058 0.856 0.041 0.914 0.043
b1 26 -6.156 0.854 26.670 0.979 -6.136 0.607 26.504 0.647
b2 25 25.359 0.899 25.544 1.094 -5.149 0.610 25.459 0.639
b3 7 7.349 0.830 7.739 0.856 7.109 0.645 7.536 0.682

10 g1 20.842 20.883 0.063 20.925 0.076 -0.866 0.048 20.924 0.050
g2 20.253 20.266 0.070 20.267 0.072 -0.265 0.052 20.285 0.056
g3 0.253 0.260 0.071 0.313 0.065 0.264 0.051 0.284 0.055
g4 0.842 0.868 0.068 0.964 0.082 0.861 0.052 0.918 0.055
b1 26 26.529 0.730 26.828 0.903 -6.345 0.645 26.709 0.689
b2 25 -5.244 0.759 25.722 0.877 25.275 0.629 25.589 0.671
b3 7 7.525 0.784 7.860 0.758 7.344 0.735 7.780 0.772

20 g1 20.842 20.915 0.065 20.972 0.060 -0.883 0.049 20.942 0.053
g2 20.253 20.275 0.059 20.295 0.057 -0.260 0.044 20.280 0.048
g3 0.253 0.279 0.063 0.297 0.059 0.271 0.047 0.291 0.051
g4 0.842 0.922 0.060 0.977 0.060 0.895 0.053 0.954 0.057
b1 26 26.794 0.803 27.011 1.013 -6.555 0.654 26.916 0.691
b2 25 25.652 0.754 25.827 0.754 -5.298 0.634 25.590 0.666
b3 7 8.065 0.894 8.351 0.881 7.491 0.752 7.925 0.798

30 g1 20.842 20.972 0.071 21.004 0.075 -0.898 0.041 20.956 0.044
g2 20.253 20.301 0.060 20.296 0.072 -0.269 0.044 20.289 0.047
g3 0.253 0.279 0.067 0.318 0.069 0.286 0.044 0.306 0.047
g4 0.842 0.944 0.068 1.023 0.060 0.922 0.044 0.981 0.046

The outliers were generated with a student’s t distribution with four degrees of freedom. BLOR� and MLLOR� use the parameter estimates of BPOR and MLLOR and
approximate BLOR and MLLOR with logitðuÞ ¼ 1:75 ·F21ðuÞ. The best model has the value for the parameter closer to the true value; these are presented in bold.
MLEs, maximum likelihood estimators; POs, percentages of outliers; BLOR, Bayesian logistic ordinal regression; MLLOR, maximum likelihood logistic ordinal re-
gression.
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Model implementation
The Gibbs sampler described previously for the BLOR model was
implemented with the R-software (R Core Team 2015). Imple-
mentation was done with a Bayesian approach and MCMC
through the Gibbs sampler algorithm, which samples sequentially
from the full conditional distributions until it reaches a stationary
process, converging with the joint posterior distribution (Gelfand
and Smith 1990). In the real data, to reduce the potential impact of
MCMC errors on prediction accuracy, we performed a total of
60,000 iterations with a burn-in of 20,000, so that 40,000 samples
were used for inference. We did not apply thinning of the chains,

following the suggestions of Geyer (1992), Maceachern and Ber-
liner (1994), and Link and Eaton (2012), who provide justification
for the ban on subsampling MCMC output for approximating
simple features of the target distribution (e.g., means, variances
and percentiles), since thinning is neither necessary nor desirable,
and unthinned chains are more precise. It is important to point
out that implementation of the BLOR model for the real data sets
was done using the hyperparameters nb ¼ 3, Sb ¼ 0:001;
b0 ¼ 0; S0 ¼ 10000 · Ip; Þ, gmin = 21000 and gmax= 21000 for
thresholds parameters, all of which were chosen to lead weakly
informative priors.

n Table 3 Real data sets: GLS and Septoria data sets

Model Set (DIC) Statistic
Probability of Each Category

BS1 2 3 4 5

Mean 0.025 0.256 0.392 0.196 0.132 0.363
Zimbabwe L 0.018 0.236 0.368 0.173 0.112 0.363
(4150.29) U 0.034 0.278 0.415 0.216 0.149 0.363

Mean 0.054 0.442 0.267 0.169 0.069 0.350
BLOR México L 0.035 0.399 0.228 0.139 0.050 0.349

(1313.82) U 0.075 0.480 0.308 0.200 0.092 0.352
Mean 0.204 0.248 0.259 0.212 0.077 0.390

Colombia L 0.179 0.219 0.232 0.187 0.058 0.389
(2577.92) U 0.233 0.279 0.287 0.239 0.095 0.391

Mean 0.083 0.284 0.332 0.198 0.104 0.377
Pooled L 0.069 0.269 0.315 0.184 0.093 0.377
(8327.36) U 0.093 0.299 0.350 0.211 0.119 0.377

Mean 0.077 0.150 0.432 0.341 2 0.335
Septoria L 0.049 0.112 0.376 0.294 2 0.333
(654.33) U 0.110 0.195 0.493 0.388 2 0.338

Mean 0.032 0.237 0.416 0.190 0.124 0.363
Zimbabwe L 0.025 0.219 0.389 0.171 0.110 0.363
(4156.86) U 0.039 0.258 0.443 0.211 0.140 0.365

Mean 0.057 0.436 0.280 0.156 0.070 0.350
BLOR� México L 0.041 0.392 0.242 0.128 0.054 0.350

(1315.21) U 0.075 0.479 0.323 0.187 0.089 0.353
Mean 0.193 0.260 0.279 0.194 0.074 0.390

Colombia L 0.168 0.226 0.248 0.168 0.060 0.389
(2581.66) U 0.220 0.292 0.310 0.223 0.089 0.392

Mean 0.082 0.277 0.358 0.184 0.100 0.377
Pooled L 0.074 0.259 0.341 0.168 0.090 0.377
(8339.54) U 0.091 0.294 0.375 0.200 0.109 0.378

Mean 0.075 0.137 0.457 0.332 2 0.334
Septoria L 0.051 0.098 0.392 0.268 2 0.330
(652.50) U 0.104 0.176 0.527 0.393 2 0.341

Mean 0.025 0.253 0.392 0.199 0.132 0.363
Zimbabwe L 0.017 0.233 0.366 0.179 0.113 0.363
(4150.18) U 0.033 0.274 0.416 0.219 0.148 0.363

Mean 0.054 0.440 0.265 0.171 0.070 0.350
BPOR México L 0.036 0.399 0.229 0.142 0.051 0.350

(1314.70) U 0.076 0.479 0.304 0.203 0.092 0.352
Mean 0.206 0.249 0.261 0.209 0.075 0.390

Colombia L 0.176 0.221 0.230 0.183 0.058 0.389
(2578.42) U 0.233 0.277 0.293 0.233 0.095 0.391

Mean 0.071 0.256 0.331 0.218 0.123 0.377
Pooled L 0.042 0.183 0.313 0.191 0.104 0.374
(8329.84) U 0.086 0.287 0.350 0.286 0.171 0.389

Mean 0.075 0.150 0.430 0.345 2 0.334
Septoria L 0.047 0.110 0.369 0.282 2 0.330
(651.79) U 0.109 0.191 0.500 0.402 2 0.339

BLOR� use the parameter estimates of the BPOR and approximate the BLOR with logitðuÞ ¼ 1:75 ·F21ðuÞ. Point probability estimates,
credible sets for each category, DIC, and BS for the threshold Bayesian ridge regression. L and U denote lower and upper confidence
sets, respectively. GLS, Gray leaf spot; DIC, deviance information criterion; BS, Brier scores; BLOR, Bayesian logistic ordinal regression;
BPOR, Bayesian probit ordinal regression.
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Assessing prediction accuracy
We used cross-validation to estimate the prediction accuracy of the
proposed models. The data set was divided into training and validation
sets 10 times, with 90% of the data set used for training and 10% for
testing; this was done only for the pooled data. The training set was used
tofit themodel and the validation setwas used to evaluate the prediction
accuracy of the proposed models. Since the phenotype response is
ordinal categorical, we used the Brier score (Brier 1950) to measure
prediction ability, which is equal to

BS ¼ n21
Xn
i¼1

XC
c¼1

ðp̂ic2dicÞ2 (10)

where BS denotes the Brier Score, and dic takes a value of 1 if the
ordinal categorical response observed for individual i falls into cate-
gory c; otherwise, dic = 0. This scoring rule uses all the information
contained in the predictive distribution, not just a small portion like
the hit rate or the log-likelihood score. Therefore, it is a reasonable
choice for comparing categorical regression models, although there
are other scoring rules that also have good properties. The range of BS
in equation (10) is between 0 and 2. For this reason, we divided Brier
scores (BS)/2 to get the BS bounded between 0 and 1; lower scores
imply better predictions. It is important to point out that we also used
the BS when analyzing the full data sets. We also used the deviance
information criterion (DIC) to compare Bayesian models, as sug-
gested by Gelman et al. (2003); here, the lower the DIC, the better
the model.

Data availability
The two real data sets and two simulated data sets together with R codes
are deposited in the link http://hdl.handle.net/11529/10254. The phe-
notypic data for GLS in three environments (México, Zimbabwe, and
Colombia) for the 278 maize lines, the 46,347 SNPs, and the R scripts
developed to fit the predictive models used in this study are given in the
files PhenoGLS.RData, and MarkersGLSFinal.RDat. The repository
also contains the Septoria genotypic and phenotypic data sets, in files
SeptoriaGenotypic.RDat, and SeptoriaPhenotypic. RDat, respectively.
The R codes to generate the simulated data sets 1 and 2, and for
analyzing the real data set from Colombia are directly given in Appen-
dices B, C, and D, respectively.

RESULTS
In the following sections,we investigate theperformanceof theproposed
BLOR estimator through a simulation study and with real data.

Simulated data set
In Table 1, we report average estimates obtained by all methods, along
with SDs; all the results are based on 50 replications. From Table 1, it
is clear that as the sample size increases, the average biases and SD
decrease in all cases. This confirmed the consistency properties of all
the estimates. Table 1 also shows that, in general, the point estimates
of the Bayesian estimates (BLOR and BLOR�) are similar to theMLEs
(MLLOR, andMLLOR�, which was approximated with theMLE with
probit ordinal regression); however, the approximations (BLOR� and
MLLOR�) have greater bias and SD. BLOR has less bias and SD in
most of the studied parameters, producing better parameter estimates
than the MLLOR (which is the correct method that use maximum
likelihood with the logit link function). For this reason, the proposed
BLOR is an excellent alternative. However, a more in-depth simula-
tion study is required to ensure that these findings are valid for all
possible scenarios.

Table 2 shows that the smaller the PO, the less bias there is in the
parameter estimates under the four methods (two Bayesians and two
under Maximum Likelihood). However, under the two Bayesian meth-
ods, the proposed BLOR showed less bias than BLOR�, and this be-
havior is observed for all parameters and PO under study, except when
the PO is 30% and for the parameter g2. Under the two maximum
likelihood methods, the approximate method (MLLOR�) showed
greater bias in all scenarios and parameters. Finally, although BLOR
and MLLOR produced better results in term of bias, in most cases,
MLLOR was better than BLOR.

Real data sets
Next we compared BLOR and BPOR with the real data set (GLS and
Septoria data) described in the Materials and Methods. However, be-
cause with this data set the number of parameters (betas and thresh-
olds) to be estimated is high, we compared both models with point and
interval estimates of the probabilities estimated for each category on the
four- and five-point ordinal scale for each data set studied. In Table 3,
we compare BLOR, BPOR, andBLOR� (this is the approximatemethod
since the estimates resulting from BPOR were used to approximate
BLOR with logitðuÞ ¼ 1:75·F21ðuÞÞ with five data sets (three loca-
tions, the resulting pooling of the three locations and the Septoria data
set) made up from the data sets described in the sectionMaterials and
Methods. First, when comparing BLOR with BLOR�, we see that there
are differences in the point probability estimates, and the lower the
probabilities, the greater the differences. However, in general, the
widths of the credible sets are similar. Second, when comparing BLOR
with BPOR, we see that the point and credible sets for each location and
Septoria produced similar results; however, for the pooled data, BLOR
produced estimates with narrower confidence sets than BPOR (Table
3). We observed that the estimates produced using BPOR are less
accurate because wider confidence sets are produced when the data
are pooled; this could be because the assumption of errors normally
distributed with mean zero and variance one when the data are pooled
is not fulfilled. Also, there were no differences in the BS of the three
models (BLOR, BLOR�, and BPOR).

Comparing the models with DIC, we see that in Zimbabwe, BPOR
produced the lowest DIC (DIC = 4150.18), whereas BLOR� produced
the highest (DIC = 4156.86). However, the DIC of BLOR (DIC =
4150.29) was very close to that of BPOR. In México, the lowest DIC
was for BLOR (DIC = 1313.82), whereas the highest was for BLOR�

(DIC = 1315.21). In Colombia, BLOR had the lowest DIC (2577.92)
and BLOR� had the highest (2581.66). In the Septoria data set, BPOR
had the lowest DIC (651.79) and BLOR had the highest (654.33).
Finally, in the pooled data, BLOR (8327.36) also had the lowest DIC,
whereas BLOR� had the highest (8339.539). All these results shows
that even approximations that did a reasonable job (BLOR�) were
sometimes very far from the exact methods (BLOR and BPOR). For

n Table 4 GLS data set

Model
Brier Scores

Mean Min Max

BLOR 0.373 0.365 0.381
BLOR� 0.374 0.364 0.382
BPOR 0.373 0.365 0.381

BLOR� uses the parameter estimates of BPOR and approximates BLOR with
logitðuÞ ¼ 1:75 ·F21ðuÞ. Brier scores (mean, minimum and maximum; lower
scores indicate better prediction) evaluated for validation samples from the
pooled data. GLS, Gray leaf spot; BLOR, Bayesian logistic ordinal regression;
BPOR, Bayesian probit ordinal regression.
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this reason, whenever possible, an exact model (BLOR or BPOR)
should be chosen. The fact that BPOR is sometimes the best (lower
DIC) implies that for these data sets, the assumption eij�Nð0; 1Þ in
Equation (1) is enough.

Finally, in Table 4 we present the BS for the testing sets of the pooled
real GLS data with 10 cross-validations and 90% of data used for the
training set and 10% for the testing set. For models BLOR and BPOR,
the BS are almost identical, which means that, with regard to predic-
tion, both models had a similar performance. However, although the
approximation method (BLOR�) produced a higher BS, its prediction
accuracywas very close to that of BLOR and BPOR. Althoughwe found
that the three models had a similar performance regarding prediction
accuracy with this data set, more in-depth research is required to val-
idate this observation.

This paper proposes amethod for BLOR using the Pólya-Gamma
data augmentation approach of Scott and Pillow (2013), which pro-
duces a Gibbs sampler with full conditional distributions similar to
that of the BPOR model of Albert and Chib (1993). The proposed
method is reduced to the BPORmodel when the sampled values, vij,
from the Pólya-Gamma distribution in Equation (4) are set to 1.
This is an advantage because with the proposed model, researchers
can perform an exact logistic or probit ordinal regression without
having to do approximations to perform a logistic ordinal regres-
sion. The performance of the proposed method was compared with
the approximation using the probit ordinal regression model in
a small simulation study and real data sets (GLS and Septoria data
sets) using a four- and five-point ordinal scale. On the basis of the
simulation study, it is clear that the estimation of parameters using
the approximation logitðuÞ ¼ ð1:75ÞF21ðuÞproduces a considerable
amount of bias and can give rise to wrong conclusions in association
studies. However, we observed with the real data that, in terms of
prediction ability, both models (BLOR and BPOR) have a similar
performance even though we observed BLOR had lower DIC values
in México, Colombia, and the pooled data. This means that when
violation of the assumption eij�Nð0; 1Þ in Equation (1) is not
strong, any model can be used. For this reason, we observed greater
accuracy (narrow confidence sets) for the BLOR model compared
with the exact BPOR model (BPOR) only with the pooled data set
without a covariate for location.

Although with the real data we did not observe an advantage in
prediction accuracy with the proposed BLOR model, it is very well
documented in statistical literature that logistic ordinal regression is
more robust for dealing with outlying data, because logistic distribution
hasheavier tailswhichwas corroborated in termsof parameter estimates
with the simulation done using simulated data set 2. For this reason, the
proposed BLOR should be preferred because it is usually not practical to
test if the error term in Equation (1) is eij�Nð0; 1Þ or Lð0; 1Þ. In
addition to being more robust, the proposed method also provides
regression coefficients that are more interpretable because of their con-
nection to odds ratios (Zucknick and Richardson 2014). However, this
advantage does notmake sense when p.. n, because themain driving
force in Bayesian models in the case of p.. n is the prior and not the
data (Gianola 2013). Even with this restriction, this paper unifies logis-
tic and probit ordinal regression under a Bayesian framework and is
a useful alternative for genomic-enabled prediction of ordinal categor-
ical trials where available data sets have a larger number of parameters
to estimate than observations. Also, the proposed method should be
preferred over BPOR when outliers are present and not easily detected.
This is especially true for multidimensional data, since many times
a few outliers in a data set can have strong influence on parameter
estimation and inference.

Finally, it is important to point out that, to devise the method
proposed in this paper, we generalized the work of Scott and Pillow
(2013) for ordered categorical responses. Ourmethod is elegant, easy to
implement, and produces a unifiedGibbs sampler framework useful for
both the logit and the probit link. For this reason, we believe it is an
appealing alternative for plant and animal researchers. Also, the pro-
posed BLOR model can be easily extended to take into account geno-
type · environment interactions, which play an extremely important
role in plant breeding, especially when selecting candidate genotypes.
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APPENDIX A

Derivation of full conditional distributions

Liabilities and Pólya-Gamma values
The fully conditional posterior distribution of liability lij is

PðljELSEÞ}Pðljb; bÞPðyjl;gÞ

}
YI
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The last inequality was obtained using a technique called the Pólya-Gammamethod (Scott and Pillow 2013), which is useful when working with
logistic likelihoods, and has the form
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where k ¼ a2 b=2 and Pðv; b; d ¼ 0Þ denotes the density of the random variable v � PGðb; d ¼ 0Þ, where PGðb; dÞ denotes a Pólya-Gamma
distribution with parameters b and d and density
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where cosh denotes the hyperbolic cosine.
Then the joint distribution of lij and vij is equal to
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Therefore, the fully conditional posterior distribution of liability lij is a truncated normal distribution and its density is

P
�
lijjELSE

� ¼ fðxTijbþ bi; 1
	 ffiffiffiffiffiffi

vij
p Þ

F
�
gc 2 xTijb2 bi

�
2F

�
gc21 2 xTijb2 bi

�
where fð:Þ is a normal density with parameters as indicated in the argument,F is the cumulative distribution function of a normal density with
mean xTijbþ bi and variance 1= ffiffiffiffiffiffi

vij
p , and the fully conditional posterior distribution of vij is

P
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} 222exp
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3
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�
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�2
2
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and from here and equation (5) of Polson et al. (2013) we get that

vijjELSE � PGð2;2 lij þ xTijbþ biÞ
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Regression coefficients (b)
First note that the fully conditional posterior of l;b;v is

Pðl;b;vjELSEÞ} Pðljb; bÞPðyjl;gÞPðvÞP
�
b
���s2

b

�

} exp

�
2

1
2
ð2l þ Xbþ ZbÞTDvð2 l þ Xbþ ZbÞ

�
PðvÞP

�
b
���s2

b

�

where PðvÞ ¼ QI
i¼1

Qmi

j¼1
Pðvij; 2; 0Þ. Then, the fully conditional posterior distribution of b is
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where ~S0 ¼ ðS21
0 s22

b þ XTDvXÞ21, ~b0 ¼ ~S0ðS2 1
0 s2 2

b b0 2XTDvZbþ XTDvlÞ. It is important to point out that if we use a prior for
b}Constant (improper uniform distribution), then in ~S0 and ~b0 we need to make 0 the term S21

0 s22
b . Finally, the fully conditional posterior

of b is

bjELSE � Np

�
~b0;

~S0

�

Polygenic effects (b)
Now the fully conditional posterior of b is given as

PðbjELSEÞ} exp

�
2
1
2
ð2l þ Xbþ ZbÞTDvð2 l þ Xbþ ZbÞ
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Pðb��s2
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This implies that the fully conditional posterior of b is

bjELSE � NI

�
~b ¼ F

�
ZTDvl2ZTDvXb

�
; F ¼ �s22

b G21 þ ZTDvZ
�21
�

Variance of polygenic effects
Next, the conditional distribution of s2

b is obtained. If s
2
b � x22ðnb; SbÞðshape and scaleÞ, then

P
�
s2
b

��ELSE�} 1

ðs2
bÞ

nbþI
2 þ1

exp

 
2
bTG21bþ nbSb

2s2
b

!

This is the kernel of the scaled inverted x2 distribution; therefore, the fully conditional posterior is

s2
b

��ELSE � x22ð~nb ¼ nb þ I;~Sb ¼ ðbTG21bþ nbSbÞ
	
nb þ IÞ

Threshold effects (g)
The density of the fully conditional posterior distribution of the cth threshold, gc, is

PðgjELSEÞ} Pðyjl;gÞPðgÞ
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}
YI
i¼1

YJ
j¼1

XC
c¼1

Iðyij ¼ cÞI�gc21 , lij , gc
�
Iðg 2 TÞ (A.1)

If Equation (A.1) is seen as a function of gc, it is evident that the value of gc must be larger than all the lij
���yij ¼ c and smaller than all the

lij
���yij ¼ cþ 1. Hence, as a function of gc, Equation (A.1) leads to the uniform density

PðgcjELSEÞ ¼
1

min
�
lijjyij ¼ cþ 1

�
2max

�
lijjyij ¼ c

� Iðg 2 TÞ (A.2)

Equation (A.2) corresponds to a uniformdistribution on the interval ½minfmin ðlijjyij ¼ cþ 1Þ; gcþ1; gmaxg;maxfmaxðlijjyij ¼ cÞ; gc2 1; gming�
(Albert and Chib 1993; Sorensen et al. 1995).

Variance of location effects
If we give s2

b � x22ðnb; SbÞðshape and scaleÞ, then
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This is the kernel of the scaled inverted x2 distribution; therefore, the fully conditional posterior is
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nb þ pÞ

APPENDIX B

R code for simulating data set 1
We used this code for each sample size studied, and thus we only need to change ni, that denotes ni, for the other values (10, 20, 40). For each

sample size, we used this code 50 times for estimating the results in Table 1.
thetav = c(-5,-10,15)
Datos,-numeric(0)
nC=40;ni=5 ####Change this ni for other sample sizes
for(i in 1:nC)
{xi1,-runif(length(thetav),-0.1,0.1)
Eta=t(xi1)%�%thetav
for(j in 1:ni)
{L=Eta + rlogis(1, location = 0, scale = 1)
y=ifelse(L,=-0.8416,1,ifelse(L,=-0.2533,2,ifelse(L,0.2533,3,ifelse(L,0.8416,4,5))))
Datos,-rbind(Datos,c(j,y,t(xi1)))
}}
colnames(Datos) = c(’j’,’y’,’x1’,’x2’,’x39)
Datos

APPENDIX C

R codes for simulating data set 2
We used this code for each percentage of outliers (PO) studied; for this reason, we only need to change sam.out for values: 4, 8, and 12, which

represent 10, 20, and 30% of outliers. For each sample size, we used this code 50 times for estimating the results in Table 2.
thetav = c(-5,-10,15)
Datos,-numeric(0)
nC=40; ni=40, sam.out =2 ###(this 2 represents 5% of outliers)
for(i in 1:nC)
{xi1,-runif(length(thetav),-0.1,0.1)
Eta=t(xi1)%�%thetav
for(j in 1:ni)
{ L=Eta + ifelse(j.sam.out,rlogis(1, location = 0, scale = 1), rt(1, df=4, ncp=0))
y=ifelse(L,=-0.8416,1,ifelse(L,=-0.2533,2,ifelse(L,0.2533,3,ifelse(L,0.8416,4,5))))
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Datos,-rbind(Datos,c(j,y,t(xi1)))
}}
colnames(Datos) = c(’j’,’y’,’x1’,’x2’,’x39)
Datos

APPENDIX D

R code for fitting the proposed BLOR for Colombia
This code was used for all the analysis given in Table 3.
#####Code for the Bayesian Ordinal REgression ##################################
rm(list=ls()) # remove everything from memory in the working environment.
library(matrixcalc)
library(BayesLogit)
library(mvtnorm)
##### We load the matrix of markers ############################################
load(’MarkersFinal.RData’)
M=as.matrix(X)
DataOrd1=data.frame(read.table(’GLSdataOsval1.csv’,sep=’,’,h=T));
DataOrd=na.omit(DataOrd1)
DataOrd=DataOrd[order(DataOrd$Stock), ]
DataOrd=subset(DataOrd, Loc==’Colombia’)
y=DataOrd[,4]
XD=DataOrd[,1:4]
##### Calculating the marker-derived genomic relationship matrix (GRM) #########
M,-scale(M,center=TRUE,scale=TRUE)
G,-tcrossprod(M)/ncol(M)
LL=t(chol(G))
##### Incidence matrix and covariance for main eff. of lines ###################
XD$Stock,-factor(x=XD$Stock, levels=rownames(M), ordered=TRUE)
ZL,-model.matrix(�XD$Stock-1)
Z=(ZL%�%LL)
X=Z
tX=t(X)
##### Starting values of Beta0, gammas(thresholds) #############################
gammas,-c(-Inf,-3.11,-2.54,-1.89,-1.27,Inf)
nt=length(gammas)-2
m = dim(X)[1]
nB=dim(X)[2]
In =diag(nB)
p=nB
Betas=rep(0,,dim(X)[2])
SigmaB=1
L,-rep(0,m)
##### Priors for the parameters ################################################
vB=3
SB=0.001
gam.Min=-1000
gam.Max=1000
##### Number of iterations requiered for the Gibbs sampler #####################
Niter,-60000
#### Matrices for saving the output ############################################
MBetas,-matrix(nrow=Niter,ncol=nB)
Mgammas,-matrix(nrow=Niter,ncol=nt)
Mvar_Beta,-matrix(nrow=Niter,ncol=1)
#### Function for sampling normal truncated values###############################
ntruncada,-function(lo,hi,media,std)
{
U = runif(m)
F0 = pnorm(lo,media,std)
c = pnorm(hi,media,std)-F0
muestra = qnorm(c�U+F0)�std+media
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}
##### Gibbs sampler ############################################################
for(i in 1:Niter)
{
##### Linear predictor #########################################################
eta=as.numeric(Betas)
##### Samples from polya gamma distribution ####################################
##### Replacing w=rpg(num=m,2,-L+eta) with w=rep(1,m) we get the BPOR #######
w=rpg(num=m,2,-L+eta)
D=diag(w)
##### Sample liabilities (L) from a truncated normal distribution ##############
L = ntruncada(gammas[y],gammas[y+1],media=eta,1/sqrt(w))
##### Sample of thresholds #####################################################
newgammas,-numeric(0)
for(k in 2:(nt+1))
{
lo,-max(c(max(L[y==k-1]),gammas[k-1],gam.Min))
hi,-min(c(min(L[y==k]),gammas[k+1],gam.Max))
newgammas,-append(newgammas,runif(1,lo,hi))
}
gammas,-c(-Inf,newgammas,Inf)
##### Sample of Betas ##########################################################
C = 1/SigmaB�In
X_tD = tX%�%D
MM=X_tD%�%X
diag(MM)=diag(MM)+diag(C)
S_a=solve(MM,tol=1e-19)
mu_a = S_a%�%(t(X)%�%D%�%L)
Betas=t(rmvnorm(1, mean =mu_a, sigma =S_a))
##### Sample of sigma_Beta##########################################################
SigmaB = 1/rgamma(1,shape=(vB+p)/2,(SB+tcrossprod(Betas))/2)
##### Saving output ############################################################
MBetas[i,]=t(Betas)
Mgammas[i,]=t(newgammas)
Mvar_Beta[i]=SigmaB

##### Printing some posterior values estimated #################################
cat(’Niter’,i,’SigmaB =’,SigmaB,’Beta1=’,Betas[1],’\n’)}
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