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Abstract: Capsaicin (CAP) demonstrates a potential for application in the food and pharmaceutical
industries owing to its various attractive health benefits, including anti-cancer, anti-inflammatory,
and antioxidant activities. However, the application of CAP is often limited by its low solubility in
water, low bioavailability, and strong pungency. In this study, a simple one-step method for the stable
encapsulation and dispersion of CAP in aqueous media was developed using polyelectrolyte complex
particles formed by chitosan (CHI) and oleic acid (OA). Homogeneous particles with mean diameters
below 1 µm were successfully prepared via spontaneous molecular complexation by mixing an
aqueous solution of CHI with an ethanolic solution of OA and CAP. CAP was incorporated into the
hydrophobic domains of the CHI–OA complex particles through hydrophobic interactions between
the alkyl chains of OA and CAP. The factors affecting CAP encapsulation were investigated, and a
maximum encapsulation yield of approximately 100% was obtained. The CHI–OA–CAP complex
particles could be stored for more than 3 months at room temperature (22–26 ◦C) without resulting in
macroscopic phase separation or degradation of CAP. We believe that our findings provide a useful
alternative encapsulation technique for CAP and contribute to expanding its practical application.

Keywords: polyelectrolyte; molecular complexation; colloidal carrier; food dispersion; storage stability

1. Introduction

Capsaicin (CAP: trans-8-methyl-N-vanyllyl-6-nonenamide) is a natural alkaloid ob-
tained from fruits of the capsicum plant family, which are well known as hot peppers. CAP
is not only consumed as an ingredient in spicy food but can also be used as a pharmaceuti-
cal supplement owing to its health benefits, which include anti-cancer, anti-inflammatory,
anti-obesity, analgesic, cardino-protective, anti-microbial, and anti-oxidant effects [1–5].
As CAP is an extremely hydrophobic molecule (log P = 3.2), it has low solubility in water
(140 mg/L at 25 ◦C) [6]; thus, its application is often limited owing to its low processing
ability and low bioavailability, as well as its strong pungency and mucosal irritation prop-
erties. To overcome these limitations, the encapsulation of CAP into colloidal carriers has
been actively studied in the last decade [3,4].

Various methods for encapsulating CAP into colloidal carriers have been reported,
including the utilization of amphiphilic molecular aggregates such as micelles [7], mi-
croemulsions [8], liposomes [9–11], cubosomes [12], utilization of emulsion-based prepa-
rations [13–16], utilization of microcapsules prepared by coacervation [17–21], in situ
polymerization [22], solvent evaporation [23,24], spray-chilling [5,25], gel-entrapment [26],
and utilization of molecular complexation/inclusion [27–36]. Among these methods, molec-
ular complexation/inclusion methods, which entail “bottom-up” self-assembly processes
involving a facile formation procedure and low energy consumption, exhibit application
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advantages. However, further advancement of this technological field is still desired for the
development of facile and highly efficient preparation methods for novel colloidal carriers.

Polyion complex particles [37] are prepared by the layer-by-layer polyelectrolyte
self-assembly [38,39], and the complexation of positively and negatively charged polysac-
charides [40,41] are widely used in the field of drug encapsulation and delivery. To our best
knowledge, however, these techniques have never been applied to CAP encapsulation. Re-
cently, polyion complex particles were prepared by simple and spontaneous complexation
of cationic chitosan (CHI) and anionic oleic acid (OA) [42]. They can be used to encapsulate
CAP. CHI is obtained by the deacetylation of chitin, which is a major component of ma-
rine crustaceans, and demonstrates unique physicochemical and physiological properties
derived from the primary amino groups of the D-glucosamine residues of CHI. OA is an
unsaturated fatty acid that is typically found in liquid triglycerides derived from plants.
CHI and OA can form a complex at a certain pH range, wherein both CHI and OA are
positively and negatively ionized, respectively (the pKa values of CHI and OA are reported
as ~6.5 [43] and ~4.7 [44,45], respectively). The CHI–OA complex, prepared through a
facile “one-step” preparation procedure, results in homogeneous fine particles with mean
diameters smaller than 1 µm; this can be attributed to the combination of (1) electrostatic
interactions between the -NH3

+ groups of protonated CHI and the -COO− groups of the
ionized form of OA and (2) hydrophobic interactions between the alkyl chains of OA [42].
The aggregated OA alkyl chains form hydrophobic domains inside the CHI–OA complex
particles, which can encapsulate hydrophobic bioactive molecules [42]. Owing to these
features, CHI–OA complex particles can efficiently and stably encapsulate CAP. A facile
preparation method and the high stability of the CHI–OA complex particle would be
advantageous for the utilization of these complex particles as carriers in practical food and
pharmaceutical applications.

Thus, the objective of this study was to demonstrate the potential of CHI–OA complex
particles as carrier materials for the stable encapsulation of CAP. The dispersibility, encap-
sulation efficiency, encapsulation capacity, and storage stability of the complex particles
were evaluated in this study, and the results are presented in this paper. We believe that the
findings obtained in this study will be valuable for the development of practical alternative
methodologies for utilizing the beneficial health effects of CAP.

2. Materials and Methods
2.1. Chemicals

CHI (Chitosan 10®, degree of deacetylation = 85%, viscometric average molecular
weight [46] = 150,000) was purchased from FUJIFILM Wako Pure Chemical Corporation
(Osaka, Japan). All other chemical reagents, including OA, ethanol, and CAP, were obtained
from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). All reagents were used
without any further purification. The water used in all the experiments was purified using
a Direct-Q water purification system (Merck Millipore Corporation, Billerica, MA, USA)
and demonstrated a resistivity of 18.2 MΩ cm.

2.2. Encapsulation of CAP into CHI–OA Complex Particles

Encapsulation of CAP into CHI–OA complex particles was achieved based on the
previous methodology [42] with some modifications. CHI powder (1 g) was added to
120 mL of water containing 20 mL of 2.0 M acetic acid, and the solution was stirred to
dissolve the added CHI. The pH was adjusted to 5.0 with 1.0 M NaOH, and the solution
with a volume of 200 mL yielded a 5 g/L CHI solution. The CHI solution was filtered
through a filter paper to eliminate any undissolved impurities before use. OA and CAP
were dissolved in ethanol (99.5%) at various OA/CAP concentrations. Next, 20 mL of the
CHI solution was added to a cylindrical 50 mL glass vial, followed by dropwise addition of
2 mL of the OA–CAP mixture while stirring at 400 rpm using a magnetic stirrer at room
temperature (22–26 ◦C) for 18 h to form the CHI–OA–CAP complexes. The molar mixing
ratio of OA/CHI was defined as the ratio of the amount of OA (mol) to that of glucosamine
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residues in CHI [42]. The obtained CHI–OA complex particle suspension was centrifuged
at 2000 rpm for 10 min to eliminate the coarse particles from the sample.

2.3. Measurement of Particle Diameter

The mean diameter of the CHI–OA complex particles was measured using a laser
diffraction particle size analyzer (SALD-200 V ER, Shimadzu Corporation, Kyoto, Japan).
The samples were diluted with water to obtain suitable turbidities for the measurements.
The results are presented as the mean values ± standard deviation calculated from a
minimum of three independent experiments.

2.4. Determination of the Amount of CAP Encapsulated

An aliquot of the CHI–OA–CAP complex particle suspension was collected and diluted
with methanol. The sample was centrifuged at 2100× g for 5 min (Micro Six MS-1, As One
Corporation, Tokyo, Japan), followed by filtration using a syringe-connected membrane
filter (0.45 µm pores; Dismic 13HP045AN, Advantec Toyo Kaisha, Ltd., Tokyo, Japan) for
the removal of precipitate. The absorption spectra of the filtered solution were measured
using an ultraviolet–visible (UV–Vis) spectrophotometer (UV-1800, Shimadzu Corporation,
Kyoto, Japan). The CAP content was determined using the absorbance recorded at 280 nm
by plotting the values on a standard curve preliminarily obtained using the amount of
CAP dissolved in methanol. To determine the free CAP content in the matrix surrounding
the CHI–OA–CAP complex particles, the matrix was separated from the suspension via
centrifugal ultrafiltration at 10,000× g (Centrisart® I, molecular weight cut-off = 300,000,
Sartrius AG, Göttingen, Germany).

2.5. Fourier Transform Infrared Spectroscopic Analysis

The CHI–OA–CAP complex particle suspension (2 mL) was vigorously mixed with
2 mL of n-hexane for at least 5 min using a vortex mixer. The mixture was centrifuged at
2500 rpm for 10 min, and the upper n-hexane phase was collected. Then, the n-hexane
was evaporated under ambient condition and the dried residue was used for Fourier
transform infrared (FTIR) spectroscopic analysis. The FTIR spectra were obtained on a
Shimadzu IRSpirit FTIR spectrophotometer exhibiting an attenuated total reflection (ATR)
unit (Shimadzu Corporation, Kyoto, Japan).

2.6. Small-Angle X-ray Scattering Measurements

Synchrotron small-angle X-ray scattering (SAXS) measurements were performed using
the SAXS optics and detector system installed at BL-6A at the Photon Factory of the High
Energy Accelerator Research Organization (KEK) (Tsukuba, Japan). Details regarding the
beamline and experimental conditions can be found elsewhere [42,47,48]. The background
(water) and sample (CHI–OA or CHI–OA–CAP complex particle suspensions) scattering
intensities were measured for 20 s at 25 ◦C. The data were processed using the SAngler
software (Ver 2.1.58, High Energy Accelerator Research Organization (KEK), Tuskuba,
Japan) [49]. Silver behenate was used as a standard specimen to calibrate the scattering
angle 2θ. The length of the periodic structure in the sample, d, was calculated using Bragg’s
equation, as follows:

d = λ/2 sin (2θ/2) (1)

where λ is the wavelength of the X-rays (1.5 Å).

2.7. Stability of CHI–OA–CAP Complex Particles

Stability of the CHI–OA–CAP complex particles during storage in dark at room
temperature (22–26 ◦C) was evaluated. The glass vials containing CHI–OA–CAP complex
particles were covered with aluminum foil to avoid photodegradation of CAP [50]. The
aliquots were withdrawn periodically and the particle diameter distribution and the CAP
content of the sample were measured as described in Sections 2.3 and 2.4, respectively.
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3. Results and Discussion
3.1. Preparation of the CAP-Loaded CHI–OA Complex Particle Suspension

Figure 1 illustrates the typical diameter distribution of the CHI–OA complex particle
suspensions in the presence and absence of CAP, as well as a phase-contrast photomicro-
graph of the sample. A homogeneously turbid suspension was obtained by mixing the
CHI solution with a mixture of OA and CAP in ethanol at room temperature for 18 h. In
this experiment, 1.0 g/L of CAP was encapsulated into the CHI–OA complex particles.
Mean particle diameters of approximately 0.8 µm were obtained for the samples prepared
in the presence and absence of CAP. The diameter distributions for both samples were
nearly identical; thus, it can be concluded that a mean diameter of <1 µm was maintained
even after encapsulation of CAP into the particles. The CHI–OA complex particles thus
demonstrate the advantage of a facile and highly reproducible preparation procedure.
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Figure 1. Particle size distribution of the chitosan−oleic acid (CHI−OA) complex particles in the pres-
ence (closed circles with solid line) and absence (open circles with dotted line) of capsaicin (CAP). The
inset image shows the phase-contrast photomicrograph of the CHI−OA−CAP complex suspension.

3.2. Loading Characteristics of CAP

CAP demonstrates a characteristic absorption peak at 280 nm, which allows evaluation
of the CAP encapsulation into the CHI–OA complex particles via UV–Vis spectroscopy.
Typical UV spectra for the various samples are shown in Figure 2a. Figure 2a(i) presents
the spectrum of the CHI–OA complex particle suspension prepared using an initial CAP
concentration of 1 g/L. The strong absorbance at 280 nm, which is significantly more
intense than that of the dispersion medium (acetate buffer (0.2 M, pH 5.0): EtOH = 10:1)
saturated with CAP (Figure 2a(ii)), confirms that CAP is successfully incorporated into the
CHI–OA complex particle suspension. Interestingly, after removing the CHI–OA complex
particles from the medium by centrifugal ultrafiltration, the medium contained a much
smaller amount of CAP (Figure 2a(iii)) compared to its solubility in the medium, even
though the total concentration of CAP in the sample suspension was much higher than that
at its saturation level. It was also confirmed that the absorbance of the CHI–OA complex
suspension without the addition of CAP was extremely low (Figure 2a(iv)). These results
indicate that most of the CAP in the sample suspension was preferentially encapsulated by
the CHI–OA complex particles. The hydrophobic domains formed by the aggregation of OA
into the CHI–OA complex particles [42] led to the encapsulation of CAP via hydrophobic
interactions between OA and CAP. This possible encapsulation process is depicted in
Figure 3 with the chemical structures of CHI, OA, and CAP. It should be noted that more
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than 90% of CHI molecules in the sample were involved in the complex particle formation
during this process [42].
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Figure 2. (a) Evaluation of capsaicin (CAP) loading via ultraviolet−visible (UV–Vis) spectroscopy:
(i) chitosan (CHI)–oleic acid (OA)–CAP complex suspension (CAP concentration = 1.0 g/L), (ii) su-
persaturated dispersion medium (acetate buffer (0.2 M, pH 5.0): ethanol = 10:1), (iii) ultrafiltered
permeate of the CHI–OA–CAP complex suspension (CAP concentration = 1.0 g/L), and (iv) CHI–OA
complex suspension without the addition of CAP. (b) Fourier transform infrared (FTIR) spectra of
(v) CAP, (vi) extract from the CHI–OA–CAP complex suspension, (vii) OA.
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encapsulation process of CAP into the CHI–OA complex particles.

In addition, CAP encapsulation was also confirmed by FTIR analysis. The absorption
peaks in the spectrum of CAP (Figure 2b(v)) would be attributed to the following: N–
H stretch; C–H stretch of CH2 and CH3; C–C stretch and C=C stretch in aromatic ring;
C=O stretch; C–H bending of CH, CH2, CH3; C–O–C stretch; C–H bending in aromatic
ring [51,52]. These characteristic peaks were also found in the extract from the CHI–OA–
CAP sample (Figure 2b(vi)), as well as the peak attributed to the C=O stretch of COOH
in OA (Figure 2b(vii)), which was extracted with CAP in the n-hexane phase during the
extraction procedure (see Section 2.5). It should be noted that CHI was not extracted in the
n-hexane phase because CHI was insoluble to n-hexane.

CHI–OA–CAP complex particle suspensions containing various CAP concentrations
were prepared to investigate the loading efficiency of the complex particles for CAP. The
molar mixing ratio of OA to CHI was fixed at 0.2. Figure 4 illustrates the relationship
between the amount of CAP added to and incorporated into the CHI–OA complex suspen-
sion. The amount of CAP incorporated into the complex particles increased linearly with
an increase in the amount of CAP added, up to 1 g/L. Almost all the CAP added to the
suspension was encapsulated by the complex particles with 100% efficiency (as indicated
by the dotted line), even though an excess of CAP was added to the medium (~0.1 g/L). For
CAP concentrations above 1 g/L, the CAP encapsulation efficiency was lower than 100%.
At higher CAP concentrations, the hydrophobic domains in CHI–OA reached their maxi-
mum CAP incorporation capacities; therefore, a decrease in the encapsulation efficiency
was observed.
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from a minimum of three independent measurements.

Next, we investigated the effect of the OA concentration on the capacity of CAP
encapsulation. Since the initial amount of OA added during preparation of CHI–OA
complex particles would affect the amount of the hydrophobic domains in the CHI–OA
complex particles, the maximum capacity of CAP encapsulation into the CHI–OA com-
plex particles would also be dominated by the added amount of OA. Here, the initial
concentration of CAP was fixed at 2 g/L, which was an excess addition of CAP to its
100% encapsulation level. Figure 5 presents the relationship between the OA concentration
and CAP incorporated into the CHI–OA complex particle suspension. At an OA concen-
tration of less than 1.5 g/L, the amount of CAP incorporated increased linearly with an
increase in the concentration of OA. This result suggests that the encapsulation capacity for
CAP is dependent on the OA concentration in the complex particles. The dotted line in
Figure 5 represents a molar ratio of incorporated CAP:OA of 1:1. This indicates that the
OA hydrophobic domains are saturated with CAP at a molar ratio of CAP:OA of 1:1 when
up to 1.5 g/L OA is added. The maximum encapsulation ability of the system could be
predicted at this molar ratio as a function of the OA concentration. In contrast, the CAP
encapsulation ability of the complex particles decreases at OA concentrations higher than
1.5 g/L. According to a previous study [42], CHI–OA complex particles prepared at a molar
mixing ratio of OA to CHI higher than 0.4, which corresponds to ~2.7 g/L OA, tend to
form large aggregates which are then separated by the centrifugation step performed after
sample preparation. Therefore, the decrease in the amount of CAP incorporated could
be attributed to a separation of the large CHI–OA–CAP aggregates, formed at a higher
concentration of OA, by centrifugation of the prepared samples.

Based on the above discussion, we hypothesized that CAP was incorporated into
the hydrophobic domains formed by the aggregation of hydrocarbon chains of OA in the
CHI–OA complex particles. To investigate the loading mechanism of CAP in the complex
particles, we conducted SAXS measurements. Figure 6 presents the SAXS profile of the CHI–
OA complex particle suspension in the absence (Figure 6a) and presence (Figure 6b) of CAP.
In the absence of CAP, a clear scattering peak is detected at 2θ = 2.1◦, which corresponds
to a characteristic periodic length, d, of 4.2 nm, as determined by Equation (1). This
d value corresponds to the aggregation of OA molecules with ordered structures [42]. The
incorporation of CAP into the CHI–OA complex particles at a CAP:OA ratio of 0.8 resulted
in a decrease in the scattering peak intensity, indicating that the aggregated OA structure
became less ordered. This result could be owing to the differences in the molecular shape
and flexibility between CAP and OA. It would be difficult to maintain the ordered structure
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of OA when several CAP molecules are incorporated into the OA domains. In other words,
the smaller scattering peak of CHI–OA–CAP indicates that CAP was incorporated into the
aggregated OA domains by partitioning.
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3.3. Evaluation of Stability

The stability of the dispersibility of the CHI–OA–CAP complex particles and encapsu-
lated CAP was evaluated during storage in the dark at room temperature. Figure 7 presents
the mean particle diameter and amount of incorporated CAP in the CHI–OA–CAP complex
particle suspension, prepared at a molar mixing ratio of 0.2, as a function of time. The mean
diameter of the CHI–OA–CAP complex particles and amount of CAP incorporated into
the CHI–OA complex particles just after preparation (storage time = 0 day) were 0.81 µm
and 0.74 g/L, respectively. Both the uniform particle diameter distribution and high CAP
encapsulation efficiency were maintained over 3 months of storage without the formation
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of large aggregates or significant changes in the UV–Vis spectra owing to the oxidative
degradation of CAP [53,54] (see the inset graphs in Figure 7a,b). In addition, there was no
remarkable difference in the photomicrographs after 92-day storage (Figure 7c) from that of
the initial sample (inset image in Figure 1), although a slight increase in the mean diameter
of the complex particles was observed. These results reveal that CAP encapsulated into the
CHI–OA complex particles can be stably stored for more than 3 months at room tempera-
ture. This feature of the CHI–OA–CAP complex particles is advantageous for applications
in food and healthcare industries.
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represent the diameter distribution of the CHI–OA–CAP complex particles and ultraviolet spectra of
CAP extracted from the CHI–OA–CAP complex particles, respectively, after 0 and 92 days of storage.
(c) Phase-contrast photomicrograph of the CHI–OA–CAP complex particle suspension stored for
92 days. The molar mixing ratio used was 0.2.
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4. Conclusions

The factors influencing the encapsulation of CAP into CHI–OA complex particles were
investigated. Consequently, the amount of encapsulated CAP in the CHI–OA complex
particles was found to increase with an increase in the initial CAP concentration and
the amount of OA present in the CHI–OA complex particles. The SAXS analysis results
supported the proposed encapsulation mechanism of CAP into the CHI–OA complex
particles, which stated that the CAP molecules were incorporated into the hydrophobic
domains of the complex particles formed by the aggregation of hydrocarbon chains of
OA via hydrophobic interactions. The stability of the prepared CHI–OA–CAP complex
suspension during storage was examined at room temperature for over 3 months. The
homogeneous dispersibility of the complex particles was successfully maintained at the sub-
micrometer level, and the encapsulated CAP remained stable over the period investigated.
We believe that the findings presented herein will contribute to the development of novel
foods, beverages, pharmaceuticals, and other healthcare-related applications of not only
CAP but also other hydrophobic bioactive molecules.
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