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EDITORIAL COMMENT
O tempora, o mores

The Age We Live In, Machine Learning, Hypertension,
and Primary Aldosteronism*
Constantine A. Stratakis, MD, DMEDSCI, PHDa,b,c,d,e
H ypertension (HTN) is one of the leading
causes of overall morbidity and mortality
in the world.1 Most patients are diagnosed

with essential HTN, and secondary HTN accounts
for up to 10% of the cases and is mainly due to kidney
disease, vascular abnormalities, and metabolic disor-
ders, such as diabetes.2 Primary aldosteronism (PA)
accounts for up to 6% of primary care patients with
HTN and may be responsible for as much as 10% to
15% of referral cases with difficult to control HTN.3

In the past 30 years, genetic causes of PA have been
found from the chimeric CYP11B1/CYP11B2 genes in
glucocorticoid-remediable hyperaldosteronism, to
pathogenic variants in the KCNJ5, ATP1A1, ATP2B3,
CACNA1D, CACNA1H, CLCN2, and CTNNB1 genes,
rarely in the germline and mostly in the somatic state,
within the aldosterone-producing adenoma (APA) tis-
sue only.4 Even for somatic mutations, genetics
clearly plays a role in the development of PA, as
recent studies in Black individuals in the United
States showed.5 The genetic cause of PA, germline,
somatic, or simply predisposition, is important not
only for counseling, medical treatment, or prognosis,
respectively, but also to decide who among the pa-
tients might benefit from surgery. Yet, the latter
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requires either invasive procedures or it is impossible
for some patients who may receive inadequate medi-
cal therapy for years.

The study by Chen et al6 published in this issue of
JACC: Asia uses machine learning models to identify
APAs with KCNJ5 mutations among patients with PA
using baseline characteristics and routine blood and
urine tests preoperatively. The study, the first of its
kind, needs to be confirmed in a larger dataset and
population, but it is characteristic of the changes we
see happening now every day in the practice of
medicine.

As Cicero said, “O tempora, o mores! Nihil nimium
vetus proferam,” which roughly translates to “What
an age we live in! Yet I will speak of what is not very
ancient history!”7

Indeed, the story of KCNJ5 in APAs is not that old:
it is only 11 years since we published the first KCNJ5
mutations in our patients,8 new phenotypes associ-
ated with KCNJ5 defects, including somatic mosai-
cism for defects of the same gene in a patient with PA
and adrenocortical hyperplasia, and a novel KCNJ5
variant associated with cyclical Cushing syndrome in
childhood,9-13 findings that we reviewed recently.14

In this short time, it became clear that new pro-
tocols were needed to identify patients with PA who
would benefit most from surgical intervention, espe-
cially those with KCNJ5 defects.15 The first applica-
tions of machine learning in the diagnosis and
management of PA were, as expected, where the data
were more robust, such as in steroid profiling16 and
proteomics.17 Since the publication of the first study
to use machine learning and artificial intelligence in
PA using common clinical and biochemical data,18

there have been now almost a dozen such reports
including the latest ones,19,20 yet none that specif-
ically accessed a particular genotype, such as the
study by Chen et al.6

The study by Chen et al6 is not only well done (as
far as methods is concerned), but also pioneering in
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its concept: linking a particular genetic alteration to a
specific phenotype that causes aldosterone excess
and may be treated surgically. And, of course, there
are many more genes involved and, thus, we are
looking forward to what comes next almost certainly:
using similar approaches to differentiate genetic de-
fects and guide treatment and prognosis of patients
with PA.

Applying machine learning to benefit patients with
PA and HTN is a welcome development in a field that
has seen extraordinary scientific advances in the past
2 decades, without clear clinical benefit: deciding
who will benefit from surgery remains challenging to
date. Almost certainly, similar methods (ie, artificial
intelligence) will be used for the identification or the
design of molecules that may be used therapeutically
(instead of surgery) especially for those patients with
PA harboring genetic defects in smaller lesions. Pre-
diction models may be able to identify who has what
pathogenic variants in the KCNJ5, ATP1A1, ATP2B3,
CACNA1D, CACNA1H, CLCN2, or CTNNB1 genes and
provide the respective molecular therapy.

Indeed, “what an age we live in!” A marvelous age
in medical discoveries and a true revolution in the
practice of medicine!
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