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Copy number variation (CNV) may contribute to the development of complex diseases.
However, due to the complex mechanism of path association and the lack of sufficient
samples, understanding the relationship between CNV and cancer remains a major
challenge. The unprecedented abundance of CNV, gene, and disease label data
provides us with an opportunity to design a new machine learning framework to
predict potential disease-related CNVs. In this paper, we developed a novel machine
learning approach, namely, IHI-BMLLR (Integrating Heterogeneous Information sources
with Biweight Mid-correlation and L1-regularized Logistic Regression under stability
selection), to predict the CNV-disease path associations by using a data set containing
CNV, disease state labels, and gene data. CNVs, genes, and diseases are connected
through edges and then constitute a biological association network. To construct a
biological network, we first used a self-adaptive biweight mid-correlation (BM) formula
to calculate correlation coefficients between CNVs and genes. Then, we used logistic
regression with L1 penalty (LLR) function to detect genes related to disease. We added
stability selection strategy, which can effectively reduce false positives, when using self-
adaptive BM and LLR. Finally, a weighted path search algorithm was applied to find top
D path associations and important CNVs. The experimental results on both simulation
and prostate cancer data show that IHI-BMLLR is significantly better than two state-of-
the-art CNV detection methods (i.e., CCRET and DPtest) under false-positive control.
Furthermore, we applied IHI-BMLLR to prostate cancer data and found significant path
associations. Three new cancer-related genes were discovered in the paths, and these
genes need to be verified by biological research in the future.

Keywords: CNV, multi-omics data, path association analysis, stability selection, prostate cancer

INTRODUCTION

Copy number variations (CNVs) contribute to a substantial fraction of human genetic variation
and are increasingly involved in disease associations and genome evolution (Lupski, 2015).
Many evidences reveal the causal relationship between CNVs and many human disease
phenotypes, including scores of known genomic diseases and hundreds of complex disease traits
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(Usher and McCarroll, 2015; Zarrei et al., 2015; Lauer and
Gresham, 2019). One of the essential issues in CNV research is
to understand how CNVs affect the occurrence of diseases (La
Cognata et al., 2017; Gentile et al., 2021).

With the increase in the number of verified CNV–disease
associations, several databases have been published, such as DGV
(MacDonald et al., 2014), DGVa (Lappalainen et al., 2012), dbVar
(Church et al., 2010), CNVD (Qiu et al., 2012), and DECIPHER
(Firth et al., 2009). However, known CNV–disease associations
include only a small fraction of CNVs and diseases. Calculation
models and methods have been developed to predict the potential
CNV–disease associations, which can be used as candidates for
biological experimental verifications. Calculation models and
methods would greatly reduce the experiment cost and save time
in finding new CNV–disease associations.

The calculation methods can mainly be categorized into
statistical classification-based and machine learning-based
methods. People use statistical classification methods to develop
innovative solutions to identify disease-related CNVs. For
example, Shao et al. (2019) found that CNV is highly correlated
with differential gene expression by counting the correlation
between CNV and gene expression in a large number of
cell lines and disease samples. Pan et al. (2019) proposed a
calculation method that integrates Monte Carlo feature selection
and incremental feature selection to identify discriminative
core CNVs in different breast cancer subtypes. Xiong et al.
(2012) proposed a single statistical framework, GSAA, which
simultaneously measures genetic variation and gene expression
variation across the entire genome to identify gene sets that are
differentially expressed and thus can be used as markers related
to studied traits. Reid et al. (2019) performed a genome-wide
association study of common (>1%) CNV regions (CNVRs)
with EOC (epithelial ovarian cancer) and HGSOC (high-grade
serous) risk, and performed in silico analyses of tumor-gene
expression. Barnes et al. (2008) presented a statistical framework
for case–control CNV association study, which uses likelihood
ratio to test differences between case and control samples.

Recently, many researchers are committed to using machine
learning-based methods to study the complex mechanisms
between CNVs and diseases. Lu et al. (2011) used Pearson
correlation coefficient and pathway analysis to perform
concurrent genome-wide analyses of CNVs and gene expression
to identify gene reproducibly associated with tumorigenesis
and survival in non-smoking female lung adenocarcinoma. Xu
et al. (2018) proposed a support vector machine (SVM) classifier
based on arm-level CNV data to detect early colorectal cancer.
Onsongo et al. (2016) applied random forest to next-generation
sequencing to detect CNVs. CCRET (Tzeng et al., 2015)
collectively modeled the effects of multiple CNV features by
measuring variants on a multi-categorical scale to find disease-
related CNVs. Kim et al. (2012) introduced CNVRuler for
CNV-association studies. CNVRuler supports chi-squared and
Fisher’s exact tests in addition to logistic and linear regression
analyses using defined CNVRs and clinical information. DPtest
(Cheng et al., 2018) used a double penalty model to capture
CNVs’ association with both the intensities and the disease traits.
Zhang et al. (2019) proposed an ensemble learning framework

ensembleCNV. ensembleCNV combines multiple individual
CNVs with complementary strengths into CNVRs by using
heuristic algorithm and then performs disease-related analysis
on each CNVR through a global likelihood model.

Overall, the results of existing machine learning-based
methods show that integrating diverse CNV-related information,
disease-related information, and machine learning methods can
boost the prediction accuracy of the CNV–disease association.
However, most existing methods are limited to CNV and disease
data. The prediction results contain many false-positive results
(i.e., CNV not related to disease is identified as disease-related
CNV) due to lack of consideration of the role of gene in
CNV–disease association mechanism. In addition, most methods
calculate the CNV/disease similarities only on those that have at
least one known CNV–disease association.

To address the aforementioned issues (or limitations), based
on our previous work (Yuan and Huang, 2019), we put
forward a novel machine learning approach, namely, IHI-BMLLR
(Integrating Heterogeneous Information sources with Biweight
Mid-correlation and L1-regularized Logistic Regression under
stability selection), to predict the CNV–disease path associations
by using a data set containing CNV, disease state labels, and gene
data. IHI-BMLLR uses the three kinds of data to discover paths
from CNV to disease. It should be noted that path means an
association from a CNV to a gene and from the gene to disease.
There is a biological association network where nodes represent
CNVs, diseases, or genes and edges with scores representing the
correlation between a pair of nodes. CNVs, genes, and diseases
are connected through edges and then constitute a biological
association network. To construct a biological network, we first
used a self-adaptive biweight mid-correlation (BM) formula
to calculate correlation coefficients between CNVs and genes.
Although the Pearson correlation coefficient (PCC) is a widely
used correlation coefficient calculation method, PCC is strongly
affected while the BM remains practically the same as without
the outliers (Langfelder and Horvath, 2012; Zheng et al., 2014;
Yuan et al., 2015). Meanwhile, we used logistic regression with
L1 penalty function (LLR) (Tibshirani et al., 2005) to detect
genes related to disease. We added stability selection (SS) strategy
(Meinshausen and Bühlmann, 2010; Yuan et al., 2018), which can
effectively reduce false positives, when using self-adaptive BM
and LLR. Finally, a weighted path search algorithm was applied
to find top D path associations and important CNVs. Figure 1
illustrates the structure of the IHI-BMLLR method.

Compared with the traditional CNV–disease association
analysis methods, our proposed approach has the following
advantages. Firstly, compared with single CNV analysis, IHI-
BMLLR can detect weighted associations, and consider all CNVs
and genes simultaneously. Secondly, IHI-BMLLR uses three
kinds of data (CNV, gene expression and disease state label
data), which can use more information about CNV–disease
mechanisms and provide insight into CNV–disease complex
association mechanisms. Thirdly, the self-adaptive BM and
weighted path search algorithm can help IHI-BMLLR accurately
identify disease-related CNVs. Finally, because IHI-BMLLR does
not require prior information, it is more suitable for large-scale
data lacking complete prior information.
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FIGURE 1 | The structure of the IHI-BMLLR.

In the experiment section, we first compared the receiver
operating characteristic (ROC) performance of IHI-BMLLR
with two state-of-the-art CNV detection methods (CCRET and
DPtest) using four kinds of simulation data. The experimental
results show that IHI-BMLLR can significantly improve the
detection performance of disease-related CNVs using gene data.
From the results of the boxplots, we can see that the stability
of IHI-BMLLR is better than CCRET and DPtest. Prostate
adenocarcinoma (PRAD) is the most common cancer for males
and the second death rate caused by cancer in men (Jemal
et al., 2011). IHI-BMLLR was applied to PRAD data and
obtained many CNV–disease path associations on the PRAD
data from The Cancer Genome Atlas (TCGA) (Tomczak et al.,
2015). IHI-BMLLR identified 212 significant paths, among which
we analyzed top 10 path associations and calculated statistical
significance of CNVs and genes in the paths. We used real
and fake data test to calculate statistical significance of the top
10 CNV–disease path associations. The software and data of
IHI-BMLLR are available at https://github.com/nathanyl/IHI-
BMLLR.

MATERIALS AND METHODS

Simulation Data and Prostate Cancer
Data
In the “Results and Discussion” section, we compared IHI-
BMLLR with CCRET and DPtest on simulation data and prostate
cancer data. In this section, we will introduce simulation data set
and prostate cancer data. Simulation data set contains four kinds
of data sets with the same number of CNV–gene true associations,
the same number of features, and different sample sizes (i.e., 1,000

CNVs, 100 genes, and 1 disease state). In simulation data set, the
number of CNV–gene true associations is 100 CNVs–10 genes
associations, the number of samples N ∈ {200, 500, 800, 1100}.
The simulation data were generated as follows. Firstly, we
generated 100 causal CNVs that are related to disease. The state
label of the data is an equal number of diseases or normal states
(i.e., the same number of 0s and 1s; 0 means normal state, 1 means
disease state). Secondly, we used a three-layer fully connected
neural network to generate 10 gene expression data. In the three-
layer fully connected neural network, the input layer contains
100 nodes, the middle layer contains 10 nodes, and the output
layer contains 1 node. The nodes in the input layer represent
CNVs, the nodes in the middle layer represent genes, and the
nodes in the output layer represent disease. Thirdly, we used the
TensorFlow with the back propagation (BP) algorithm to train
the three-layer fully connected neural network until the neural
network can correctly predict more than 95% of disease state label
nodes (Abadi et al., 2016). We used the values of the middle layer
nodes as gene expression values, and the values in the input layer
nodes were mapped to [−2, −1, 0, 1, 2]. Finally, we added 900
CNV values and 90 gene values to the sample. The CNV values
were randomly selected from [−2, −1, 0, 1, 2], and the gene
values were from Gaussian distribution. The 900 CNVs and 90
genes represent CNVs/genes that are not related to the diseases.
Meanwhile, we also added noise data from Gaussian distribution
N (0, 1) to the data.

The PRAD data were downloaded from https://xenabrowser.
net/ (Goldman et al., 2017). The CNV profile of PRAD was
measured experimentally using genome microarray and the
GISTIC2 method (Mermel et al., 2011; Izzi et al., 2020). The
Illumina HiSeq 2000 RNA Sequencing platform was used to
measure the gene expression profile (Fumagalli et al., 2014). The
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corresponding disease state label data were downloaded from
TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) (Ge
et al., 2016; Liu et al., 2018). We ran simulation and prostate
cancer data experiments on a computer with Intel Xeon W-3175X
CPU and 256G RAM.

Methods
In this paragraph, we introduce the notations used in this article.
We used boldface uppercase to represent matrices, boldface
lowercase for vectors, and lowercase letters for scalars. We denote
the CNV genotype data matrix by X ∈ RN×P, where N is the
sample size and P is the CNV number, xj denotes the jth column
of CNV data matrix, xi denotes the ith row of CNV data matrix,
and xij is the (i, j) element of CNV data matrix. Gene expression
matrix is represented by Y ∈ RN×Q with N sample size and Q
gene traits, and disease state label matrix is represented by Z ∈
RN×K with K diseases.

In the following paragraphs, we introduce the methods in
the machine learning framework of finding the CNV–disease
path associations. We also introduce how to discover CNVs
affecting genes, identify genes affecting diseases, construct a
biological network, and define a mathematical formula to
calculate the scores of the path associations. Finally, we show
how to use a weighted path search algorithm to discover top D
path associations and important CNVs. Figure 1 illustrates the
structure of IHI-BMLLR method.

Discovering Paths in a Biological
Association Network
We constructed a biological association network, the nodes in
the network are used to represent CNV, genes, and diseases.
We describe how to establish a connection between two nodes
using self-adaptive BM coefficient and LLR under SS strategy.
Self-adaptive BM and LLR are powerful techniques to find
correlations between CNVs and genes or correlations between
genes and diseases, and the SS method is used to effectively
control the number of false-positive results.

Based on the self-adaptive BM coefficient, we computed
correlation coefficients between CNVs and genes (Langfelder and
Horvath, 2012):

ui =
xi −med(x)
α •mad(x)

(1)

The parameter α is often set to 9 empirically. However, this
setting does not consider the characteristic of the data. In this
paper, we set α to the data-driven parameter (mad(x)+med(x))/2.
The range of self-adaptive BM values is from −1 to 1. If the
correlation between a pair of elements is stronger, the absolute
value of BM is larger.

Next, Equations (2) and (3) are used to detect associations
between diseases and genes, the logistic loss function is applied to
measure the gap between predicted disease state and true disease
state (i.e., mark the disease state as 1 and mark the normal state
as 0). Given a gene expression vector y as follows:

p
(
z = 1

∣∣y; θ ) = σ
(
θTy

)
=

1
1+ exp

(
−θTy

) (2)

where θ ∈ RQ represents coefficient value vector of logistic
regression model in Equation (2), and σ (·) represents the sigmoid
function; thus, logistic regression formula with L1 penalty
function can be defined as follows:

min
θ

N∑
i=1

− log p
(

z(i)
∣∣∣y(i)
; θ
)
+ λ ||θ||1 (3)

In practice, our proposed method IHI-BMLLR is used to study
a class of diseases and the disease state matrix is denoted by Z ∈
RN×1. The regularization parameter can affect the performance
of model; the regularization parameter λ is determined by
cross-validation technique. However, we tend to get many false-
positive results when only using the cross-validation technique
(Meinshausen and Bühlmann, 2010; Yuan et al., 2017). We
combine the SS strategy when using self-adaptive BM and LLR
algorithms. We will introduce the SS strategy later.

Calculating Association Score Using SS
Strategy
In this paper, IHI-BMLLR uses self-adaptive BM and LLR with
SS strategy to find connections in a biological network. We
summarized IHI-BMLLR under SS in Algorithm 1. Stability
selection strategy uses the resampling technique. Firstly, half of
the sample is randomly selected M times from the overall sample;
for each randomly selected data, self-adaptive BM and LLR are
applied to the corresponding selected data set (i.e., self-adaptive
BM is applied to data set containing CNV and gene expression
data, and LLR is applied to data set containing gene expression
and disease state data). Secondly, in M times experiments, if
the number of non-zero absolute value of coefficient between
CNV and gene or gene and disease is greater than or equal
to M · φ times, then the CNV or gene will be retained. φ is a
predefined parameter used to effectively control the number of
false-positive results. People have done a lot of in-depth research
on the choice of M and φ values. Meinshausen’s research show
that when M is greater than or equal to 100 times, it is sufficient
to control false positives (Meinshausen and Bühlmann, 2010). In
practical application, researchers often set φ in the range from
0.5 to 1. The larger the value of φ, the better the false-positive
control at the cost of a reduced true-positive rate. This parameter
φ is a hyperparameter. In this article, we choose 0.7 and 0.8.
When detecting the potential associations between CNVs and
the qth gene, the mathematical formula between the number of
false-positive results and φ is defined as follows.

E
(
Vq
)
≤

1
2φ− 1

c2

P
(4)

where E
(
Vq
)

represents the expected value of false-positive
CNVs associated with the qth gene, and parameter c represents
the number of non-zero associations found by the IHI-BMLLR
method. From Equation (4), we can see that the upper limit of
false-positive results is inversely proportional to the parameter
φ. When we apply IHI-BMLLR to detect the association between
genes and diseases, the same situation exists for the relationship
between false positives and parameter φ .
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After self-adaptive BM and LLR combined with the SS method
is used in the data set, and after obtaining the result, we
can calculate the significance scores of the connections in the
biological association network. When detecting the relationship
between the qth gene trait and the pth CNV, the significance score
of the association can be defined as follows:

score
(
epq
)
=

Nb
(
p, q

)
M

•mean(coe(p, q)) (5)

where epq represents the association between the pth CNV and qth
gene. Nb(p, q) represents the number of data sets in which epq is
accurately found. Obviously, the value of Nb(p, q)/M is in the
range 0–1. mean(coe(p, q)) represents the average value of the
accurately identified correlation coefficients. The larger the value
of score (epq), the greater the correlation between the pth CNV and
the qth gene in the biological network.

Based on the association score between two nodes in the
biological network, we can calculate the score of path that
contains a CNV, a gene, and a disease. The association path
composed of important connections can be regarded as a
significant biological association path. In order to find important
paths efficiently, we use a weighted path search algorithm; the
details of the algorithm will be described in the next section.

Algorithm 1: IHI-BMLLR under stability selection.

Input: X: CNV genotype data, Y: gene expression matrix, Z: disease state
matrix, O: selected CNVs by screening, φ: threshold parameter for stability
selection strategy (0.5≤φ≤1), and M: total number of random samples

Output: I: selected edges with scores

1. 5l = 0, l ∈ O

2. Selecting N/2 samples from N samples using random sampling without
replacement

3. Given N/2 subsamples, IHI-BMLLR, findλusing cross-validation, denoted
by {λ*}

4. ol = 0, ∀l ∈ o

5. For t = 1 to M do

6. Selecting N/2 samples from N samples using random sampling without
replacement

7. Given N/2 subsamples, solve IHI-BMLLR with {λ*}

8. ol = ol + 1 for all selected l

9. Given the remaining λsubsamples, solve IHI-BMLLR with {λ*}

10. ol = ol + 1 for all selected l

11. 5l ←
ol
2T , ∀l ∈ o

12. I = (l, 5l) : 5l ≥ φ

Detecting Path Associations Using
Weighted Path Search Algorithm
There are a large number of associated paths in a complex
heterogeneous biological network. In this paper, a path represents
a continuous biological path in which a CNV is connected
to a disease through a gene. In order to accurately find
important path associations, a weighted path search algorithm
was used to calculate the significance scores of paths and find
important biological paths (i.e., high-score association paths)

(Yuan et al., 2018). In the biological network, significant paths
tend to have larger scores.

In a biological association network, a weighted path search
algorithm can be defined as follows. Firstly, in the biological
network, we choose genes that are simultaneously associated with
CNV and disease. We can find all existing association paths by
selecting these genes. Secondly, we can obtain the score of paths
by summing the weighted scores [Equation (5)] of each part of
the path. Finally, we sort all paths in descending order of scores
and select the top D high-score path associations. The weighted
path score formula can be defined as follows:

score
(
Path

)
=

∑
Parti∈Path

score (Parti) (6)

Criteria for Evaluating Method
Performance
In order to evaluate the performance of methods fairly, we used
the ROC curve to observe the performance of methods and
compared the performance of methods using the area under
receiver operating characteristic (AUROC). We calculated TPR
and FPR based on the confusion matrix (Figure 2).

Disease-Related CNV True Labels Test
In the disease-related CNV true labels test, FaST-LMM-EWASher
(Zou et al., 2014), which is a conventional linear regression
method, was used to predefine disease-related CNVs. The
predefined CNVs are treated as true labels. Then, we compared
performance of IHI-BMLLR, CCRET, and DPtest in accurately
identifying the true labels. An excellent disease-related CNV
detection method should report as many true labels as possible
in the resulting CNVs.

Real Data and Fake Data Test
In the designed real data and fake data test, three methods (i.e.,
IHI-BMLLR, CCRET, and DPtest) were applied to real CNV–
disease data and obtained a set of “real” results; then, these
three CNV detection methods were applied to “fake” data that
exchange samples between two category conditions and obtained
a set of “fake” results. Compared with the expected biologically
significant “real” results, the “fake” results have no biological

FIGURE 2 | Confusion matrix used to calculate TPR and FPR.
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significance. An excellent CNV detection method should find as
many CNVs as possible in the “real” results, while reporting as
few CNVs as possible in the “fake” results. In addition, when
methods find the same amount of CNVs on the “fake” data set,
the method that detects more CNVs on the “real” data set has
better performance.

The Statistical Significance Calculation
Method of Paths
In order to measure the statistical significance of the 10 paths,
we used a method of calculating statistical significance by
comparing the original path score and the random path score.
In bioinformatics research, this is a widely used statistical
significance calculation method (Mootha et al., 2003; Liberzon
et al., 2015; Wei et al., 2016; Yuan et al., 2016). Firstly, we
randomly rearranged CNV samples, gene samples, and disease
labels, and then calculated the scores of the paths. Secondly, we
repeated the previous steps 5,000 times, calculated the score of the
path in each randomly generated sample, and then constructed
a histogram of the scores. Thirdly, we calculated the p-value of
the path by calculating the proportion of the path score in 5,000
random data that is less than the path score in the original data.

The null hypothesis in this paper is that path scores from
random data are randomly distributed scores. The alternative
hypothesis is that the path score is related to the structure of
the sample data. Assuming that the p-value of score is 0.001, this
means that there are random path scores less than the original
path score under null hypothesis.

RESULTS AND DISCUSSION

Our study firstly compared performance of IHI-BMLLR with
two state-of-the-art methods (i.e., CCRET and DPtest) using
AUC in the simulation data. The results show that IHI-BMLLR
performs clearly better than other methods. Then, we compared
the stability performance of these three methods using boxplots.
The results show that the stability of IHI-BMLLR is better
than the other two methods. IHI-BMLLR also achieved a better
performance in test for real and fake data. In order to find
the path-related information in cancer, we applied IHI-BMLLR
to PRAD data from TCGA. The results contained 212 path
associations. We used disease-related CNV true labels test to
calculate the statistical significance of the top 10 high-scoring
path associations, and further analyzed the statistical significance
of CNVs and genes in the top 10 paths.

Comparison of Methods on Simulation
Data
For the parameters in method IHI-BMLLR, we set φ 0.7
and 0.8, M = 100, and D = 2,000. Figures 3, 4 show the
ROCs obtained by IHI-BMLLR with two parameter settings
φ={0.7, 0.8}. Panels show the results for different sample sizes
(N ∈ {200, 500, 800, 1100}). Supplementary Figures 1, 2 show
the corresponding AUC values of Figures 3, 4, respectively.

It can be seen that in the ROC and AUC results, the IHI-
BMLLR achieved higher AUC values regardless under both

values of the φ parameter. The results suggest that when the
pathogenesis mechanism of the disease is complex, for example,
when CNVs affect the disease through a complex transmission
mechanism, two biological factors association (i.e., CNVs and
disease or CNVs and genes) analysis may not accurately find
the causal CNVs that affect the disease. Each kind of simulation
data set was randomly generated 100 times. We calculated
the AUC value of each method 100 times and then generated
the corresponding boxplot. Figures 5, 6 show the boxplots.
As shown in Figures 5, 6, the stability of IHI-BMLLR with
different parameters is much better than the other two methods,
and the experimental results of our proposed method do not
contain outliers.

Comparison of Methods on PRAD Data
PRAD is the most common cancer for males and the second
death rate caused by cancer in men. Research shows that
CNV makes an important contribution to the proliferation
of PRAD malignant cells (Laitinen et al., 2016). CNV–disease
path associations (i.e., the association between CNVs and
diseases through genes) can provide biological information
for in-depth understanding of the complex mechanisms of
cancer. Therefore, IHI-BMLLR, CCRET, and DPtest were applied
to the PRAD data from TCGA. PRAD data contain CNV
and gene expression profiles of 490 samples. The data set
includes 24,776 CNVs and 20,530 DNA probe expression
values from the same sample, which includes known and
predicted genes. Binary labels (i.e., 1 denotes disease state
and 0 denotes normal state) were used to indicate the
sample state.

The main limitation of using real data sets to test disease-
related CNV analysis methods is the lack of experimentally
verified CNV data. The lack of verification data makes it
difficult to effectively evaluate the performance of a method.
In order to effectively compare the performance of various
methods, true labels test was applied to three methods.
Firstly, FaST-LMM-EWASher was used to identify the PRAD-
related CNVs; then, these CNVs are defined as true labels.
Secondly, we selected the top 100 CNVs from the PRAD-
related CNVs. Because these 100 CNVs are closely related to
the development of PRAD, the method should discover as
many CNVs as possible. Finally, we compared the performance
of methods in discovering these true labels. The experimental
results are shown in Figure 7. As shown in Figure 7, the
method IHI-BMLLR performs significantly better than the
other two methods. Supplementary Table 1 contains the detail
information of results.

We also used real data and fake data test to evaluate and
compare the performance of three disease-related CNV detection
methods. When the ground truth is unknown, the test method
is widely used in bioinformatics research (Zhang et al., 2008;
Cui et al., 2015, 2016; Liu et al., 2017). As shown in Figure 8,
IHI-BMLLR outperforms the two state-of-art methods. For IHI-
BMLLR, when 3.7% of CNVs were found on the “real” data set,
at the same time, 1% of CNVs were found on the “fake” data set.
Supplementary Table 2 contains the numerical information of
Figure 8.
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FIGURE 3 | ROCs of IHI-BMLLR with CCRET and DPtest: N = 200 (left), N = 500 (right). For IHI-BMLLR, we show the results with two settings for φ 0.7 and 0.8.

FIGURE 4 | ROCs of IHI-BMLLR with CCRET, and DPtest: N = 800 (left), N = 1,100 (right). For IHI-BMLLR, we show the results with two settings for φ 0.7 and 0.8.

FIGURE 5 | The boxplots of the AUCs for IHI-BMLLR, CCRET, and DPtest with different sample sizes. N = 200 (left), N = 500 (right).
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FIGURE 6 | The boxplots of the AUCs for IHI-BMLLR, CCRET, and DPtest with different sample sizes. N = 800 (left), N = 1,100 (right).

FIGURE 7 | Comparison of IHI-BMLLR, CCRET, and DPtest in the PRAD data CNV true labels test experiment.

Finding Path Associations From PRAD
Data
We used IHI-BMLLR with 10-fold cross-validation to find the
path associations. We set φ=0.7and M = 100. The parameter φ

is set to 0.7 to ensure that as many biologically meaningful paths
as possible are included in the result. A path contains a CNV, a
gene, and the disease. We found 212 paths in the PRAD data
results. It should be noticed that the maximum path score is 2. We
studied and analyzed the top 10 high-score paths, which contain
three prostate oncogenes PCGEM1 (Srikantan et al., 2000), ERG
(Adamo and Ladomery, 2016), and MXI1 (Huang et al., 2018).
The paths and corresponding statistical analysis value are shown
in Table 1.

Significant Analysis of CNVs and Gene in
Independent Data
In order to verify whether CNV has a specific function, we
used independent data GSE79402 to calculate the Student’s t-test

P-values and T-scores. As shown in Table 2, the P-values of
10 CNVs are all less than 1E–10. The P-values indicate that we
can reject the null hypothesis and consider that the biological
functions of these 10 CNVs are significantly different under
normal and disease states.

In order to verify whether three oncogenes have different
functions between prostate cancer cases and controls, we used
Student’s t-test and Wilcoxon rank sum test to calculate the
statistical significance of genes from independent data GSE60329.
Table 3 contains the results of Wilcoxon rank sum test and
Student’s t-test. In the result of Student’s t-test, the P-values of
three oncogenes are all less than 1E–04. Meanwhile, in the result
of Wilcoxon rank sum test, the P-values of three genes are all less
than 1E–04. These two test results indicate that the three genes
are significantly differentially expressed between prostate cancer
cases and controls.

To compare the ability of methods to find differentially
expressed genes. Firstly, we used a widely used genome-
wide differential expression analysis method edgeR
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FIGURE 8 | Comparison of IHI-BMLLR, CCRET, and DPtest in the PRAD real data and fake data test.

TABLE 1 | Top 10 path associations found by IHI-BMLLR in the PRAD data
related to PCGEM1, ERG, and MXI1.

Chromstart Chromend Gene Path score Path P-value

chr4:132639974 132640994 PCGEM1 1.96 0.011

chr2:162563851 162564769 PCGEM1 1.95 0.01

chr5:89153624 89153750 PCGEM1 1.94 0.009

chr11:115579831 115582002 PCGEM1 1.93 0.012

chr6:121675165 121694284 ERG 1.93 0.008

chr2:141069793 141080710 ERG 1.92 0.017

chr5:100264445 100264533 ERG 1.91 0.009

chr16:56055045 56056797 MXI1 1.85 0.033

chr2:136738245 136739236 MXI1 1.84 0.015

chr6:75204004 75207834 MXI1 1.84 0.021

(Laitinen et al., 2016) to find differentially expressed genes.
Then, we applied the methods (IHI-BMLLR/CCRET/DPtest) to
the data and calculated the number of differentially expressed
genes found by each method. edgeR identified 100 differentially
expressed genes; IHI-BMLLR, CCRET, and DPtest found 63
genes, 45 genes, and 27 genes, respectively.

DISCUSSION

We identified four paths that contain PCGEM1. PCGEM1
produces a long non-coding RNA that is overexpressed in
prostate cancer and may act as a marker for tumor progression
(Safran et al., 2010; Orii and Ganapathiraju, 2012). Further
biological research is needed to confirm the path associations
found by method IHI-BMLLR. In other path associations not
discussed in the paper, we detected three genes MAPK13, MCM4,
and CCNB2 that are not related to PRAD. These genes are
reported to be related to bladder cancer (Zekri et al., 2015;

TABLE 2 | The Student’s t-test P-values and T-scores of 10 CNVs.

Chrom Chromstart Chromend P-value T-score (case–control)

4 132639974 132640994 6.12e-16 −12.503

2 162563851 162564769 3.24e-22 −11.004

5 89153624 89153750 8.12e-18 −10.314

11 115579831 115582002 7.12e-29 −6.741

6 121675165 121694284 4.12e-24 −16.147

2 141069793 141080710 8.13e-25 −13.218

5 100264445 100264533 5.38e-17 −17.194

16 56055045 56056797 6.12e-24 −12.933

2 136738245 136739236 5.32e-32 −7.572

6 75204004 75207834 6.14e-14 −14.372

TABLE 3 | The Student’s t-test P-values and Wilcoxon rank sum test for 10 CNVs.

Method value PCGEM1 ERG MXI1

Student’s t-test P-value 3.54e-07 1.35e-09 5.37e-05

Student’s t-test T-score (case–control) 15.3214 17.1090 9.3421

Wilcoxon rank sum test P-value 3.25e-08 2.34e-08 1.93e-04

Wilcoxon rank sum test H-value 1 1 1

Gao et al., 2018; Zhang et al., 2018). It is necessary to study the
relationship between these genes and PRAD in the future.

The real biological regulation mechanism in the human body
is much more complicated than what we assumed. For example,
the relationship between genes has received extensive attention
in disease research. In this article, IHI-BMLLR is dedicated to
discovering paths from CNV to gene and from the gene to
disease. In the future, we will study and try to propose a method
for studying gene–gene associations and optimal association
numbers in CNV–disease research.

Frontiers in Genetics | www.frontiersin.org 9 June 2021 | Volume 12 | Article 696956

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-696956 June 23, 2021 Time: 17:41 # 10

Yuan et al. IHI-BMLLR for Cancer-Related CNV

Finally, the real biological regulation mechanism in the human
body is much more complicated than what we assumed. lncRNA
and miRNA often work together with CNV, and our method does
not consider lncRNA and miRNA. In the future, we will study
how to design a machine learning framework that simultaneously
considers both lncRNA and miRNA.

CONCLUSION

In this article, we designed a novel disease-related CNV detection
method IHI-BMLLR, which uses CNV, gene, and disease data
to find path associations. The method consists of two parts.
The first part of the method is the association search method.
It contains adaptive BM correlation coefficient formula and
LLR. The second part contains SS strategy and weighted search
path algorithm. These two methods were used to control false
positives and identify paths, respectively. The result of simulation
data experiment proves that IHI-BMLLR is significantly better
than two state-of-the-art methods CCRET and DPtest. The
result of the boxplots indicates that the stability of IHI-BMLLR
outperforms the two methods. In the results of the PRAD data
experiment, IHI-BMLLR identified 212 important paths. Disease-
related CNV true labels test and real data and fake data test
were used to calculate the statistical significance of the top 10
high-score path associations. We also discovered three potential
PRAD-related genes.
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