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INTRODUCTION

Stroke is a leading cause of death and disability worldwide (Katan and Luft, 2018). Recent studies have
shown that emergency interventional treatment of acute ischemic stroke can significantly reduce stroke-
related morbidity and mortality (Herpich and Rincon, 2020). Tissue acidosis has been shown to be a
consequence of an ischemic stroke (Tóth et al., 2020a; Tóth OM. et al., 2020). An important contender for
sensing acidosis is acid-sensing ion channels (ASICs) (Waldmann et al., 1997; Chen et al., 1998; Bässler
et al., 2001; Wemmie et al., 2002). ASIC1a is probably the most important ASIC subunit in the brain due
to its high expression and sensitivity to pH changes (Waldmann et al., 1997; Xiong et al., 2004; Gründer
and Chen, 2010; Faraci et al., 2019; Stark et al., 2019). Specifically, ASIC1a is known to mediate calcium
permeability (Waldmann et al., 1997) and has been shown to be an important target of ischemia-induced
brain damage (Xiong et al., 2004). As of late, there has been a focus on the potential of therapeutic agents
that can target and block ASIC1a subunits with the intention of decreasing ischemic brain injury (Wang
et al., 2015; Dibas et al., 2018; Qiang et al., 2018; Wang et al., 2020; Heusser and Pless, 2021). Potential
therapeutic agents have been studied including spider venom toxin psalmotoxin (PcTx1) (Xiong et al.,
2004; Pignataro et al., 2007; McCarthy et al., 2015; Cristofori-Armstrong and Rash, 2017; Stark et al.,
2019) and small molecule inhibitors like amiloride (Leng and Xiong, 2013; Vullo and Kellenberger, 2020).
The PcTx1 toxin is formed by purifying spider venom from Psalmopoeus cambridgei (Escoubas et al.,
2000) and has been shown to be highly selective and effective at inhibiting ASIC1a-containing channels
(Escoubas et al., 2003; Chen et al., 2005; Saez et al., 2011). Further, the pure peptide PcTx1 has been used
and proved to be effective in several models of neuroprotection (Koehn et al., 2016; Dibas et al., 2018).
However, these drugs have some limitations, for example, PcTx1 does not cross the blood-brain barrier
(BBB) (Dibas et al., 2018). Consequently, there is a critical need for a therapy that is efficacious and
specific to restricting ischemic brain damage in a timely and effective manner.
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TOXIN INSPIRED COMPOUND 5B INHIBITS
ASIC1A

A recent study was reported in the Frontiers in Pharmacology from
Dr. Xu’s laboratory (Qi et al., 2022). They examined a potential
therapeutic agent, toxin inspired compound 5b (C5b) that selectively
inhibited ASIC1a subunits and ASIC1a-containing channels within
ASICs, appearing to reduce ischemia-induced neuronal death in the
brain. The effect of C5b on other target than ASICs has never been
tested. It has been previously reported that the PcTx1-inspired
compound C5b inhibited fast ASIC3-like, but not slow ASIC2-
like currents in dorsal root ganglion (DRG) neurons (Buta et al.,
2015). The C5b compound is less specific than PcTx1, because it also
inhibits ASIC currents recorded from mouse ASIC1a/2a
heterotrimers and rat ASIC3 in DRG neurons (Buta et al., 2015).
In the present study, Qi et al. focused on if C5b could target ASIC1a
andASIC1a-containing channels in the brain efficaciously. They first
examined the selectivity and potency of C5b on different ASIC
subunits expressed in CHO cells. They found that C5b at a
concentration of 100 nM selectively inhibited ASIC currents
recorded from homomeric ASIC1a, heterometric ASIC1a/2a and
ASIC1a/2b, but not homomeric ASIC2a and heteromeric ASIC2a/2b
channels. Thus, C5b shows a clear selectivity for ASIC1a-containing
channels within ASICs. Next, cultured primary cortical neurons
were subjected to ischemic conditions, leading to acidosis and cell
death. Administering 10 μM C5b to these cells showed to
significantly prevent cell death, demonstrating that C5b can
alleviate the acid-induced cell death in vitro. To test involvement
of ASIC1a, cultured cortical neurons from ASIC1a wild-type (WT)
and knock-out (KO) mice were used. They found that C5b inhibited
acid-induced cell death in cultured cells from ASIC1a-WT but not
ASIC1a-KO mice, indicating that C5b′s neuroprotection is through
inhibition of theASIC1a subunit in an in vitro cell culturemodel. It is
well known that the ability of pharmacological agents to cross the
BBB is critical to the effect of the drug (Khawli and Prabhu, 2013;
Peterson et al., 2019). Since the ability to cross BBB is the key to
successful drug efficiency, they further examined the
pharmacokinetics of C5b after intravenous administration and
found that C5b quickly diffused into tissues and after a transitory
peak concentration, maintained a relatively constant concentration
in the brain during the first 24 h. They then tested the
neuroprotective effect of C5b by inducing transient middle
cerebral artery occlusion (MCAO) in WT mice. They found that
C5b significantly reduced infarct volume and improved the
behavioral function in WT mice of this model. Further, they
examined the C5b on ASIC1a-KO mice following MCAO and
found that C5b did not reveal protection. The data suggested that
C5b can cross BBB and exert neuroprotection by inhibiting brain
ASIC1a-containing channels (Qi et al., 2022).

DISCUSSION

Antagonists of ASIC1a have been studied for their protection
against ischemic damage (Xiong et al., 2004; Chassagnon et al.,
2017; Redd et al., 2021). This study sheds new light on C5b as a
novel and small molecule agent for translational stroke research.

Inhibitors of ASIC1a have been studied for years in hopes of
creating pharmacologic therapeutic agents to treat ischemic strokes
(Xiong et al., 2004; Chassagnon et al., 2017). Because of the critical
need for a successful agent that blocked ASICs, inhibitors of
ASIC1a like amiloride and PcTx1 were studied preclinically
(Diochot et al., 2007; Leng and Xiong, 2013; Cristofori-
Armstrong and Rash, 2017). For successful treatment of
ischemic neuronal damage, systemic administration of the
ASIC1a inhibitor is critical. The actuality of implementing
current studied ASIC1a blockers has limitations. Amiloride, a
small molecule inhibitor of ASIC1a has shown to have poor
selectivity (Leng and Xiong, 2013; Dibas et al., 2019). Another
well-studied ASIC1a inhibitor is the spider toxin PcTx1 (Escoubas
et al., 2000; Escoubas et al., 2003). It has been shown to have
difficulty drug delivery (Dibas et al., 2018). The potent inhibitory
efficacy of C5b against ASIC1a and ASIC1a-containing channels
significantly increased under mild acidosis rather than more severe
acidosis (Qi et al., 2022), making it likely to be more effective in the
penumbra region when compared to the ischemic core. This could
be vital to saving vulnerable brain tissue, reducing the infarct
volume, and maintaining a higher level of neurological function in
patients. The BBB permeability of C5b, demonstrated by the
success of intravenous administration, exemplifies the
accessibility of drug administration in vivo. Furthermore, C5b
was found to target both homomeric ASIC1a and heteromeric
ASIC1a-containing channels (Qi et al., 2022). The wider range of
use that C5b seems to offer could make it effective in more broad-
spectrum application on ASIC-related disorders in the central
nervous system. The small molecule nature of C5b could make
it useful as a potential therapeutic treatment after strokes due to its
permeability of BBB. It is important to note that C5b is
administered via a systemic intravenous injection, which first
affects peripheral organs at a higher concentration, and then
passes the BBB to reach the areas where a pH change has
occurred. However, due to C5b’s systemic administration and
lower specificity than PcTx1, it is necessary to conduct future
work on understanding C5b’s potential side effects at peripheral
neurons and organs. It is known there are many ASICs in the
peripheral nervous system (PNS) that modulate cutaneous pain
(Dibas et al., 2019). Studies on nonselective ASIC inhibitors, like
amiloride, have shown that topical administration produces an
analgesic effect on postoperative pain in rodents (Dibas et al.,
2019). C5b is similarly nonselective due to its inhibition of ASIC3
in DRG neurons (Buta et al., 2015), so it could have effects on pain
throughout the entire body. Anthopleura elagantissima toxin 2
(APETx2) inhibits ASIC3 and ASIC3-containing channels in
afferent bone sensory neurons and has been used to treat
inflammatory bone pain (Morgan et al., 2020). By looking at
drugs with similar inhibitory properties as C5b, there is a
possibility that C5b could produce effects on various systems,
and this will require further study. Particularly, C5b’s effects on the
ample ASIC1b channels of the PNS has not been thoroughly
studied. These ASIC1b channels are involved in persistent pain
(Verkest et al., 2021), so if C5b can inhibit them, there is the
potential for analgesic use. Examining potential adverse side effects
of C5b is necessary, as well as testing for the ideal dosage and
timing of administration. In a clinical setting, the current goal for
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ischemic stroke patients is to administer tissue plasminogen
activator (tPA) within 4.5 h (Cheng and Kim, 2015).
Unfortunately, many stroke patients are unable to make it to
the hospital and receive tPA treatment in this short-time
window. In order to account for this clinical obstacle in stroke
treatment, future studies are needed to assess the efficacy of C5b at
various time increments after ischemic injury, following the model
of a similar study done for PcTx1 (Pignataro et al., 2007).
Therefore, the time window of neuroprotection by C5b would
help determine a potential therapeutic window for drug
administration, which could be compared to tPA’s window of
4.5 h. It would also be useful to look at which drugs most stroke
patients are currently taking at the time of ischemic injury, and
how these could interact with C5b’s administration and effects.

Lastly, it is also critical to examine whether C5b affects the function
of any other ion channels or receptors other than ASICs.
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