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Abstract: Mapping of quantitative trait loci (QTL) is essential for the discovery of genetic
structures that related to complex quantitative traits. In this study, we identified 264,072 raw SNPs
(single-nucleotide polymorphisms) by double digest restriction site associated DNA sequencing
(ddRADseq), and utilized 3029 of these SNPs to construct a genetic linkage map in orange-spotted
grouper (Epinephelus coioides) using a regression mapping algorithm. The genetic map contained
24 linkage groups (LGs) spanning a total genetic distance of 1231.98 cM. Twenty-seven significant
growth-related QTLs were identified. Furthermore, we identified 17 genes (fez2, alg3, ece2, arvcf,
sla27a4, sgk223, camk2, prrc2b, mchr1, sardh, pappa, syk, tert, wdrcp91, ftz-f1, mate1 and notch1) including
three (tert, ftz-f1 and notch1) that have been reported to be involved in fish growth. To summarize,
we mapped growth-related QTLs in the orange-spotted grouper. These QTLs will be useful
in marker-assisted selection (MAS) efforts to improve growth-related traits in this economically
important fish.
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1. Introduction

Orange-spotted grouper, Epinephelus coioides (Epinephelinae, Serranidae), a protogynous
hermaphrodite species, is mainly distributed in the Indo-West-Pacific region [1]. It is an economically
important aquaculture species in many Asian countries, especially in China, due to its desirable
taste and as a source of nutrition [2]. Orange-spotted grouper has become an important edible fish
species in live fish markets and is an important cultured fish for sale in markets in southeast China.
Market demand for the orange-spotted grouper has prompted the development of fish families and
populations characterized by lower food consumption and higher growth rates. The application of
marker-assisted selection (MAS) to orange-spotted grouper will be useful to improve important traits,
such as feed conversion rate, meat quality and disease resistance. These traits have a major effect on
productivity and profitability.

High-density genetic linkage maps and quantitative trait loci (QTL) mapping provide a framework
for the MAS program. At present, genetic linkage maps have been constructed in over 28 fish species
and economic traits have been mapped in at least 13 fish species [3]. These include the Nile tilapia
(orechromis niloticus) [4], Atlantic salmon (Salmo salar) [5], rainbow trout (Oncorhynchus mykiss) [6],
and channel catfish (Ictalurus punctatus) [7]. Microsatellite-based linkage maps have been reported for
the white grouper (Epinephelus aeneus) [8] and kelp grouper (Epinephelus bruneus) [9]. The density of the
genetic linkage maps is typically determined by the marker type. Single-nucleotide polymorphisms
(SNPs), the most stable and abundant form of genetic marker, are the ideal marker type for construction
of high-density genetic linkage maps [10–12]. The advent of next-generation sequencing (NGS) has
made it possible to discover thousands of SNPs dispersed throughout the genome in a single procedure,
even if little genetic information is available on the species [13]. A SNP-based high-density genetic
linkage map has been constructed for orange-spotted grouper by our lab [14], but QTL mapping was
not reported.

This is the first report of a SNP-based high-resolution genetic linkage map of the orange-spotted
grouper developed using double digest restriction site associated DNA sequencing (ddRADseq).
We also report the identification of 27 significant growth-related QTLs and 17 corresponding genes in
this economically important fish.

2. Results

2.1. Sequencing and Genotyping

In total, 8.2 ˆ 108 raw 90 bp reads were generated and 7.3 ˆ 108 clean reads were retained
after removal of low-quality raw reads. These high-quality reads were partitioned into ddRAD tags.
The average number of ddRAD tags in each individual was 10,428,571. For the analysis of the F1

mapping population, a total of 264,072 candidate ddRAD loci were inferred from 68 individuals. If both
parents were homozygous, the SNPs were eliminated. The SNPs that were significant segregation
distortion based on Mendelism by Chi-square analysis were also eliminated. Ultimately, 26,661 SNPs
were obtained (see detailed information in Table S1).

2.2. Genetic Linkage Map

After construction of the genetic linkage map using the 26,661 SNPs, we obtained 24 linkage
groups (LGs), which is consistent with the haploid chromosome number of the orange-spotted
grouper [15]. A total of 3029 SNPs were successfully mapped to the 24 LGs (Table S2 and Figure S1)
after discarding contradictory SNPs. These LGs spanned a total genetic distance of 1231.98 cM with
the length of each LG ranging from 25.43 cM (LG18) to 111.47 cM (LG8). The average genetic length of
the LGs was 51.20 cM. The number of SNPs in the different LGs ranged from 94 (LG12) to 150 (LG22)
with an average number of 126. Detailed information about loci and SNPs is summarized in Table S3.
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2.3. Growth Trait–Associated Quantitative Trait Loci (QTL) and Related Genes

In total, 27 significant QTLs for growth traits were found to be distributed on LG1, LG5, LG7,
LG21 and LG24 of the orange-spotted grouper (Table 1 and Figure 1). These included 18 QTLs for
body weight (BW) and nine QTLs for body length (BL). The majority of these QTLs clustered together
on their respective LGs. Especially, QTLs (qLG5-1, qLG5-2, qLG5-3, qLG5-4, qLG5-5, qLG5-6, qLG5-7,
qLG5-8, qLG5-9, qLG5-10, qLG5-11, qLG5-12, qLG5-13, qLG5-14, qLG5-15, qLG5-16, qLG5-17, qLG5-18,
qLG5-19, qLG5-20 and qLG5-21) were found to be clustered in a narrow region (15.1–33.3 cM) on
the LG5.

Table 1. The information of growth-related quantitative trait loci (QTLs) for body weight (BW) and
body length (BL) in orange-spotted grouper.

QTL Trait Genetic Position(cM) Logarithm of Odds (LOD) R2 (%)

qLG1 BW 30.8–31.0 3.3 19.6
qLG2 BL 29.8–30.2 3.3 21

qLG5_1 BW 15.1–15.6 4.7 24.3
qLG5_2 BW 17.0–17.5 3.1 17.1
qLG5_3 BW 17.0–17.5 2.8 16.5
qLG5_4 BW 17.8–18.0 2.9 15.8
qLG5_5 BW 18.7–19.4 3.2 19.1
qLG5_6 BW 18.7–19.4 4.2 24.6
qLG5_7 BW 19.9–20.2 3.5 20.8
qLG5_8 BW 20.4–20.8 3.4 20
qLG5_9 BW 27.4–27.9 2.6 21.5

qLG5_10 BW 27.4–27.9 2.8 24.5
qLG5_11 BW 28.1–28.3 2.8 28.3
qLG5_12 BW 29.4–29.7 2.7 14.6
qLG5_13 BW 29.4–29.7 3 29.1
qLG5_14 BW 32.2–32.4 3.2 17.6
qLG5_15 BW 33.0–33.3 2.9 15.6
qLG5_16 BL 15.1–15.4 4.4 23.3
qLG5_17 BL 17.0–17.1 2.6 14.5
qLG5_18 BL 19.2–19.3 3.8 20.5
qLG5_19 BL 19.9–20.2 3.4 20.3
qLG5_20 BL 19.9–20.2 3.8 22.2
qLG5_21 BL 20.4–20.8 3.5 20.8
qLG7_1 BW 14.4–14.5 2.8 16.8
qLG7_2 BL 14.4–14.5 2.6 15.1
qLG21 BL 16.0–16.5 2.9 15.5
qLG24 BW 48.8–49.0 2.6 14.4
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Figure 1. The genetic location of growth-related (body weight and body length) quantitative trait loci
(QTLs) on the 24 linkage groups (LGs) of orange-spotted grouper. The green orizontal lines indicate
the cutting threshold of logarithm of odds (LOD) at 2.5. The red and blue coloration represents the
traits of body weight and body length, respectively.

Among these, the logarithm of odds (LOD) value of qLG5-1 for body weight, which accounts
for 24.3% of the phenotypic variation, located at 15.1–15.6 cM is the highest (4.7), while qLG5-16
located at 15.1–15.4 cM for the trait of body length had the LOD value of 4.4 and it explains 23.3%
of the phenotypic variation. The other QTLs on LG5 for BW were detected at positions 17.0–17.5,
17.8–18.0, 18.7–19.4, 19.9–20.2, 20.4–20.8, 27.4–27.9, 28.1–28.3, 29.4–29.7, 32.2–32.4 and 33.0–33.3 cM,
with LOD values of 2.6–4.2, accounting for 14.6%–29.1% of the phenotypic variation. The other BL
QTLs on LG5 were detected at positions 17.0–17.1, 19.2–19.3, 19.9–20.2, 20.4–20.8 cM, with LOD values
of 2.6–3.8. These accounted for 14.5%–22.2% of the phenotypic variation. The QTLs for BW and BL
were distributed across all 24 LGs. However, there was only one QTL for BW on LG1 and one QTL for
BL on LG2.

Seventeen genes, including fasciculation and elongation protein ζ-2-like (fez2), Dol-P-Man:
Man(5)GlcNAc(2)-PP-Dol α-1,3-mannosyltransferase (alg3), endothelin converting enzyme 2
(ece2), armadillo repeat gene deleted in velocardiofacial syndrome (arvcf ), solute carrier
family 27 (fatty acid transporter), member 4 (sla27a4), tyrosine-protein kinase SgK223
(sgk223), calcium/calmodulin-dependent protein kinase 2 (camk2), proline-rich coiled-coil 2B
(prrc2b), melanin-concentrating hormone receptor 1 (mchr1), sarcosine dehydrogenase (sardh),
pregnancy-associated plasma protein-A (papp-a), spleen tyrosine kinase (syk), telomerase reverse
transcriptase (tert), WD repeat-containing protein 91-like (wdrcp91), ftz transcription factor 1 (ftz-f1),
multidrug and toxin extrusion protein 1-like (mate1) and neurogenic locus notch homolog protein
1-like (notch1), were identified (Table 2). Among these, 12 genes (arvcf, sla27a4, sgk223, camk2, prrc2b,
mchr1, sardh, papp-a, syk, tert, wdrcp9 and ftz-f1), corresponding to nine QTLs, were clustered on LG5.
Two genes (alg3 and ece2), representing a single QTL, were distributed on LG2. Three genes including
fez2, mate4 and notch1 mapped as a single QTL to LG1, LG7 and LG21, respectively.
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Table 2. Genes in the growth-related QTL of orange-spotted grouper.

QTL Gene ID Gene Description Gene Symbol Physical Position

qLG1 Eco_gene_10012941 fasciculation and elongation protein ζ-2-like fez2 scaffold416

qLG2 Eco_gene_10013595 Dol-P-Man: Man(5)GlcNAc(2)-PP-Dolα-1,3-mannosyltransferase alg3 scaffold438
Eco_gene_10013597 endothelin converting enzyme 2 ece2 scaffold438

qLG5_1 Eco_gene_10014238 armadillo repeat gene deleted in velocardiofacial syndrome arvcf scaffold468

qLG5_3 Eco_gene_10004531 solute carrier family 27 (fatty acid transporter), member 4 slc27a4 scaffold1517
Eco_gene_10005552 tyrosine-protein kinase SgK223 sgk223 scaffold1706

qLG5_4 Eco_gene_10002069 calcium/calmodulin-dependent protein kinase 2 camk2 scaffold1180

qLG5_5 Eco_gene_10005555 proline-rich coiled-coil 2B prrc2b scaffold1706
Eco_gene_10000893 melanin-concentrating hormone receptor 1 mchr1 scaffold1067

qLG5_19 Eco_gene_10005043 sarcosine dehydrogenase sardh scaffold1600
qLG5_8 Eco_gene_10018102 pregnancy-associated plasma protein A pappa scaffold675
qLG5_9 Eco_gene_10014809 spleen tyrosine kinase syk scaffold491

qLG5_11 Eco_gene_10002109 telomerase reverse transcriptase tert scaffold1187

qLG5_12 Eco_gene_10005999 WD repeat-containing protein 91-like wdrcp91 scaffold1804
Eco_gene_10000470 ftz transcription factor 1 ftz-f1 scaffold1023

qLG7 Eco_gene_10021611 multidrug and toxin extrusion protein 1-like mate1 scaffold919
qLG21 Eco_gene_10003094 neurogenic locus notch homolog protein 1-like notch1 scaffold130
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3. Discussion

In this study, we applied the technology of ddRADseq, an extension of RADseq [16].
This technique has the advantage of providing improved efficiency and robustness by utilizing two
restriction enzymes (a frequently-cutting enzyme and a rare-cutting enzyme) [16–19]. Under-sampling
in read count was a constant question resulting from biased read representation in pooled
sequencing experiments among individual samples. ddRADseq increases its sturdiness compared
to RADseq [20–22]. ddRAD-based genetic maps of Nile tilapia (Oreochromis niloticus) [23],
Japanese eel (Anguilla japonica) [17], Midas cichlids (Amphilophus spp.) [24,25], and Eurasian perch
(Perca fluviatilis L.) [19] have been successfully constructed. Using ddRADseq, 264,072 candidate RAD
loci were inferred, and 3029 high-quality SNPs were retained after a series of filtering. The number of
mapped genetic markers in the present study was less than that in our previous report [14]. However,
ddRAD-seq was better than MSG (multiplexed shotgun genotyping) in the detection of SNPs because
MSG with a stringent methodology may overlook some significant loci [26]. There were fewer markers
mainly due to the use of a small F1 full-sib population.

QTL mapping is considered an efficient strategy for analyzing complex quantitative traits in a
variety of fish species. For example, 17 QTLs were detected for the traits of body size (body length
and weight) of Chinook salmon (Oncorhynchus tshawytscha) [27] and 11 QTLs were found to be related
to the body shape of lake cichlid fishes [25]. Additionally, growth-related QTLs had been identified
in Atlantic salmon (Salmo salar) [5] and Arctic charr (Saivelinus alpinus) [28,29]. Recently, a genetic
linkage map of kelp grouper had been constructed using simple sequence repeat (SSR) markers, and
growth-related (body weight and total length) QTL analysis was performed [30]. The high-resolution
genetic map consisted of 714 SSR markers. One major growth-related QTL and several putative QTLs
were detected.

The previous data were from the family without phenotype information and were used to
construct a SNP-based high-density genetic linkage map. However, our current mapping data from
ddRADseq were applied to construct a genetic map and perform QTL analysis based on the available
phenotypic information. Twenty-seven QTLs associated with growth (body weight or body length)
were identified and found to be distributed on six LGs (LG1, LG2, LG5, LG7, LG21 and LG24).
Interestingly, 21 out of the 27 QTLs were concentrated on LG5 within a narrow region (15.1–33.3 cM).
These had the highest LOD value (4.7), accounting for 14.5%–29.1% of the phenotypic variation.
The small physical and genetic distance among QTLs within the cluster suggested that the cluster
would be highly effective for future marker-assisted selection.

Target genes associated with the growth traits of orange-spotted grouper have been previously
studied [31]. We compared our QTLs with the scaffold assembly and annotation of the orange-spotted
grouper reference genome [32], and discovered a total of 17 genes within the QTL regions. Three of
these genes (notch1, ftz-f1 and tert) have been reported to be involved in fish growth [33–35]. The notch1
signaling gene plays a role in the notochord development of zebrafish [32]. The development of the
notochord is strongly linked with body length. Growth was correlated with gonadal development and
sex change in groupers [36]. In tilapia, ftz-f1 is involved in the development of adrenal-gonadal
and sex determination and its transcripts were only expressed in the gonads and kidneys [34].
Phylogenetic analysis of the tilapia ftz-f1 indicated that it was highly conserved among other teleosts.
In addition, the orange-spotted grouper is a protogynous hermaphroditic and the expression of ftz-f1
in gonads is influenced by the development of the gonad [37]. The gene of tert is associated with the
physiological aging of teleosts and plays a major part in the cell process of proliferation, differentiation
and tumorigenesis [35]. Expression of tert was also significantly correlated with muscle telomerase
activity (TA) in the skeletal muscle of many fish species [38]. TA has a major effect on the growth rate
of orange-spotted grouper. Fourteen additional genes (Table S4) were also mapped to growth-related
QTLs, but their exact roles with regard to fish growth remain to be determined.
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4. Materials and Methods

4.1. Sample Preparation

Parent fishes (orange-spotted grouper) were captured from the South China Sea in Hainan.
One female and one male, with desirable properties such as the coefficient of mature (stage IV) gonad,
genetically diverse and highly heterozygous, high vigor, etc., were selected. An F1 full-sib family
was generated by crossing the female and male fish at the Daya Bay Seawater Fish Farm in Huizhou,
Guangdong Province, China. The F1 progeny were raised under a natural photoperiod, at the water
temperature 28 ˝C. They were fed according to management practices of the fishery. Fin clips of
the parents and 68 offspring (four months of age) were collected and stored in absolute ethanol at
´20 ˝C before use. Phenotypic information on the F1 progeny is summarized in Table S5. Phenotypic
correlations were tested with the Pearson correlation coefficient, and the results indicated a significant
correlation (p < 0.01) between body weight and body length (Table S6). Genomic DNA was extracted
using a standard phenol-chloroform protocol [39]. The quality of all DNA samples was evaluated by
Qubit Fluorometer (Invitron, Waltham, MA, USA). Electrophoresis was conducted on 0.6% agarose
gels. All the experiments were carried out in accordance with the guidelines of the Animal Ethics
Committee and were approved by the Institutional Review Board on Bioethics and Biosafety of BGI
(No. FT14015, 12 March 2014).

4.2. ddRAD Library Construction and Sequencing

The ddRADseq library was prepared using a previously reported protocol [16] with some
modifications. Briefly, the workflow included double-digestion, ligation reaction, pooling, purification,
and amplification. The double-digestion and ligation reactions were prepared as 30- and 40-µL
reactions (see more details in Tables S7 and S8), respectively. One µL of the ligation products from
each sample was pooled 24 samples in a new centrifuge tube, respectively. The DNA fragments were
purified (300–700 bp) were isolated on a 3% agarose gel, and then extracted with the QIA quick Gel
Extraction Kit (Qiagen, Hilden, Germany). All the samples were amplified by 12 cycles of PCR in
the 50-µL reaction volumes containing 2-µL purified of the PCR products, 20-µL Master Mix, 2-µL
primers (1-µL each) and 26-µL ddH2O. The amplified products were purified using the QIA quick PCR
Purification Kit (Qiagen) and checked the quality (concentration and purity) of DNA products via an
Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). Finally, library sequencing was performed
using a Hiseq 2000 platform (Illumina, San Diego, CA, USA) with 90-bp pair-end reads.

4.3. SNP (Single-Nucleotide Polymorphism) Calling and Genotyping

We discarded the Illumina short reads without sample-specific barcodes and restriction enzyme
motifs. Subsequently, we used Soapsnp [40] to sort retained reads into loci and to genotype them.
Lastly, we aligned the clean reads of the two parents to the previously assembled orange-spotted
grouper genome [32] to eliminate monomorphic DNA sequences and then added the reads containing
SNPs. SNPs were selected as described previously [41]. Regions with these putative SNPs were defined
as reference SNP regions, and then the clean reads of progeny samples were aligned to the reference
SNP regions. As noted earlier, the parental genotypes determined the genotypes of the individual
offspring [42].

4.4. High-Density Genetic Map Construction

The SNPs that at least one parent was heterozygous and had high quality of genotype calls
were retained for genetic linkage analysis. Those SNPs with significant segregation distortion
(p < 0.01, x2 test) were discarded. We used JoinMap 4.1 (Kyazma B.V., Wageningen, Gelderland,
Netherlands) to conduct the genetic map construction with the genotypic data from the F1 mapping
population. The logarithm of odds (LOD) threshold was set as from two to 15. It was adopted as
indicator to cluster analysis using regression mapping algorithm. Map distances were calculated using
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the Kosambi mapping function in centiMorgans (cM). All the SNPs were arranged and grouped into
24 linkage groups (LGs). Graphics of the linkage groups were generated using custom perl script.

4.5. QTL Mapping

We used WinQTLCart2.5 software (Wang S., Basten C.J. and Zeng Z.-B., Raleigh N.C., USA) to
perform the QTL analyses with the method of composite interval mapping (CIM) [43]. The CIM
method was executed using Model 6 with parameters of five control markers, a 10-cM window size
and backward regression. We used 1000 permutations and the p-value (0.05) of whole genome-wide
significance to determine the threshold level of likelihood ratio (LR) (11.5) or LOD (2.5). The LR peak
location and surrounding district of every QTL was determined. Phenotypic variation resulting from
growth-related QTLs was also calculated by the software.

4.6. Identification of the Genes on Growth Traits Associated QTLs

The genes on growth-associated QTLs were identified via following steps. First we identified the
orange-spotted grouper genome scaffolds [32] from these QTL regions. Subsequently, we mapped the
corresponding gene identities (IDs) based on their position on the scaffolds. Finally, we retrieved the
homologous genes from the orange-spotted grouper gene annotation file [32].

5. Conclusions

A high-density genetic linkage map with a total genetic distance of 1231.98 cM was constructed
for the orange-spotted grouper using the ddRADseq method. Twenty-seven growth-related QTLs
were identified by QTL mapping and corresponding 17 genes were discovered. These results will
provide a valuable resource in future marker-assisted molecular breeding studies of this economically
important fish species.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/4/501/s1.
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