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gen species is the use of non�thermal atmospheric pressure

plasma. The technique has been applied in a wide variety of fields

ranging from the micro�fabrication of electric devices to the treat�

ment of disease. Although non�thermal atmospheric pressure

plasmas have been shown to be clinically beneficial for wound

healing, blood coagulation, and cancer treatment, the underlying

molecular mechanisms are poorly understood. In this review, we

describe the current progress in plasma medicine, with a particular

emphasis on plasma�activated medium (PAM), which is a solution

that is irradiated with a plasma and has broadened the applica�

tions of plasmas in medicine.
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IntroductionPlasma is the fourth state of matter, in addition to solid, liquid,
and gas. Thermal plasmas, such as arch discharges, and low-

pressure plasmas for surface treatments, have been used in industry.
Innovative technologies for generating non-thermal plasmas at
atmospheric pressure have recently been developed and applied in
several industries, as well as in medicine and biology.(1–10) In the
life sciences, plasmas are a novel tool for producing oxidative
stress.(11) Understanding the interactions between a plasma and
tissues/cells is currently an important issue in plasma medicine.
Applications of non-thermal plasmas in blood coagulation,(12–18)

cancer treatment,(19–23) and gene transfection have been extensively
studied over the last four years as part of the Japanese govern-
ment’s national “Plasma Medical Innovation” project.(24–27)

Plasmas Generate Reactive Oxygen Species and Reactive
Nitrogen Species

The major components of a plasma are electrons, ions, radicals,
and light. Radicals are especially important to induce physio-
logical outputs in cells/tissues. Indeed, plasmas induce reactive
oxygen species (ROS) and reactive nitrogen species (RNS) in
cells, both of which have significant impacts on cellular physio-
logy, and many diseases have been associated with increased
levels of oxidative stress.(11,28,29) Many antioxidants induce anti-
tumor, anti-inflammatory, and antibacterial activities, and the
intake of natural antioxidants reduces the risk of cancer, diabetes,
and other diseases. Cancer cells generate increased levels of
ROS,(11) and this property of cancer cells could be exploited for

therapeutic benefit. Excessive ROS damages cancer cells and
leads to cell death, while normal cells tolerate the same levels of
ROS. Thus, pro-oxidants that induce oxidative stress, such as
non-thermal plasmas, may have chemotherapeutic potential.
A device that generates a non-thermal atmospheric pressure

plasma with high electron density has been invented,(30) and the
effects of direct non-thermal plasma exposure on lipids, proteins,
and nucleic acids have been evaluated.(31)

Although L-ascorbate is a potent dietary antioxidant, high
concentrations of L-ascorbate have pro-oxidant activities.(32) Re-
cently, a novel combinatorial therapy of a non-thermal plasma
and L-ascorbate for the treatment of malignant mesothelioma was
proposed.(33) A brief pre-treatment with a pharmacological dose
(250–750 µM) of L-ascorbate immediately prior to non-thermal
plasma exposure dose-dependently sensitized malignant mesothe-
lial cells to a non-thermal plasma. However, the authors also found
that prolonged incubation with L-ascorbate protects malignant
mesothelial cells from the cytotoxicity of non-thermal plasma
exposure. These results suggest that therapeutic strategies should
be considered based on the biphasic effects of L-ascorbate.

Plasma�Activated Medium for Cancer Therapy

Non-thermal atmospheric pressure plasmas have been widely
used for medical purposes such as wound healing, blood coagula-
tion, and cancer therapy. Most treatments involve the direct
application of plasmas to lesions. However, recently, it was dis-
covered that plasma-irradiated solutions induce physiological
outputs in cells and tissues, and such indirect treatments could be
a novel approach to chemotherapy (Fig. 1).(20–23,34) For example,
plasma-irradiated medium (referred to here as plasma-activated
medium or PAM) kills glioblastoma, ovarian, and gastric cancer
cells, and PAM could be a potential anti-tumor drug for the
treatment of peritoneal dissemination of cancers by intrathecal or
intraperitoneal injections.(34–39)

Intracellular molecular mechanisms of PAM-triggered cell death
have been extensively studied since PAM was proposed as a novel
plasma chemotherapy. PAM treatments as well as direct non-
thermal plasma treatments generally induce ROS and apoptosis
in cancer cells.(21,22,35–37) PAM inhibits activation of survival and
proliferation signaling networks in U251SP glioblastoma cells,
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which leads to apoptosis.(34,41) In A549 lung adenocarcinoma
cells, PAM inhibits the mitochondrial-nuclear network through a
caspase-independent cell death pathway,(42) and elevates intra-
cellular Fe(II) and hydroxyl radicals.(43) PAM triggers intracellular
zinc liberation in SH-SY5Y neuroblastoma cells, which leads to
zinc-dependent cell death.(44)

Other Applications of Non�Thermal Plasmas in Medicine

The facilitation of blood coagulation by a non-thermal plasma is
a novel method that is especially effective for stopping oozing
blood in surgery.(14) Indeed, a non-thermal plasma for blood
coagulation was demonstrated to stop bleeding faster than natural
coagulation (Fig. 2).(15) Eosinophilic fibrous membrane-like struc-
tures were induced by the plasma, while the natural coagulation
process usually contains erythrocytes.(16) The inflammation re-
covery process after treatment with the non-thermal plasma or
thermal coagulator was visualized using the radiopharmaceutical,
2-deoxy-2-[18F] fluoro-D-glucopyranose (18F-FDG), and it was
shown that the former is less inflammatory.(17) Electron micro-
scopic analyses revealed that fragmented fibroblasts were seen in
the electrocoagulation-treated skin and not in the plasma-treated
skin.(18)

Non-thermal plasmas have been applied in regenerative medicine.

A low-dose plasma can promote cell growth while a high-dose
plasma induces apoptosis or necrosis, which might reflect the dose
dependence of oxidative stress.(11,45)

Highly efficient and minimally invasive gene transfection has
been achieved using non-thermal plasmas (Fig. 3).(24,26) Electrical,
chemical, and biochemical factors that generally affect the effi-
ciency of gene transfection were investigated, and it was shown
that non-thermal plasmas predominantly influences endocytosis
and electroporation.(27)

In the context of cardiac disease, inhalation of a non-thermal
plasma resulted in lowered blood pressure and an increase in
nitrous oxide concentration in the abdominal aorta in rats.(46)

Concluding Remarks

Non-thermal plasmas are receiving increasing attention in
medicine as a promising tool, and various applications have been
proposed. Direct and indirect plasma treatments induce physio-
logical outputs in cells and tissues ranging from cell death to cell
growth. Despite extensive study, the molecular mechanisms that
underlie these effects on cellular physiology remain poorly under-
stood, and further work is required to address the exciting potential
of non-thermal plasmas for clinical applications.

Fig. 1. (a) Non�thermal plasma for cancer treatment (reproduced from Iseki et al.(40)) (b) Plasma�activated medium for cancer treatment. Reprinted
with permission from Ref (21).

Fig. 2. Non�thermal plasma for blood coagulation. (a) Reprinted with permission from Ref (15), (b) Reprinted with permission from Ref (16).
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