
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11325-021-02502-0

SLEEP BREATHING PHYSIOLOGY AND DISORDERS • ORIGINAL ARTICLE

Evaluation of the corpus callosum shape in patients with obstructive 
sleep apnea

Aygul Gunes1 · Deniz Sigirli2 · Ilker Ercan2 · Senem Turan Ozdemir3 · Yavuz Durmus4 · Tekin Yildiz5 

Received: 28 April 2021 / Revised: 23 September 2021 / Accepted: 28 September 2021 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
Background The aim of this study was to examine whether or not there was a difference in corpus callosum shape between 
patients with mild to moderate and severe obstructive sleep apnea (OSA) compared with patients who have simple snoring.
Methods The landmark coordinate data was obtained from the midsagittal magnetic resonance imaging (MRI) images of 70 
patients who underwent polysomnography. For comparisons, mild and moderate OSA groups were combined and analyses 
were performed on three groups; simple snoring/control group, mild or moderate OSA group, and severe OSA group.
Results The corpus callosum shape of controls was significantly different from that of the severe OSA group. The most 
prominent deformities were observed in the genu and rostral body of the corpus callosum for the patients with severe OSA. 
No significant difference was found between mild/moderate OSA group and simple snoring group in terms of global corpus 
callosum shape.
Conclusion The data demonstrated that severe OSA patients have structural changes in the corpus callosum and deformities 
may vary as the severity of disease changes
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Introduction

Obstructive sleep apnea (OSA) is a sleep disorder character-
ized by recurrent episodes of partial or complete obstruc-
tion of the upper airways leading to subsequent paroxysmal 
nocturnal hypoxia and intermittent arousals during sleep and 

excessive daytime sleepiness. It has a complex physiopa-
thology, and the roles of contributing factors vary between 
patients with OSA [1, 2]. In the population, the prevalence 
of OSA with the experience of excessive daytime sleepi-
ness is reported to be 2 to 5% in adult women and 3 to 7% 
in adult men [3]. The main tool for diagnosing OSA is the 
apnea–hypopnea index (AHI) which is calculated as the total 
number of apneas and hypopneas divided by the total sleep 
time, recorded during polysomnography (PSG). According 
to the American Academy of Sleep Medicine guidelines, 
PSG is considered to be the gold standard for diagnosing 
OSA [4].

Upper airway obstruction develops as a result of the inter-
action between many anatomical and physiological disor-
ders. However, the main features are small pharyngeal lumen 
and transmural pressure [5]. The pathophysiology underly-
ing OSA is attributable to anatomical, local, neurological, 
and vascular elements as well as familial predisposition. 
Neurological factors currently reported in some patients with 
OSA include abnormal respiratory control and decreased 
medullary respiratory neuron output as a result of autonomic 
activation [6]. Cognitive functions, including attention and 
alertness, working memory, visuospatial/structural abilities, 
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and executive functions, are impaired in patients with OSA 
[7].

Many neuro-imaging studies have been conducted to 
reveal the structural changes in the brain in OSA, the patho-
physiology of which has not yet been fully elucidated [8, 
9]. One of the common aims of studies on neurological dis-
eases is to examine anatomic and functional changes of the 
brain and to evaluate their relationship with the disruption in 
cognitive processes. Regional brain deformations are com-
monly seen with many neurological diseases. The corpus 
callosum (CC), which is a white matter tract that enables 
communication between the left and right hemispheres, is 
one of the most affected brain regions, and it is also known 
that global–local processes are affected due to structural 
changes in the CC [10, 11]. The structural changes in CC, 
related to different neurological disorders, are usually evalu-
ated with volumetric studies. However, it is also important to 
reveal regional shape deformities rather than volume differ-
ences alone. By Procrustes-based geometric morphometrics, 
the shape of an object is obtained which is invariant under 
scaling, rotation, and translation. The resulting Procrustes 
shape coordinates are used in statistical analysis [12]. One 
can obtain the same volume from different objects that have 
different shapes, so the shape analysis method is useful for 
searching sub-regional changes in different cortical and sub-
cortical brain areas.

In the present study, we aimed to examine whether or not 
there were shape differences in the CC of patients with mild 
to moderate and severe OSA compared with simple snoring 
adults. Accordingly, we analyzed the deformities in the sub-
regions of the CC using Witelson segmentation.

Materials and methods

Patient selection

A total of 1630 patients with OSA were screened during 
the study period. Since our hypothesis was to investigate 
changes in the CC that may be caused by the severity of 
OSA, 1560 patients with comorbidities were excluded from 
the study. A total of 70 patients who had no comorbidity 
were included in the study. This study was performed using 
the mid-sagittal magnetic resonance imaging (MRI) scans 
of 70 patients who underwent polysomnography in the sleep 
laboratory of the sleep clinic with a suspicion for OSA, 
between January 2017 and December 2019. Age, sex, body 
mass index (BMI), apnea–hypopnea index (AHI), smok-
ing, and alcohol consumption habits of the patients were 
recorded retrospectively. Patient groups were constructed 
based on the AHI as follows: AHI < 5/h was classified as 
simple snoring/control group, 5/h ≤ AHI < 15/h was clas-
sified as mild OSA, 15/h ≤ AHI < 30/h was classified as 

moderate OSA, and AHI ≥ 30/h was classified as severe OSA 
[1]. In comparisons, mild and moderate OSA groups were 
combined, and analyses were performed on three groups: 
simple snoring/control group (n = 23), mild to moder-
ate OSA group (n = 24), and severe OSA group (n = 23). 
Patients who had neurological diseases, were older than 
60 years of age, or were younger than 26 years of age were 
excluded from the study. We aimed to make patient groups 
and control group as homogeneous as possible in terms of 
age and gender. All procedures performed in studies involv-
ing human participants were in accordance with the ethical 
standards of the institutional and/or national research com-
mittee (Bursa Uludag University Faculty of Medicine Clini-
cal Studies Ethic Committee, 2019–20/5) and with the 1964 
Helsinki declaration and its later amendments or comparable 
ethical standards. Informed consent was received from all 
participants.

Magnetic resonance imaging

MRIs were performed in a 1.5-T Magnet (Magnetom Vision 
Plus, Siemens Medical Solutions, Erlangen, Germany) with 
a standard head coil. The images were obtained using a 
three-dimensional magnetization prepared-rapid acquisition 
gradient echo (3D MP-RAGE) sequences with the following 
parameters: TR/TE/TI/flip angle = 10/4/300/10°, 250 FOV, 
1.25-mm slice, 192 × 256 matrix, 1 Nex. The MRI sections 
with good gray/white matter contrast were selected.

Landmark acquisition

The sagittal planes were evaluated by the radiologist, and the 
mid-sagittal section, which demonstrates the cerebral aque-
duct, CC, and superior colliculus most clearly was manually 
selected. To align the MRI images of all of the subjects at 
a standard position, the commissure line from anterior to 
posterior and inter hemispheric fissure was used. Statisti-
cal shape analysis method has been implied by using 16 
homologous landmarks, which were used in our previous 
studies [13–15]. The CC was divided into seven subdivisions 
based on the Witelson framework [16]. The landmarks in 
each subdivision of CC determined according to Witelson 
are shown on the MRI image of a control subject (Fig. 1). 
The landmarks were marked by using TPSDIG 2.31 software 
[17].

The landmark reliability was evaluated with the intra-
rater reliability coefficient which was calculated with a 
two-facet crossed design (landmark pairs-by-rater-by-sub-
ject) [18]. The landmarks were marked for all images by 
an investigator. To obtain a G reliability coefficient, after 
1 month, 15 images were randomly selected and the same 
investigator marked the landmarks on these images. The 
G coefficient calculated showed strong repeatability for 
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subjects (G = 0.98). Landmark reliability calculations were 
performed from the following link: http:// biost at. home. 
uludag. edu. tr/ landm ark_ relia bility/ G_ coeffi cient. html.

Statistical analysis

The landmark coordinate data were obtained with the gener-
alized Procrustes analysis. The variance–covariance matri-
ces were not homogeneous according to the Box-M test 
(p = 0.022 for simple snoring and mild/moderate groups and 
p < 0.001 for simple snoring and severe groups). Accord-
ingly, the James FJ test based on a re-sampling procedure 
was used to compare the shapes [19, 20]. The differences 
between CC shapes of OSA and simple snoring patients are 
visualized using the thin-plate spline (TPS) function and 
deformation grids, to show the actual spatial changes [21]. 

By performing TPS analysis, deformities are demonstrated 
by the landmarks exhibiting the enlargements or reductions 
[21, 22]. When the data were normally distributed, one-way 
analysis of variance was used; when not normally distrib-
uted, Kruskal–Wallis test was used to compare the variables 
between the groups. Post hoc comparisons were performed 
with Bonferroni test if significant differences were obtained 
after ANOVA. Pearson chi-square and Fisher-Freeman-Hal-
ton tests were performed to compare the categorical vari-
ables between the groups. R 4.0.0, PAST 3.20, and NCSS 
7.1.5 software were used for statistical analysis.

Results

Demographic information about patients with OSA and con-
trols are given in Table 1. When OSA and control groups 
were compared, no significant difference was found in 
terms of age and gender. There were significant differences 
between the three groups in terms of BMI (p < 0.0001).

Comparison of simple snoring group and mild/
moderate OSA group

There was no statistically significant difference between the 
simple snoring group and mild/moderate group in terms of 
CC shape (p = 0.164). According to TPS graphs, very small 
deformities were observed in the genu, especially in the area 
between the landmarks 1, 7, and 9 (Fig. 2).

Comparison of simple snoring group and severe 
OSA group

There was a significant difference between the CC shape 
of the simple snorers and the CC shape of the patients with 

Fig. 1  T1-weighted mid-sagittal slice demonstrating the CC land-
marks and Witelson subdivisions (I: rostrum; II: genu; III: rostral 
body; IV: anterior midbody of corpus callosum; V: posterior midbody 
of corpus callosum; VI: isthmus; VII: splenium) 

Table 1  Demographic and clinical details of OSA patients and controls

Data given as *mean ± standard deviation (min-max), &median (min-max) or #n (%)
AHI, Apnea hypopnea index
1 Significantly different from severe OSA (p < 0.001),2Significantly different from severe OSA (p < 0.007), 3Significantly different from mild or 
moderate OSA (p = 0.007) and from controls (p < 0.001)

Controls (simple snoring) (n = 23) Mild or moderate OSA (n = 24) Severe OSA (n = 23) p-value

Age* (years) 43.4 ± 10.0 (26-60) 44.3 ± 8.0 (26-58) 48.1 ± 8.1 (28-60) 0.163
Sex# Male 11 (48) 12 (50) 11 (48) 0.985

Female 12 (52) 12 (50) 12 (52)
AHI& 1.0 (0.0-4.7) 14.1 (5.2-27.0) 56.2 (30.3.-101.9) <0.001
BMI 27.0 ± 4.61(14.0-35.3) 29.6 ± 4.02(22.9-39.3) 34.3 ± 6.33(25.1-51.4) <0.001
Smoker# 14 (61) 14 (58) 11 (48) 0.639
Alcohol  user# 2 (9) 2 (8) 1 (4) 1.000
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severe OSA (p = 0.005). Minimal shape deformities were 
observed in CC shape of patients with severe OSA compared 
to simple snoring group. The most prominent deformities 
were particularly localized in the genu and in the part of the 
rostral body, which is close to the boundary of the region 
IV (between landmarks 12 and 13). Much fewer deformities 
were observed at the top of posterior mid-body of CC and 
in the splenium. Deformities were in the form of shrinkage 
(Fig. 3).

Discussion

In this study, we aimed to determine the possible relation-
ship between OSA severity and structural brain changes. We 
performed statistical shape analysis to display the changes in 
the corpus callosum of patients with OSA. Our study dem-
onstrated that CC shape of simple snorers was significantly 
different from those of patients with severe OSA, but not 
different from patients with mild to moderate OSA. Subre-
gional analyses showed that the most obvious deformities 
were localized in the genu and in the rostral body, according 
to Witelson subdivision.

The topographic distribution of fiber decomposition is 
heterogeneous in different CC regions. The axonal fiber 
composition of the CC was explored in a postmortem human 
brain study, and it was shown that the densities of thin fib-
ers (smaller than 2 µm in diameter) were higher in the genu 

[23]. The anterior-most callosal region has the highest ratio 
of unmyelinated fibers. The thin fibers increase in the pos-
terior pole of the CC and decrease towards the posterior 
midbody, while the coarse fibers are denser in the midbody 
of the CC [4, 23]. Histological differences also lead to func-
tional differences, as unmyelinated thin fibers which have 
lower conduction velocities integrate higher-order prefron-
tal cortical functions while myelinated thick fibers in the 
midbody of CC which have higher conduction velocities 
integrate motor and sensory functions [24]. In the present 
study, we observed minimal shape deformities in the CC 
of patients with OSA and the most prominent deformities 
were in the genu of the CC, where thin fibers are denser, 
both for mild to moderate OSA and for severe OSA. Our 
results are consistent with the study of Zhang et al. [9]. In 
their study, using DTI-based fiber tractography, they showed 
that the affected CC subregions in OSA were located in the 
anterior rather than posterior part and emphasized that the 
earlier myelination and distinctive fiber composition of the 
anterior CC might cause it to be more affected by OSA [9]. 
Kumar et al. also reported significantly reduced global brain 
mean diffusivity values and reported that those changes were 
localized in various brain regions including anterior corpus 
callosum in patients with OSA compared to controls, by 
using the diffusion tensor imaging (DTI) based mean dif-
fusivity (MD) procedure [25]. Using DTI method, Macey 
et al. demonstrated that multiple regions of lower fractional 
anisotropy appeared within white matter in the OSA group, 
including fibers of the anterior CC, along with the other 

Fig. 2  A thin-plate spline 
demonstrating the average 
CC shapes deformation from 
simple snorers to mild/moderate 
patients with OSA. The expan-
sion factors at the landmarks are 
shown with colors. 
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brain regions [26]. Baril et al. compared the OSA groups 
with DTI metrics and showed that patients with moderate to 
severe OSA had lower axial diffusivity in the CC compared 
with controls [27].

Fiber tracts from different segments of the CC provide 
interhemispheric connection between specific cortical 
regions, which have different functions. While the anterior-
most point of CC links homologous prefrontal cortical 
regions; premotor, supplementary motor, parietal, tempo-
ral, and occipital cortices are linked from rostral to caudal 
regions, respectively [24]. The genu, in which we detected 
deformity in patients with both mild to moderate and severe 
OSA, contain fibers connecting the prefrontal cortices [28, 
29]. The population maps of the callosal connections indi-
cated that the parts of the dorsal prefrontal cortex and the 
ventral prefrontal cortex both project fibers through the 
genu [24]. The prefrontal cortex manages processes such 
as regulation of attention, differentiating among conflicting 
thoughts, planning, future consequences of current actions, 
and impulse control which is defined as executive functions. 
Several studies performed on animals and humans showed 
that the premotor cortex also participates in spatial attention 
and working memory, movement planning, and execution 
[30, 31]. Attention, vigilance, and prospective memory are 
processes with multiple stages and are guided by the pre-
frontal cortex together with the involvement of premotor and 
supplementary motor cortices. Cortical cells in the sensory 
and prefrontal region initiate movement by focusing atten-
tion and creating working memory for a motor task. Outputs 

from these areas are projected to the supplementary motor 
and the premotor cortex [32]. Cognitive impairment is com-
mon in patients with OSA, including sustained attention and 
vigilance, working memory, long-term episodic memory, 
visuospatial/constructional abilities, and executive functions 
[9, 26, 33, 34]. This information explains the deformities 
that we found in the genu region connecting the prefrontal 
cortex in patients with mild to moderate OSA, and in the 
genu region as well as in the rostral body region connecting 
the supplementary motor and premotor cortex in patients 
with severe OSA. It can be emphasized that the deformities 
we found may be related to the mentioned cognitive dysfunc-
tions. Also it can be speculated that deformities may move 
on from rostral to caudal as the disease progresses.

The results of this study show that there are global struc-
tural changes in CC when compared between simple snor-
ers and patients with severe OSA, but not patients with 
mild to moderate OSA. However, according to current data, 
there are studies reporting that there may be a relationship 
between BMI and both OSA severity and CC abnormali-
ties [35–37]. In our study, BMI values were higher in the 
severe OSA group in which we found CC abnormalities. 
Since the shape change in CC cannot be attributed to OSA 
alone, and even the metabolic syndrome and its outcomes 
may affect the CC shape, it would be appropriate to study 
groups that are homogeneous in terms of BMI in future stud-
ies. Nevertheless, the deformity findings that we detected 
more intensely in the genu and rostral body regions may 

Fig. 3  A thin-plate spline 
demonstrating the average CC 
shapes deformation from simple 
snorers to patients with severe 
OSA. The expansion factors at 
the landmarks are shown with 
colors. 
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provide important evidence that the prefrontal, premotor, 
and additional motor cortices are affected by OSA.
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