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Metal ions provide considerable functionality across bio-
logical systems, and their utilization within biomolecules has
adapted through changes in the chemical environment to
maintain the activity they facilitate. While ancient earth’s at-
mosphere was rich in iron and manganese and low in oxygen,
periods of atmospheric oxygenation significantly altered the
availability of certain metal ions, resulting in ion replacement
within biomolecules. This adaptation mechanism has given rise
to the phenomenon of metal cofactor interchangeability,
whereby contemporary proteins and nucleic acids interact with
multiple metal ions interchangeably, with different coordi-
nated metals influencing biological activity, stability, and toxic
potential. The ability of extant organisms to adapt to fluctu-
ating metal availability remains relevant in a number of crucial
biomolecules, including the superoxide dismutases of the
antioxidant defense systems and ribonucleotide reductases.
These well-studied and ancient enzymes illustrate the potential
for metal interchangeability and adaptive utilization. More
recently, the ribosome has also been demonstrated to exhibit
interchangeable interactions with metal ions with impacts on
function, stability, and stress adaptation. Using these and other
examples, here we review the biological significance of inter-
changeable metal ions from a new angle that combines both
biochemical and evolutionary viewpoints. The geochemical
pressures and chemical properties that underlie biological
metal utilization are discussed in the context of their impact on
modern disease states and treatments.

The unique chemical properties of numerous metal ions
facilitate extensive interactions with biomolecules, with im-
pacts across all areas of cellular activity, including fundamental
processes, such as respiration, metabolism, nitrogen fixation,
photosynthesis, DNA replication, transcription, and protein
synthesis (1–8). At least ten metal elements are considered
essential for most forms of life (9), including six of the d-block
elements of the periodic table: manganese (Mn), iron (Fe),
cobalt (Co), nickel (Ni), copper (Cu), and zinc (Zn) ((10) and
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Fig. 1A). These metals are characterized by the ability to form
ions with partially filled d-subshells (shown in Fig. 1A, blue).
This electron configuration facilitates multiple oxidation
states, defining many of their chemical properties. These
metals are called transition metals, with the most biologically
relevant examples appearing in the first row of the d-block in
the periodic table (Fig. 1A, dark cyan squares). Although
biologically important, Zn is excluded from the transition
metals by some definitions because of possession of a complete
d-subshell (Fig. 1A).

The human body contains amounts of magnesium (Mg), Fe,
and Zn in the gram range, whereas milligram amounts of Mn,
Cu, Co, and molybdenum are present (9, 11). These metals
perform both catalytic and structure-stabilizing roles and are
predominantly available as divalent cations (possessing two
fewer electrons than the neutral state). In fact, approximately
40% of enzymes with known structures depend upon at least
one metal cofactor for catalytic activity (12). Analysis of metal-
binding domains in the proteome suggests that metal-
mediated folds are proportional to proteome size across the
kingdoms of life, whereas the specific metals predicted to be
utilized reveal distinct changes through evolutionary history
(13). The utilization of metal ions for life on earth may predate
protein-oriented extant biology, as nucleic acids in a metal-
rich prebiotic environment are hypothesized to generate the
earliest enzymatic mechanisms. Much as in proteins, metal
ions are employed as catalytic cofactors in RNA species (14)
and coordinated by both the anionic sugar phosphate back-
bone and the nucleotide bases (4, 14). Metal ions similarly
interact with the DNA backbone and bases (15). The high
charge density of the metal ions allows large RNAs to form
complexes and closely packed folds and tertiary interactions,
facilitating elaborate and dynamic structures, such as the
ribosome—the essential protein-synthesizing machine that
operates in every living cell. Transition metal ions bind
throughout rRNA both loosely and at specific sites, with Mg
being the major metal ion contributing to present structures of
large and small ribosomal subunits (4, 14, 16).

Despite an effort, drawing definitive conclusions about the
physiological utilization of metal ions by biomolecules within
cells is a technically challenging task, hindered by several
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Figure 1. Transition metals and oxidative stress. A, transition metals. A section of the periodic table showing s-block (orange), d-block (cyan), and p-block
(green) chemical elements. Transition metals of the first row, characterized by partially filled d-subshells, are shown in dark cyan squares in bolded black
lettering. Zn (which possesses a complete d-subshell) is also shown in this group. The electronic structures of the d-block elements are shown in blue
lettering. B, reactions of the superoxide anion; iron and redox cycling. Negatively charged free radical superoxide (O2

�−, shown in red lettering) is the product
of one-electron (e−) reduction of dioxygen (O2). Upon protonation, O2

�− can form the hydroperoxyl radical (HO2
�). Superoxide dismutase (SOD, cyan oval)

catalyzes the dismutation (disproportionation) of O2
�−, thereby generating O2 and hydrogen peroxide (H2O2). H2O2 is converted to H2O by various anti-

oxidant enzymes, such as catalases (CAT), glutathione peroxidases (GPX), and peroxiredoxins (PRX). Redox-active Fe2+ ions are oxidized by H2O2, generating
highly reactive hydroxyl radicals (OH�) and Fe3+ through the Fenton reaction. Fe3+ can be reduced to Fe2+ by O2

�−, resulting in redox cycling (purple arrows).
By itself, O2

�− can reduce Fe3+ to Fe2+ within iron–sulfur cluster proteins, resulting in enzyme inactivation and accumulation of Fe2+, which further powers
Fenton chemistry. Modified from Ref. (271).
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experimental issues. These include the dissociation of ions
during biomolecule purification, physical properties that limit
detection in structural models, and broader impacts of over-
expressing metal-binding species on metal availability (17).
Further complications in the elucidation of metal ions usage
for biomolecules functionality arise from the phenomenon of
metal ion interchangeability, wherein one of several different
ions are able to occupy a specific biomolecular binding site.
Metal ions, in many cases, self-assemble into complexes with
biomolecules (18) and, as such, can be greatly influenced by
intracellular metal availability dictated by a particular physio-
logical or environmental condition. Therefore, the flexibility in
metal ion preference may be more prevalent than currently
understood. Thus, the view of a single native metal for a given
binding site may, at least in some cases, be an unfavorably
strict categorization. In a healthy cell, cytosolic and organellar
metal cation levels are tightly regulated as a means of pro-
tection against the undesired activity of certain metal elements,
while metal imbalances manifest in numerous human diseased
states. This identified link between the ability of certain bio-
molecules to interact with a non-native metal ion(s), which
may abolish their correct functionality leading to mitigation of
disease, supports the need for further knowledge of the mo-
lecular mechanisms governing metal ion interchangeability.
Such investigation will advance our understanding of disease
etiology and progression, with a potential for new ther-
apeutical intervention strategies.
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Particular progress in revealing transition metal inter-
changeability in biomolecular structure and function has been
made recently because of new technological developments. An
emerging example of particular interest is the utilization of
metals by the ribosome. While the high Mg content of
contemporary ribosomes supports a preference of the metal-
binding sites for Mg2+, a recently published study that repli-
cated a prebiotic environment of anoxic earth rich in Fe and
Mn and low in oxygen revealed that Mg2+ on ribosomes can be
replaced by Fe2+ or Mn2+ without affecting protein-
synthesizing activity (19, 20). Besides an important impact
on new biochemical features of a ribosome and medicine-
related translational science, this technically advanced
approach provided the scientific community with an elaborate
biological model crucial for investigating the origin of life and
evolution of biological molecules. In fact, the recapitulated
conditions mimicking the anoxic earth environment supported
a hypothesis that a ribosome represents an extraordinarily
well-conserved RNA–protein structure that existed in a
complex with Fe ions when earth’s atmosphere was depleted of
oxygen (3, 20). These studies were corroborated with
biochemical assays conducted with ribosomes from Saccha-
romyces cerevisiae, wherein it was demonstrated that eukary-
otic ribosomes maintained an ability to interact with Fe2+ at
the selected sites under normal physiological conditions. This
suggests a possibility that this biological atavism might play an
essential role in the regulation of protein synthesis, the
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faultless processivity of which contributes to protein homeo-
stasis and protection against neurodegenerative diseases (21).
These recent developments in understanding ribosome
biology in the context of transition metal interchangeability
open up many questions requiring further investigation.

Flexibility in metal ion interactions with biomolecules is not
only limited to ribosomes but also has been documented to be
prevalent in metalloproteins. This is commonly observed in
in vitro assays, wherein enzyme activity is assessed in the pres-
ence of different metals to identify which confers the greatest
catalytic activity. In addition, certain metal ions, including Mg,
are not directly detectable in spectroscopic studies and difficult
to identify in crystallographic studies (22, 23) and can be readily
substituted with alternative ions for the purposes of structural
assessment (24, 25), further indicating the relative ease with
which certain ions can replace one another.

Large-scale environmental changes accompanied with the
accumulation of molecular oxygen in ancient earth’s atmo-
sphere, the groundbreaking event that occurred in the course
of evolution dated billions of years ago, drove adaptation of
biomolecules by selecting organisms that had the capability to
defend against highly reactive chemical products derived from
the incomplete reduction of oxygen (known as reactive oxygen
species [ROS]) and utilize alternative metals to catalyze crucial
biochemical reactions. One of the prominent examples of how
these pressures are mirrored in extant biology is the host–
pathogen interface. The innate immune system orchestrates
challenging chemical assaults upon invading pathogens that in
many cases display flexibility in metal utilization in their re-
sponses. For example, the connection between metal
biochemistry and oxidative stress is central to the phagocytic
immune response, which employs both oxidant assault and
nutrient metal limitation in the defense against pathogens (26).
Many pathogens are sensitive to metal levels on either side of a
relatively narrow window, and host systems exploit this (27).
During infection of a host organism, bacterial pathogens will
commonly experience challenging conditions, including both
overload and limitation of trace metal elements, as well as
severe oxidative stress (28–30).

Transition metals are also known to play an important role
in several viruses’ survival and pathogenesis. Relevant to the
present time, much of the research has been conducted
investigating the role of Fe and other transition metals in the
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV2)–related pathologies. Although many questions remain
unanswered, it is clear that metals play an important role
during SARS-CoV2 infection and propagation, whereas mul-
tiple manifestations of coronavirus disease 2019 (COVID-19),
such as immune dysfunction, inflammation, hypercoagulation,
hyperferritinemia, have been linked to Fe overload (31).

The possible ambiguity in assignments of metal ion asso-
ciations with biomolecules, along with emerging examples of
physiologically relevant metal interchangeability, indicates an
existing gap in knowledge with an impact on diverse biological
topics briefly mentioned previously. To gain an up-to-date
picture of the transition metal interchangeability phenome-
non, here, we discuss the current progress that has been made.
As such, we outline the deeply embedded nature of diva-
lent metal cations in biological macromolecules and place
this in the context of the risk of oxidative damage, which is
present in an oxygen-rich environment. The geochemical
changes that occurred on earth since the establishment of life
are then discussed as they relate to metal availability and
utilization. As some of the best-studied examples that have
had recent developments in understanding metal inter-
changeability, we describe the role of metal ions in the su-
peroxide dismutases (SODs), the R2 subunit of the
ribonucleotide reductases (RNRs), and the ribosome. We
choose these biomolecule examples as they remain in the
frontline of scientific research, providing new information on
how metals can replace each other to meet various physio-
logical cues. Finally, we describe how flexible metal utilization
impacts both bacterial and viral infections and immunity.
While we focus on Fe and Mn as the most prominent ex-
amples of physiological metal cofactors, other biologically
important metals are also discussed.
Metal ions provide powerful biochemical functionality
to biomolecules

As stated previously, �40% of biomolecules utilize metals as
cofactors, suggesting that metal ions are essential for cellular
physiology, with the first-row transition metals being of
particular importance (Fig. 1A). For their interactions with
biomolecules, metal ions can be considered in terms of several
properties, including charge density, radii, and reactivity.
Redox activity is also of particular relevance to biology because
it prescribes some catalytic capabilities. Redox inactive metal
cations, of which Mg and Zn are the most common in bio-
molecules, tend to be utilized in structures to stabilize negative
charges, as well as functioning as Lewis acids to activate sub-
strates by accepting lone pair electrons with no net change in
oxidation state (12, 32, 33). Many of the transition metals are
redox active, such as Fe, Mn, Cu, and Ni, as electrons of their
incomplete d-subshells (Fig. 1A) can be lost, allowing for
several oxidation states. While such cations can act as Lewis
acids, they are commonly used in the catalysis of redox re-
actions, in which electron transfer results in a change of
oxidation state.

Both the intracellular availability and the stability of
formed complexes are important factors in metal cofactor
binding. The predicted complex stability of divalent
metal cations is described by the Irving–Williams series
(Mg2+ < Mn2+ < Fe2+ < Ni2+ < Co2+ < Cu2+ > Zn2+) (34),
which illustrates that stability of complexes increases with
atomic number across the divalent metal cations until
reaching Zn, which does not possess unpaired d-shell elec-
trons and thus forms less stable interactions than Cu2+ (35).
However, many biomolecules associate with less competitive
cations, such as Mg2+, Fe2+, and Mn2+ (18), as well as
monovalent cations of potassium or sodium, which form
even less stable interactions.

Despite tight regulation of cellular concentrations of Mg2+,
Fe2+, and Mn2+ accomplished by a coordinated effort of metal
J. Biol. Chem. (2021) 297(6) 101374 3
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transporters and buffering chaperones in regulating free ion
levels (36), the high affinity of these metals toward bio-
molecules ensures their activity even at low concentrations.
For example, Fe is central to the heme and Fe–sulfur (Fe–S)
cluster complexes, which are crucial cofactors in electron
transport chain reactions, oxygen transport, translation
termination, and antioxidant pathways. The background and
current understanding of Fe–S cluster assembly and function
have been detailed in several informative recent reviews
(37, 38). The synthesis of these ancient cofactors can be
catalyzed by UV light from the reduced Fe–S species, which
were prevalent in the prebiotic earth, supporting an early role
for Fe–S clusters in the evolution of life (39).

The propensity for biomolecules to be flexible in their metal
binding partner may reflect two features of the interactions.
First, while biomolecular structures may evolve to prefer a
metal cofactor by excluding similar ions, which are subopti-
mal, nonfunctional, or deleterious, there are overlapping
characteristics of cations, which in many cases impede abso-
lute specificity. Second, experimental evidence of selective
advantages gained by retaining or acquiring the ability to ex-
change cofactors suggests that tolerance of alternative metal
ions may be beneficial in certain circumstances. In other ex-
amples, divergent or convergent evolution has produced
multiple distinct biomolecules within organisms, allowing
consistent activity in environments of varying metal availability
and limitations.
Change of earth’s atmosphere as a driving force of the
evolution of biomolecules

Great oxidation events, molecular oxygen, and ROS

Early in the history of earth, volcanic processes were the
major contributors to the composition of the atmosphere and
oceans. This ancient earth’s atmosphere was anoxic and
reducing, with oceans rich in soluble divalent transition metal
ions (40–42). While the time line of changes in earth’s atmo-
sphere remains under discussion (43, 44), it is thought that 2 to
3 billion years ago, the accumulation of molecular oxygen in
the atmosphere occurred in what is known as the great
oxidation event. A further oxidation event is likely to have
transpired less than 1 billion years ago (neoproterozoic
oxidation event), which had a more significant impact on ox-
ygen levels in the ocean (45). These shifts in atmospheric
composition occurred subsequent to biogenesis (44, 45),
involving complex fluctuations of oxygen stores with biological
processes likely being the primary source of the molecular
oxygen (43, 46, 47). It has been proposed that prevalent
methanogenic archaea, which depended on Ni for metabolic
catalysis, declined following a decrease in volcanic sources of
Ni (48). This led to a decrease in methane production and
allowed proliferation of species requiring less Ni, such as
photosynthetic marine cyanobacteria (40, 49).

Abundant oxygen led to the expansion of organisms uti-
lizing oxidative metabolism, with oxygen acting as an electron
acceptor, as it contains two unpaired electrons with parallel
spins and is metabolized by a univalent (single electron)
4 J. Biol. Chem. (2021) 297(6) 101374
mechanism, generating several ROS as intermediates. Among
others (50), ROS include the superoxide (O2

�−), hydroxyl
(�OH) radicals, and hydrogen peroxide (H2O2) (51). H2O2,
while itself not a radical, is prone to univalent reduction by Fe
and Cu ions, making it a significant contributor to oxidative
damage to various biomolecules, along with the O2

�− and �OH
radicals. O2

�− radicals are generated from the electron trans-
port chain reactions and are converted to the less reactive
H2O2 by SODs (43). Other antioxidant enzymes, such as
catalase, glutathione peroxidase, and/or peroxiredoxins then
convert H2O2 to water (52). Alternatively, the �OH radical can
be generated from H2O2 by high-energy radiation, or by metal
ion catalysis reactions, such as the Fenton reaction that is
discussed later (Fig. 1B).
Oxidation of biomolecules and role of metal ions

ROS, especially highly reactive �OH radical, can oxidize
most biological targets, resulting in short lifetimes and very
limited diffusion distances (53). ROS broadly damage proteins
and amino acids via a range of modifications to amino acid
side chains that lead to protein inactivation and degradation,
the induction of polypeptide cleavages, and promotion of
cross-linking and aggregation (54). In many cases, damage to
the proteins can occur following exposure to xenobiotic
metals, such as heavy metals (55). Another metal-induced
harmful protein modification mechanism is related to site-
specific metal-catalyzed oxidation (MCO) of amino acids at
metal-binding sites. Specifically, MCO systems were found to
target a wide variety of essential cellular enzymes and struc-
tural proteins, including glutamine synthetase, chymotrypsin,
myosin, α-synuclein, catalases, and SODs. It was found that the
activity of most of the MCO systems is dependent on ions of
Fe or Cu, both of which are also involved in Fenton chemistry,
whereby Fe2+, and in some instances, Cu2+, react with H2O2 to
produce a �OH radical and a hydroxide ion ((56) and Fig. 1B).
Fenton-generated �OH radical damages amino acids within
proteins (57, 58).

The oxidative damage of proteins is implicated in a plethora
of human pathologies, including neurodegenerative diseases,
such as Alzheimer’s (59) and Parkinson’s disease (60), amyo-
trophic lateral sclerosis (61); muscular dystrophy (62), pul-
monary emphysema (63), atherosclerosis (64), and age-related
clinical pathologies, such as age-related macular degeneration
(65), and cataractogenesis (66). For example, inactivation of
SODs via oxidation (67, 68) or mutations (61, 69) results in
enzymatic incompetency, degradation, or aberrant cellular
localization. This leads to increased levels of ROS, causing
protein damage and aggregation (which manifest in the pro-
gression of amyotrophic lateral sclerosis, Alzheimer’s disease,
and Parkinson’s disease (70)) and DNA lesions (which can
promote tumorigenesis (71)). Oxidation and cleavage of pro-
tein chaperones, such as Hsp90, has also been demonstrated to
occur by an Fe-mediated mechanism, compounding the direct
damage of ROS to proteins by disrupting the folding and
stability of the targets of this chaperone (72, 73), leading to
neurodegeneration and prionopathies (74). The scope of
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protein oxidation and the various mechanisms are reviewed in
detail in Ref. (53).

Nucleic acids are also highly susceptible to damage by ROS,
and oxidant damage to both RNA and DNA is implicated in
many diseases, including neurodegenerative conditions and
cancer (75, 76). The Fe- and/or Cu-driven Fenton reaction
(Fig. 1B) has been identified as a source of oxidants leading to
nucleic acid damage (77–79), and this is discussed in the
following section. In addition, Fe and Mg can cleave RNA by a
nonoxidative mechanism (termed in-line cleavage), as was
recently demonstrated (3).

Oxidation of free RNA species can cause strand cleavages
and oxidative base modifications. While oxidized mRNAs are
recognized by ribosomes, the lesions are associated with
decreased translational efficiency and an increase in trun-
cated or misfolded protein products (80, 81). Besides damages
to the transcripts, the translational machinery, which is
constructed of proteins and RNAs, is also susceptible to
oxidant-induced impairments. Ribosomes are large
ribonucleotide–protein complexes that are at the center of
the protein synthesis machinery. Ribosomes are composed of
the small subunit (30S for prokaryotes and 40S for eukary-
otes) and large subunit (50S for prokaryotes and 60S for
eukaryotes). The subunits are assembled as intricately folded
rRNAs for which Mg2+ ions play a critical role by coordi-
nating rRNA folding and interaction with ribosomal proteins.
Eukaryotes also have distinct ribosomes in the plastids and
mitochondria, where they are likely to be particularly exposed
to oxidative species derived from electron transport chain
reactions (82). RNA oxidation leads to guanine modification
(8-oxo-7,8-dihydroguanine), which is associated with wide
range of pathologies, such as neurodegeneration, neuropsy-
chiatric disorders, and atherosclerosis (82). Thus, oxidative
stress negatively impacts translational processes (83), while
maintenance of translational function can promote adapta-
tion and survival responses (84, 85).
Fenton chemistry and role of Fe and Cu

Fe can act as an electron donor and acceptor owing to its
reduced Fe2+ and oxidized Fe3+ states, which are important for
its biological utility. The employment of Fe in biomolecules
became established in biology in an aqueous earth environ-
ment, which was Fe rich and contained little oxygen.

The mononuclear or dinuclear ions of Fe are employed in
the catalytically active centers of many enzymes, including the
SODs and RNRs, both of which are susceptible to metal
interchange and are the focus of this review. Much of the
toxicity associated with Fe is a result of the Fenton reaction
(Fig. 1B). In the reducing environment of the cytosol, O2

�− can
oxidize and destabilize Fe–S cluster complexes with crucial
activity in the citric acid cycle, thereby blocking aerobic
metabolism and generating free Fe, which can further partic-
ipate in Fenton chemistry (Fig. 1B). The term “redox cycling” is
used to refer to this propagation of ROS by a combination of
the Fenton reaction and the activity of the O2

�− anion in the
regeneration of free Fe2+ (51, 86).
Similar to Fe, ions of Cu that exist in oxidized (Cu2+) and
reduced (Cu+) states play roles in electron transport and many
redox enzyme–driven mechanisms (87). Importantly, Cu+ also
participates in Fenton-like reactions, and there is a partial
overlap of biological activities and interactions between ho-
meostatic mechanisms between Cu and Fe. Both are highly
redox active, facilitating roles in many enzymatic reactions (88).
Because of the oxidative damage associated with loss of ho-
meostasis of these metals, regulation of free Fe and Cu in cells is
important for protection from metal-dependent oxidative
damage. Cu is especially toxic because of subsequent reactions
involving the Cu2+ ion, including binding to thiol groups,
generating large amounts of �OH radicals, and promoting
further Fe2+-mediated Fenton reactions (89). For these reasons,
free Cu is extremely limited within cells, being almost entirely
bound by highly conserved Cu-binding proteins (90). Toxicity
of Cu is mitigated in cells by metallothioneins that sequester Cu
as well as Zn and non-nutrient heavy metals cadmium and
mercury (91). Cu was likely not employed in primitive bio-
molecules because of limited availability but became required
later, for example, in the catalytic center of certain SOD en-
zymes (Table 1), as an alternative to Fe or Mn (87).
Chemical properties of Fe, Mn, and Mg dictate their
interchangeability within biomolecules

Conserved and ancient biomolecules are associated with Mn
and Fe as a result of the availability of these cations in the early
earth environment, as well as the catalytic capabilities supplied
by their redox activities, which provide essential functions. The
utilization of either Fe or Mn within closely related SODs
(Table 1) from the most ancient group of these enzymes re-
flects the chemical similarities of these two divalent ions for
use in redox mechanisms. These transition metal elements are
adjacent in the periodic table and have similar radii, ligand
affinities, and coordination preferences, presenting a challenge
for biomolecules to choose between (36, 92).

Unlike Fe, Mn does not participate in Fenton chemistry
because of possessing a higher reduction potential (93), and as
such, does not present the same toxicity risks in an oxidative
environment. Mn also functions in enzymes as a Lewis acid in
mechanisms that are more comparable to those catalyzed by Mg
or Zn (94). Coordinated Mg ions can often be replaced with Mn
(2, 95, 96), as they have similar binding site requirements (97).
While Mg is an alkaline metal possessing no d-electrons, the
Mg2+ ion shares a relatively similar ionic radius toMn2+ and Fe2+.
When forming complexes, all three cations prefer to coordinate
six ligands (24) in anoctahedral ligandinggeometry (Fig. 2A), and,
in several examples, can occupy the same binding sites (19, 22, 25,
98). Mg forms very few covalent interactions with its ligands,
making it able to be rapidly exchanged. The d-electrons of Mn2+

contribute to electrophilic interaction with ligands, allowing it to
tolerate greater distortions of the bonding geometry than Mg2+,
thereby lending itself better to catalytic mechanisms (99). While
the Irving–Williams series predicts greater stability of Mn or Fe
complexes, the substitution of Mg with either transition metal
may be limited by the vastly greater intracellular availability of
J. Biol. Chem. (2021) 297(6) 101374 5



Table 1
Metal ions interchangeability within SODs

Kingdom/order Species SOD
Native Me
cofactor

Active site’s Me
replacement

Dismutation
enzymatic activity Cambialism Reference

Bacteria/Bacillales Staphylococcus aureus SodA Mn2+ — Active — (141)
SodMa Mn2+/Fe2+a Mn2+ or Fe2+a Activea Yesa (141)a

smSoda Mn2+a Mn2+ or Fe2+a Activea Yesa (257, 258)a

stSoda Mn2+a Mn2+ or Fe2+a Activea Yesa (258, 259)a

Bacteria/Enterobacterales Escherichia coli SodA Mn2+ — Active — (125, 260)
Fe2+ Gain of function:

peroxidasec
No (141)

Mutant SodAG165Ta —a Fe2+a Activea Yesa (139)a

SodA Mn2+ Mn2+, Fe2+ hybridb Partially activeb Nob (261)b

SodB Fe2+ — Active — (125)
Mn2+ Inactive No (125)

Mutant SodBT165Ga —a Mn2+a Activea Yesa (137)a

SodC Cu2+Zn2+ — Active — (262)
Bacteria/Streptomycetales Streptomyces coelicolor SodN Ni2+ Ni2+ Active — (196, 197)

Fe2+ Inactive No (197)
Zn2+ Inactive No (197)

Fe2+, Zn2+ hybridb Activeb Nob (196)b

Bacteria/Bacteroidales Porphyromonas gingivalis pgSoda Fe2+a Mn2+ or Fe2+a Activea Yesa (258)a

Bacteria/Actinobacteria Propionibacterium shermanii psSoda Fe2+a Mn2+ or Fe2+a Activea Yesa (258)a

Archaea/Sulfolobales Acidianus ambivalens FeSod Fe2+ — Active — (263)
Co2+ Inactive No (263)
Ni2+ Inactive No (263)
Mn2+ Inactive No (263)

Fungi/Saccharomycetales Saccharomyces cerevisiae Sod1 Cu2+Zn2+ — Active — (264)
Sod2 Mn2+ — Active — (265)

Fe2+ Inactive No (136, 266)
Animalia/Mammalia Mammals SOD1 Cu2+Zn2+ — Active — (190)

Cu2+Cu2+ Inactive No (189)
SOD2 Mn2+ — Active — (120, 267)

Fe2+ Gain of function:
peroxidasec

No (133)

SOD3 Cu2+Zn2+ — Active — (118, 267–269)
Plantae/laurales Cinnamomum camphora FeSODa Fe2+a Mn2+ or Fe2+a Activea Yesa (270)a

a Highlight SODs with cambialistic properties.
b Highlight hybrid SODs, whereby two different metal ions (indicated in the table) occupy two distinct enzyme dimer’s subunits.
c Highlight SODs with peroxidase activity gained upon metal ion replacement.
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Mg. In support of this, it has been reported that disruption of
Mg2+-dependent processes occurs with increased Mn2+ import
under conditions of low environmental Mg (96).

Mg is fundamental in stabilizing protein, lipid, and nucleic
acid structures (100) and is involved in many catalytic mech-
anisms (25). It is the most common metal found in enzymes
according to systematic analyses of reported protein struc-
tures, appearing in 16% of all enzymes (12, 100). For com-
parison, Mn is identified as a cofactor in approximately 6% of
all enzymes with known structure, whereas Fe is a cofactor in
8% (12, 101). As Mg is known to form less stable interactions
than other metal ions and is readily replaced, it is possible that
structural reports underestimate the physiological occupation
of binding sites by this element (101). Zn is also utilized
extensively in cells and appears in more enzyme structures
than Mn or Fe (101). Divalent ions of Zn and Mn have very
similar radii (0.74 and 0.75 Å, respectively) but otherwise have
dissimilar binding profiles and biochemical behavior and do
not typically replace one another (24).
Geochemical shifts drove extant metal biology: SOD as
a prominent example

With the proliferation of oxygen and the potential for
oxidative damage to cellular components by ROS, organisms
that had evolved antioxidant defenses would have had a major
advantage (43). Phylogenetic analysis suggests that ROS
6 J. Biol. Chem. (2021) 297(6) 101374
scavenging enzymes, such as SODs, peroxiredoxins, and cat-
alases, had already emerged prior to the great oxidation event
in response to the presence of low-level or localized oxygen
(102). Antioxidant systems, thus, became increasingly valuable
as oxygenation increased (43), whereas broad fluctuations in
metal availability occurred concomitantly. The transition
metals Mn, Fe, Co, and Ni were in solutions at relatively high
levels in the early ocean environments because of the high
sulfur content and low levels of oxygen, whereas precipitation
of Cu and Zn would have rendered them unavailable for
biochemistry (103). The increase in environmental oxygen led
to the precipitation of Mn, Fe, Co, and Ni, and a major increase
in the amount of available Zn, effectively reversing the avail-
ability of these metals (13, 42, 103, 104). These shifts in metal
solubility were reflected by changes in their biological utiliza-
tion. As such, comparison of structural motifs in the pro-
teomes of organisms across the three domains of life supports
the hypothesis that bioavailability of metals presented an
evolutionary pressure resulting in the differences in their uti-
lization (105).

One prominent example of geochemical shift–driven evo-
lution of biomolecules is the appearance of alternatives to the
primitive Fe-containing SOD (Fe-SOD), which utilize other
metal cofactors (Fig. 3 and Table 1). SODs are the major en-
zymes responsible for the removal of O2

�− anions that are
unavoidably generated during aerobic metabolic reactions
(51). British biochemist and writer Dr Lane characterized



Figure 2. The six- and five-coordinate geometries. Diagrams (2D on the
left; 3D on the right) of the six-coordinate octahedral geometry (A) and the
atypical five-coordinate trigonal bipyramidal geometry (B) of various metal
ions within biomolecules discussed in the article. M represents the ion of
iron or manganese; L represents a ligand. Modified from Ref. (128).

Figure 3. Schematic representation of concentrations of oxygen and
selected metal cations in earth oceans. Estimates of the appearance of
metal-utilizing biomolecules are shown above the graph in gradient-colored
horizontal bars, indicating the early appearance of the ribosome. The most
ancient superoxide dismutases (SODs), likely Fe-SODs, gave rise to Mn-SODs
as oxygenation increased, with Cu/Zn-SODs appearing subsequently as
copper and zinc became available. Oxygen levels (red line, right axis) are
given as pO2 (partial pressure of oxygen) relative to PAL (present atmo-
spheric level). The dotted line indicates the time of the great oxidation event
(GOE). Modified from Refs. (103, 173, 272).
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discovery of SODs as “the most important discovery of modern
biology never to win a Nobel prize.” In fact, being discovered in
1969, SODs from various organisms remain of high interest for
over last 5 decades.

The SODs catalyze a dismutation (disproportionation) re-
action to produce O2 and H2O2 from two O2

�− via a cyclic
oxidation–reduction electron transfer (106):

Mox � SODþO2
�−þHþ ⇄ Mred � SODðHþÞþO2 (1)

Mred � SODðHþÞþO2
�−þHþ ⇄ Mox�SODþH2O2 (2)

In this two-step reaction, the oxidized form of the metal (M)
center ions (Mox-SOD) are first converted to the reduced form
(Mred-SOD) with the formation of O2 (reaction 1), followed by
oxidation of the reduced form of the metal ions into their
oxidized form by O2

�− with the release of H2O2 (reaction 2).
Thus, one O2

�− reduces the SOD, whereas another O2
�− oxi-

dizes the SOD in a so-called “ping–pong” mechanism (107).
Several metal ion cofactors (such as Fe, Mn, Cu, Zn, and Ni)
can be employed in the SOD active sites, which perform this
mechanism, as summarized in Table 1. In this catalytic
mechanism, the metal ion is utilized by the SODs as a source
of protons by employing structural aspects of the metal
binding site to adjust the redox potential, which also acts to
regulate the access of anions (108). The activity of SODs re-
quires them to exert tight control over the reactivity of the
bound metals. The reduction midpoint potential (Em, a mea-
sure of the propensity of a chemical species to gain electrons in
a redox reaction) of the metal cofactors is manipulated to
around 300 mV in all known examples, despite the variety of
metals employed across the enzyme families. The calculated
reduction midpoint potential in aqueous solution compared
with normal hydrogen electrode (a standard for zero redox
potential as defined by the potential of a platinum electrode in
1 M acid solution) for the M3+/M2+ transition of Fe, Mn, and
Ni are considerably different (0.77, 1.5, and 2.4 V, respectively)
(109), requiring structural adaptation to bring the value into
effective catalytic range (108, 110). The SODs demonstrate
both the power of redox-active inorganic cofactors and the
need to control their redox activity for function.

SODs are found in the archaea, prokarya, and eukarya ((43)
and Table 1). Originally derived independently as three
J. Biol. Chem. (2021) 297(6) 101374 7
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distinct families, abundance of SODs has undergone shift
during course of evolution because of changes in earth’s
environment (Fig. 3). The first Mn/Fe-SOD arose in the low
oxygen/high Fe environment (Fig. 3, orange and green
curves). Thus, SODs represent a powerful and informative
model to investigate metal ions interchangeability within
biomolecules.

The Mn/Fe-SOD family utilizes Fe or Mn at their catalytic
center, reflecting the high levels of these metals in the pre-
oxidation earth in which they originated. Fe-SODs are found in
some primitive eukaryotes, plants, and bacteria, whereas Mn-
containing SODs (Mn-SODs) are widespread. Within bacte-
ria, aerobes tend to contain Mn-SODs or both Mn-SOD and
Fe-SOD, whereas strict anaerobes may have one Fe-SOD, or
none at all (111). Mn-SOD (SodA) from Escherichia coli is
flexible in binding Mn2+ or Fe2+ depending on growth con-
ditions. As such, Mn-SOD prefers cognate Mn ion when
cultivated in the presence of oxygen; whereas under anaerobic
conditions, bacterial Mn-SOD accommodates ions of Fe
resulting in dismutation-inactive enzyme. Excess Fe has also
been linked to the formation of partially active Fe-Mn-SOD
(hybrid SOD), wherein a dimer’s subunits contain Mn2+ and
Fe2+ in their active site resulting in partial activity (summa-
rized in Table 1). Thus, it was proposed that the selectivity of a
metal ion cofactor in the bacterial Fe/Mn-SODs is defined by
the bioavailability of Mn or Fe (112).

The most recently evolved family, the Cu/Zn-SODs, utilize
Cu along with Zn. The Cu/Zn-SODs are found only in certain
bacterial species (113, 114) but are ubiquitous among higher
eukaryotes (115–117). Humans express three Cu/Zn-SOD
isoforms; the cytosolic SOD1 (117), the extracellular SOD3
(118), and the mitochondrial Mn-SOD (SOD2) (119, 120).
They are absent in archaeal species and are considered to have
appeared long after the evolution of the Mn/Fe-SOD family
(107), correlating with the increase in bioavailable Cu and Zn
(43, 103). The Ni-SODs are found in algae and predominantly
marine species of bacteria and likely appeared after Mn/Fe-
SODs, presenting a selective advantage in marine environ-
ments, as levels of Fe and Mn have diminished and concen-
trations of Ni remained relatively consistent (103, 121).

These examples illustrate that the appearance and accumu-
lation of molecular oxygen throughout earth’s evolution
accompanied by a shift in the availability of transition metals
induced a switch from Fe-containing SODs to new variants of
this enzyme that adapted alternative metal ions as cofactors, as
illustrated in Figure 3 (44, 122). Thus, the utilization of metal
ions throughout extant biological systems is intrinsically linked
to the employment of molecular oxygen for fundamental pro-
cesses in aerobic biology and the management of the associated
toxicity of ROS. In addition, extant systems canbe informative of
the chemical environments inwhich they arose, evenwhen these
are drastically different from those in which they now function.
Cation replacement examples: Focus on Fe, Mn, and Mg

The exchange of Fe and Mn in functional enzymes is
illustrated by a few prominent examples. The mononuclear
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SODs demonstrate the flexible utilization of either Mn or Fe
within an isoform, whereas the essential RNR enzyme family,
which employs a dinuclear cation pair, includes a further
interesting example of an ancient and conserved enzyme,
which utilizes different metal ions, and the expression of
distinct forms with differing specificities. Finally, recent studies
have identified an ability of the ribosome to undergo inter-
change of bound metal ions (20, 123). These examples, dis-
cussed in detail later, suggest that the transition metal
interchangeability occurs across different molecular structures
and can be informative about the conditions under which they
developed.
Mn-SOD, Fe-SOD, and cambialistic Mn/Fe-SOD

The Fe-SODs and Mn-SODs are highly homologous in
sequence and three-dimensional structure (124, 125),
whereby the amino acid residues and the funnel that allows a
substrate (O2

�−) access to the metal ion are identical. Cata-
lytically active sites of both SODs contain three histidines and
one aspartic acid that bind the metal ion cofactor (Fig. 4A, left
and middle panels). In addition, the Fe and Mn ions also bind
to a solvent molecule (water or hydroxide) that is engaged in
the formation of hydrogen bonds and, together with histi-
dines and aspartic acid, participates in the coordination of
either cation in an unusual distorted trigonal bipyramidal
geometry around the metal center, as depicted in Figure 2B
(126–128).

Despite this remarkable similarity, most Fe-SOD and Mn-
SOD enzymes are only functional when bound to their
cognate metal ion (Table 1), illustrating their high specificity to
metal cofactor (129–131). Moreover, it has been revealed that
the replacement of Mn with Fe in Mn-SODs from mammals
(SOD2) and E. coli (SodA) results in the generation of an
alternative isoform (Fe-SOD2s) with peroxidase prooxidant
activity, thereby promoting oxidative stress, presumably via
utilization of H2O2 ((132, 133) and Table 1). These findings
demonstrate that, in some cases, incorporation of a non-
cognate metal ion does not disable an enzyme but switches its
function, highlighting the biological significance of the metal
selectivity process.

What is the mechanism behind the metal ions selectivity of
SODs? Being structural components of SODs, Fe and Mn ions
cycle between +2 and +3 oxidation states during O2

�− turn-
over; however, these oxidation states correspond to different
d-electron configurations for Mn and Fe, resulting in
distinct +3 to +2 reduction characteristics. It is believed that
these differences are compensated by protein components,
such as specific amino acids of a secondary coordination
sphere of Fe-SOD or Mn-SOD. Of note, the first (inner) co-
ordination sphere refers to the array of direct interactions of a
ligand with a metal ion, whereas the secondary (outer) coor-
dination sphere consists of ions that interact with the first
coordination sphere, without direct binding to a metal ion.
Although Mn-SODs and Fe-SODs share identical metal ion–
containing catalytically active sites (Fig. 4A, left and middle
panels), different amino acid residues lie adjacent to it and are



Figure 4. Structural properties of Mn-specific, Fe-specific, and cambialistic Mn/Fe-SODs. A, comparison of the crystal structures (top) and the metal-
bound active sites (bottom) of Fe-SOD from Escherichia coli, Mn-SOD (SodA) and cambialistic Mn/Fe-SOD (cam-SOD, SodM) from Staphylococcus aureus.
Metal ions (shown as colored spheres; orange for iron ion and green for manganese ion) are coordinated by three histidine (His) residues and one aspartic
acid (Asp) residue and a solvent molecule (not shown). The figure is generated using PyMol; Protein Data Bank IDs are indicated in the figure. B, super-
imposed ribbon representation of Mn-specific SodA (orange) and cambialistic Mn/Fe-SodM (cyan) monomer structures from Staphylococcus aureus is shown
on the left. Superimposed structures of active centers of SodA and SodM are shown on the right. Four residues from the primary coordination sphere (His27,
His81, Asp161, and His165, black lettering) coordinate a metal ion (Mn is shown as a green sphere). Two residues from the secondary coordination sphere
(SodA: Gly159, Leu160, orange lettering; SodM: Leu159, Phe160, cyan lettering) provide cambialistic properties to SodM. SOD, superoxide dismutase.
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responsible for metal ion specificity and activity that occur
without major structural reorganization of the active center.
For example, glutamine from the second coordination sphere
of SODs was found to be involved in determining the redox
potential of the active site, thus, impacting the metal cofactor
selection process. As such, Gln69/Fe-SOD and Gln146/Mn-
SOD from E. coli promote metal ion specificity (130, 131,
134, 135), and a similar observation was made of Sod2
(Mn-Sod) from S. cerevisiae (136). Furthermore, the crystal
structures of native Mn-Sod2 and artificial Fe-Sod2 from
S. cerevisiae at 2.05 and 1.79 Å resolution, respectively,
demonstrated no significant alteration in the active site or
overall structure upon binding the non-native metal Fe, and
identified Asp163 and Lys80 as those responsible for the metal
specificity of Mn-SOD (136). Another residue important for
the SOD specificity is Thr165 present in Fe-SODs from E. coli
(whereas a Gly residue occurs at this position in the majority of
Mn-SODs (137, 138)), whereby swapping Thr165 and Gly165
in Fe-SOD (SodB) and Mn-SOD (SodA) changes the metal
cofactor preference ((137, 139) and Table 1).

Despite the high metal ion specificity of Mn-SODs and Fe-
SODs, some organisms have acquired an alternative form of an
enzyme that can accommodate Mn or Fe ions in the catalytic
center and retain enzymatic activity. These metal cofactor
J. Biol. Chem. (2021) 297(6) 101374 9



JBC REVIEWS: Interchangeability of metal cations in biomolecules
flexible SODs have been termed cambialistic or cam-SOD
(140). Cam-SODs were found in microorganisms adapted to
different growth conditions, including microaerophiles, aer-
obes, obligate anaerobes, and thermophiles. This interesting
phenomenon raises questions of how and why some of these
enzymes developed cambialistic properties.

In this regard, SodM (cam-SOD) from the Gram-positive
opportunistic pathogen Staphylococcus aureus has become
an informative experimental model, as it allowed direct
comparison with the strictly Mn-dependent SodA (Mn-SOD)
isoform (141–143). Thus, it has been shown that Mn- and Fe-
bound cam-SOD exhibits comparable enzymatic activities
(141). Moreover, the X-ray diffraction analysis performed with
Mn-loaded or Fe-loaded SodA and SodM demonstrated only
minor deviations in the catalytic center architecture and metal
binding physicochemical properties, whereby metal ions (Mn
or Fe) are coordinated by His27, His81, Asp161, and His165
((144) and Figure 4A, middle and right panels). These struc-
tural similarities suggest that cambialism is not provided by
the inner sphere coordination geometry but relies on differ-
ences in the secondary coordination sphere. Mutational anal-
ysis has identified two amino acids present in positions 159
and 160 (Fig. 4B) that vary between SodA (possesses Gly159
and Leu160) and SodM (Leu159 and Phe160) and make no
direct contact but are in close proximity (<10 Å) to a metal
cofactor (144). Significantly, swapping these amino acids be-
tween SodA and SodM did not affect active center structures
but enabled cambialistic properties to SodA (144). It was
proposed that amino acid side chains in positions 159 and 160
are responsible for changes in the reduction potential of the
metal ions, likely underlying the mechanism of catalysis gov-
erned by Mn and Fe ions (144). This example indicates that
subtle sequence alterations near the active site impose metal
specificity on one isoform or allow flexibility in the other. One
possible explanation for the impact of the amino acid residues
equivalent to 159 and 160 of S. aureus is their role in assem-
bling the appropriate hydrogen-bonding network that includes
a metal-coordinated solvent, as described in Ref. (139). How-
ever, other studies demonstrated that solvent proton positions
are similar in the structure of Mn-SOD and cam-SOD (145).
These discrepancies call for further evaluation of the mecha-
nisms by which the secondary sphere amino acids control
redox tuning in cooperation with Mn and Fe ions.

The key Leu159 and Phe160 residues of cam-SODs are
highly conserved within the lineages of the S. aureus tree,
including Staphylococcus argenteus and Staphylococcus
schweitzeri (146). Thus, it has been proposed that cam-SOD
arose from a redundant gene encoding a second Mn-SOD
via evolutionary-enforced mutagenesis (144, 147). Such an
Fe-to-Mn switch likely occurred in response to diminished Fe
bioavailability during oxygenation of the atmosphere (13),
accompanied by Fe engagement in Fenton chemistry with
O2

�−. Furthermore, the appearance of modern cam-SODs that
are able to utilize both Mn and Fe allows adaptation to a
plethora of stresses, including oxidative stress and nutrient
starvation, such as Mn scarcity (141, 148), representing
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elegant stress-resistance strategies (149) that are discussed
later.
The R2 subunit of class I RNRs

The RNRs are an ancient enzyme group uniquely
responsible for the production of deoxyribonucleotides
(dNTPs) from ribonucleotide precursors (150, 151). Different
cation pair requirements have evolved in isoforms of the RNR
R2 subunits. Fe or Mn cations are coordinated by this subunit,
with the different metal ions facilitating activity in differing
oxidative conditions. A high level of functional interchange-
ability between Fe or Mn cations has complicated the eluci-
dation of the precise mechanism of the R2 subunit function.
The chemically demanding redox reaction catalyzed by RNRs
is essential in most organisms as a central controller of DNA
replication, positioning these enzymes as potent targets for
anticancer and antiviral drugs (152, 153). The implications of
metal selection in these enzymes in pathogens are discussed
later.

Three classes of RNR enzymes exist, all of which involve
transition metal cofactors for radical generation and differ in
their activity in aerobic or anaerobic environments. Class I
RNRs, which are discussed here, are oxygen dependent and
generate the catalytic radical via their dimetal binding R2
subunit.

The R2 subunits of class I RNRs are ferritin-like proteins
(154, 155). These subunits contain a dinuclear metal binding
site where the radical species are generated (17, 156). Metals
are incorporated as divalent cations and oxidized to higher
oxidation states as part of the activation mechanism. In the
prototypic E. coli enzyme of the RNR family, the R2 subunit
coordinates two Fe ions, defining class Ia subgroup, which also
includes the human and yeast RNRs. The mechanism utilizes
the electrons of the bound di-Fe in the reduction of molecular
oxygen, resulting in an active state with a tyrosine radical
(Tyr122) and an oxidized Fe3+ ion pair (17). While Mn2+ can
bind in place of Fe2+, it does not support catalytic activity
(157).

R2 proteins from other organisms have since been found to
employ a pair of Mn ions (class Ib) or a “heterobimetallic”
mixed Mn/Fe cofactor (class Ic) (158–160). While the di-Fe R2
proteins are damaged by H2O2, the Mn/Fe-binding R2 protein
from the human pathogen Chlamydia trachomatis is resistant,
and, in fact, becomes oxidized and activated in the presence of
H2O2 (161). Interestingly, the C. trachomatis R2 subunit also
has significant adaptations to the residues involved in the
transfer of the radical from the metal site to the active site,
lacking the highly conserved tyrosine, which usually harbors
the radical following oxidation. It was proposed that because of
the differing redox properties of the Mn in the metal ion pair,
Mn can exist in an Mn2+ state upon oxidation and fulfill the
oxidant function of the tyrosine radical. At the same time, Fe is
unable to participate (162).

An interesting structural feature of the R2 proteins from the
Mn/Fe or Mn/Mn binding RNRs allows selective self-assembly
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with the appropriate cations, despite the generally higher
concentration of Fe in cells and the higher predicted stability
of Fe2+ complexes over Mn2+ complexes (160, 163). Minor
changes to coordinating residues can switch the binding
preference between the two transition metals. A single muta-
tion of a residue in the second coordination sphere alters the
specificity of class Ib R2 subunit of Bacillus anthracis, such
that under aerobic conditions, the protein is populated with an
Mn/Fe ion pair (163).

The investigation of R2 proteins, which natively coordinate a
di-Mn cofactor, proved problematic. Despite in vivo evidence
that Mn was required, attempts to reconstitute the enzyme with
Mn in vitro produced no activity, whereas introducing Fe was
able to restore some enzymatic capacity. This is due to a
requirement of the di-Mnmechanism for an additional cofactor,
a flavin-mononucleotide coenzyme NrdI, which is present in all
organisms expressing class Ib RNR. The oxidation of bound
Mn2+ or Fe2+ is required for the activation of the R2 protein, and
whereas Fe2+ reacts directly with O2 to become oxidized, Mn2+

requires NrdI to produce the oxidizing radical (164).
Ribosomal Mg is a subject to replacement

As discussed earlier, the geological data indicate that the
changes in earth’s atmosphere and metal availability correlate
with the biological utilization of metal ions by various bio-
molecules, including ribosomes (Fig. 3). Similarly to ancient
SOD enzymes that appeared early during earth’s evolution and
underwent a significant divergence over time, the ribosomal
core serves remarkably well as a tool to investigate early mo-
lecular biology and biochemistry, as it remained largely
invariant since the last universal common ancestor (165), yet
appeared to go through significant changes in respect of the
utilization of metal ions (20, 166).

The contemporary ribosome coordinates Mg2+ extensively
for structural stabilization, with X-ray analysis indicating
�200 Mg2+ ions are associated with the large subunit alone (4),
and further studies indicating as many as 1000 Mg2+ sites on
the entire ribosome (167). At least six distinct Mg2+ binding
structures were evident (20, 167), aiding in folding and as-
sembly of the rRNA (168), mediating interactions with tRNA,
mRNA, and stabilizing the intersubunit interface (169). Mg
ions maintain a kink between the P-site and the A-site of the
ribosome (170), and microclusters of Mg2+ pairs within the
large subunit stabilize the peptidyl transfer center (171).

The high level of conservation of the ribosome since its
evolution 3 to 4 billion years ago (172) leads to the idea that
Mg2+ may not have been the original cation utilized in ribo-
somal structures, which first appeared prior to oxidation of the
environment with less abundant Mg2+ and more prevalent
ions of Mn2+ or Fe2+ (20, 173). Direct proof for this hypothesis
came from a recent study by Bray et al. (20), wherein an
ancient earth’s atmosphere was replicated in an anoxic
chamber with a 98% Ar and 2% H2, and lyophilized ribosomes
were reassembled in the presence of Mn2+ or Fe2+ instead of
Mg2+ ions. This elegant approach demonstrated that ribo-
somes retained their translational competency when their
structure was rebuilt in vitro in the presence of alternative
rRNA-stabilizing cations, suggesting metals’ interchangeability
within a prokaryotic ribosome (20). The conservation of the
ribosome may mean that Mn2+ or Fe2+ represent ancient
binding partners, which remain functional in extant organ-
isms. However, the physiological relevance is dependent on
metal availability within the cell. In addition, the presence of
oxidant species in the present environment, which would not
have been a concern in an anoxic archaean earth, produces the
risk of damage to RNA structures closely associating with Fe2+

by Fenton-induced ROS.
Indeed, a genetic screen of the S. cerevisiae deletion strains

conducted in our laboratory has identified grx5Δ and yfh1Δ
strains as highly susceptible to oxidant-induced rRNA scis-
sions (21). Both these deletion strains contain a high level of
labile Fe (21, 123), which prompted investigation of the pos-
sibility that rRNA hydrolysis is accomplished via the site-
specific Fenton reaction. By devising an in vitro assay, the
rRNA cleavage pattern observed in oxidant-treated grx5Δ cells
was recapitulated in vitro with ribosomes purified from wild-
type cells grown under normal nutrient-rich conditions,
Fe(NH4)2(SO4)2 and ascorbic acid used as a prooxidant. The
intensity and number of rRNA cleavage events were dependent
on a concentration of Fe present in the in vitro reaction, as well
as in strains carrying various levels of labile Fe, and correlated
with cell viability. Interestingly, treatment of ribosomes with
ascorbic acid alone still resulted in low-level cleavage within
the expansion segment 7 of the large ribosomal subunit 60S
(ES7L) of 25S rRNA (Fig. 5A), suggesting that even under
normal growth conditions, ribosomes retained an ability to
replace Mg2+ with Fe2+ at the selected sites. Similar low-
intensity ES7L 25S rRNA cleavage has been detected upon
treatment of cells with low doses of H2O2 (a condition, wherein
H2O2 functions as a signaling molecule (174)), thus promoting
resistance to subsequent acute oxidative stress (175). The Fe-
dependent ES7L cleavage did not affect the translational ac-
tivity of ribosomes, further suggesting a role of Mg2+-to-Fe2+

replacement within ES7L in the adaptive response to stress
(175). Structural data (21) demonstrated that 2 Mg2+ ions
exposed to the solvent side are located �6 to 8 Å away from
the ES7L cleavage site (A611↓U612), implying that �OH
radical generated during the Fenton reaction is in close prox-
imity to the sugar phosphate backbone (Fig. 5A). Furthermore,
we identified that Fe2+-mediated oxidant-dependent rRNA
hydrolysis (175) was mitigated by increased Mn2+ availability,
which seemingly can compete with Fe2+ for binding sites, re-
sists induction of the Fenton reaction and, thus, accomplishes a
protective role (123). The impact of Mn and Fe binding to
ribosomes is outlined in Figure 5B. These results were
consistent with the protective effect of replacing Fe2+ with
Mn2+ described in E. coli under oxidative stress (176, 177).

Taken together, it seems reasonable to propose that the
translation machinery maintained an ability to associate with
the transition metal cations that stabilized its structure. Given
that eukaryotic ribosomes retained the capability to replace
Fenton-resistant Mg2+ with Fenton-active Fe2+ through the
course of evolution, it is possible that this newly identified
J. Biol. Chem. (2021) 297(6) 101374 11



Figure 5. rRNA is a substrate for the site-specific Fenton reaction. A, the
highly conserved part of the expansion segment 7 (ES7L) of the large ri-
bosomal subunit 60S from Saccharomyces cerevisiae. The depicted fragment
corresponds to nucleotide pairs A501:U612 and U502:A611 of the ES7L and
is shown in colors, surrounding bases are shown in gray. Dashed lines
indicate predicted polar contacts between the four conserved bases
(A501:U612 and U502:A611). Mg2+ ions are shown as green spheres. The
Protein Data Bank file 4V88 was used. Replacement of Mg2+ with Fe2+

(shown as an orange sphere) powers the rRNA-localized Fenton reaction
under oxidative conditions, whereupon the hydroxyl radical (�OH) is
formed. �OH hydrolyses the sugar phosphate backbone at the specific site
between A611 and U612. Modified from Ref. (21). B, Mg2+, Fe2+, and Mn2+

interchangeability on the ribosome. Unstressed cells contain active ribo-
somes, which bind divalent metal cations throughout their structure (bot-
tom). These are predominantly Mg2+ but include a number of Fe2+ ions. In
oxidative stress conditions, Fe2+ participates in Fenton reactions generating
�OH radicals, which cleave the rRNA and fragment the ribosome (top left).
However, if sufficient Mn2+ is available, the Fe2+ is displaced and Mn2+

occupies these sites. Under oxidative stress, a ribosome that coordinates
Mn2+ in place of Fe2+ is not subjected to the generation of hydrolytic radical
species and, thereby, is resistant to the stress-induced damages (top right).
Modified from Ref. (123).
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quality of the protein-translating machinery plays a regulatory
role during gene expression as a means of adjustment to
environmental changes.

The work described in this section was conducted and
published recently, and, therefore, many questions have
remained unanswered. It will be important to map other
cleavage sites, dissect the molecular mechanics of stress
adaptation accomplished by Fenton-cleaved ribosomes,
investigate site-specific Fenton cleavages within human ri-
bosomes, and elucidate human disease relevance. Further-
more, we would like to highlight that the discovery of metal
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interchangeability within the ancient molecular structure of
the ribosome identifies an overlooked yet promising model
molecule to study the evolution of biomolecules. Such ob-
servations recontextualize the ribosome, which is often
considered as a stable entity resistant to changes or
environment-induced perturbations, as being subject to metal
ion replacement depending on genetically or environmentally
induced changes in metal homeostasis. Thus, researchers
should take special considerations while studying funda-
mental processes, such as translation and translational
control.

The largely invariant core of the ribosome and the persis-
tence of the translation machinery since the last universal
common ancestor are central to many hypotheses regarding
cellular evolution (172, 178). The oldest and most conserved
part of the ribosome is free of protein and supports an early
phase of biology, which was dominated by RNA. It has been
demonstrated that RNA species are capable of carrying out Fe
and Mn-mediated redox mechanisms (179, 180). Under anoxic
conditions, a single-electron transfer reaction, much like those
fundamental to metabolism, can be performed by RNA coor-
dinating Fe2+ instead of Mg2+ (180). It is possible to substitute
Mn2+ for Mg2+ in the hammerhead ribozyme, which is a small
self-cleaving RNA that catalyzes reversible cleavage and liga-
tion reactions at a specific site. Using 20-mercaptonucleosides
as biochemical probe and the “metal specificity switch”
approach, it was found that Mn2+-to-Mg2+ substitution en-
hances enzymatic activity of the hammerhead ribozyme (179).
These findings indicate the capability of RNA molecules to
associate with a greater range of metal ions and possess more
diverse catalytic abilities than are frequently observed in extant
biology.
Interchangeability with other metal ions

While much of the research on this topic focuses on Mn and
Mg replacement by Fe at metal binding sites, flexible binding
certainly extends to other biologically relevant metal ions. Zn
is a widely utilized metal ion in proteins and may have replaced
Fe as a cofactor in many enzymes where it presents less of a
risk of toxicity (37).

The Zn finger (ZF) domain represents one of the most
widespread and diverse structural motifs in biology, interacting
with nucleic acid, protein, and lipid targets (181), and the
bound Zn cation can be subject to replacement, such as in the
estrogen receptor (182, 183). In this enzyme, Cu or Ni sub-
stitution results in loss of function, whereas DNA binding
capacity is retained with Co or cadmium (183). In the case of
Cu, this example illustrates the potential for damage caused by
uncontrolled Cu availability as it can deactivate enzymes by
displacement of Zn, in addition to its contribution to the
generation of �OH radicals. In addition, replacement of Zn2+

with Fe2+ in the ZF domain of the estrogen receptor does not
abolish DNA binding but can induce generation of oxidative
radicals and cause DNA damage (184). The impact of metal
ion replacement in ZF domains was recently reviewed in detail
in Ref. (181).
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Another interesting example of Zn2+-to-Fe2+ replacement
was recently shown for the well-conserved scaffold protein
ISCU (Iron–Sulfur Cluster assembly enzyme) that is central in
2Fe–2S and 4Fe–4S cluster synthesis and maturation, and,
thus, has been the subject of extensive investigation (reviewed
in Ref. (185)). Bound to Zn2+, Zn-ISCU catalyzes Fe–S clusters
assembly inefficiently, whereas replacing Zn2+ with Fe2+, which
can participate in an alternative redox-dependent reaction,
generates “Fe-loaded” ISCU with a robust enzymatic activity
(186). Gervason et al. (186) proposed that Fe-ISCU is the
physiologically relevant form of the enzyme; however, further
studies are required to dissect two mechanisms of Fe–S cluster
assembly governed by Zn and Fe-loaded ISCUs. Nevertheless,
this work revealed that, unlike for the ZF domain of the es-
trogen receptor (discussed previously (184)), replacement of
Zn2+ with Fe2+ within ISCU might play a beneficial role in
cellular physiology (186, 187).

In the Cu/Zn-SODs, the Cu ion plays the catalytic role,
whereas Zn has a structural role, although it can be also
required for catalytic activity that is maintained over a wide pH
range (188–190). Cu ions have been shown to occupy empty
Zn-binding sites within an SOD dimer, potentially inhibiting
activity of the enzyme ((191) and Table 1). More recently, new
members of this SOD class adapted to limited Zn availability
conditions have been identified. These Cu-only SODs, found
in both prokaryotes and eukaryotes, have an enhanced dimer
interface, which provides stability and leaves them unable to
bind Zn (192, 193), whereas other amino acid adaptations
(Glu110) fulfill the electrostatic role of Zn (194).

Other metals with unpaired d-electrons, which have roles in
biological systems, such as Co and Ni, may also replace Mg or
Mn. Ni is not widely used as a cofactor in extant biochemistry,
although it may have been an important catalyst in early
biology. Within the small number of known Ni metal-
loenzymes are several interesting examples (reviewed in
Ref. (195)), including Ni-SODs that are inactive upon Ni2+

replacements ((196, 197) and Table 1) and a conserved acir-
eductone dioxygenase of the methionine salvage pathway,
which binds either Ni2+ or Fe2+, and has distinct catalytic ac-
tivities depending on the cofactor (198). Other examples are
isoforms of mandelate racemase that prefer Mg but can also
function with several other cation alternatives, including Mn,
Ni, or Co (95, 199).

Adapting to changes in metal availability

Pathogenic bacteria depend on their antioxidant systems as
they aim to maintain a foothold in the chemically challenging
host environment. The distinct families of SOD can be
employed in combination to facilitate an effective antioxidant
defense through changing metal availabilities, or as in some
examples described earlier, a single isoform can be functional
with multiple metal ions, conferring a similar adaptability. The
Streptomyces genus contains Ni-SODs, sometimes along with
an Fe-SOD isoform, which is expressed only when Ni is un-
available (121, 200). In many clinically relevant strains, the Fe-
containing SOD has been lost and only the Ni-SOD remains,
possibly reflecting the advantage of lowering requirements for
Fe in mammalian pathogens to avoid host-imposed Fe re-
strictions (121, 201).

Protective roles for Mn

The effect of metal limitation can be minimized by
increased uptake. This is seen in S. aureus with two types of
Mn uptake proteins, the ABC transporter MntABC and the
Nramp-related MntH, which compete for Mn and enhance
pathogen survival (202). Interestingly, these transporters are
physiologically highly selective of Mn over Fe and other
divalent cations (99), whereas Nramp family transporters are
often associated with broad metal ion transport function. The
exception to the Mn2+ specificity of MntH is related to the
transport of Cd2+, which is also imported and contributes to
toxicity (203), and which also inhibits the ABC-type Mn
transporters (204), illustrating the challenges in selecting for
strict metal targets. Studies in E. coli showed that MntH
expression is regulated by OxyR as part of a battery of
oxidative stress response genes that enhance Mn availability
and limit Fe-mediated damage. These include catalase and
peroxidase enzymes, the ferritin-like protein Dps that se-
questers Fe2+, the Fe-uptake repressor Fur (205). It was shown
that the activity of Mn-SOD is dependent on Mn import by
MntH, and in unstressed cells, the low level of the transporter
is a limiting factor of the activity of the SOD enzyme (205).

Mn-SOD from E. coli and human can also bind Fe2+ when it
is present in excess relative to Mn2+. This metal cofactor
replacement results, however, in formation of inactive Fe-
bound enzyme ((206, 207) and Table 1). It was suggested
that the cell’s ability to appropriate Mn confers resistance
through protection of numerous metalloproteins, which nor-
mally bind Fe2+ (177, 205). Another example for the selection
of a particular metal ion by biosystems is an increased sensi-
tivity of the pentose phosphate pathway to H2O2 that occurs
because of the inactivation of an Fe-coordinating enzyme,
ribulose-5-phosphate 3-epimerase (Rpe). It was shown that the
enzyme-bound Fe2+ ion dissociates upon oxidation. Although
restoring Fe2+ back to the binding site returns activity to most
Rpe enzymes, a subset is damaged by the oxidation. This ul-
timately leads to total loss of Rpe activity through successive
cycles of Fe binding and oxidation. The stress-induced in-
crease in Mn import mitigates this mechanism, as Mn2+ can
bind to and activate Rpe in place of Fe2+ without being sen-
sitive to the presence of H2O2 (177). E. coli increase intracel-
lular Mn2+ levels by over 10-fold in response to H2O2 (205),
indicating that metal cofactor selection may be mediated by
cellular control of relative concentrations. Interestingly,
in vitro experiments showed that Zn2+ binds Rpe with greater
affinity than Mn2+ or Fe2+ and is also present in the cell at
higher concentrations. Thus, it is hypothesized that the wealth
of other Zn2+-competing ligands in the cell, including gluta-
thione, effectively reduces the availability of Zn to Rpe and
other enzymes (177). Subsequent work established that this is
not a unique case, as further nonredox metalloenzymes, which
are likely to coordinate Fe2+ in vivo, are damaged by H2O2 and
J. Biol. Chem. (2021) 297(6) 101374 13
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protected by increased Mn2+ import conducted by MntH, as
well as by sequestration of Fe2+ by Dps (176).

The Mn-utilizing class Ib RNRs are well represented in
pathogenic bacteria, including B. anthracis, S. aureus, and
E. coli (158, 208), and likely arose through an evolutionary
process of adaptation to oxidative stress and Fe restriction
inflicted by hosts. Indeed, many human pathogen genomes
encode RNRs from at least two classes (209–211). For
example, the opportunistic pathogen Streptococcus sanguinis
requires its class Ib RNR and Mn for aerobic growth and
virulence. In contrast, class III RNR, which depends on an Fe–
S cluster, is necessary for growth under anaerobic conditions
(211).

Metal-free alternatives

An alternative response to circumvent metal limitation in-
volves utilizing surrogate proteins, which can substitute for the
usual metal-dependent species and maintain activity while
forgoing the metal entirely. The ribosome has been linked to
the response to Zn limitation in bacteria (212). In response to
Zn depletion, a number of Zn-binding ribosomal proteins are
replaced with Zn-free homologs, making a significant contri-
bution to the available Zn content of the cell (212, 213),
although, perhaps, with a loss of translational activity (214).
Other similar examples of metal-free homologs include an
Mn-independent variant of phosphoglycerate mutase
expressed in S. aureus, which allows glycolysis to continue
during host-imposed Mn limitation (215).

Cu-only SODs are present in the pathogens Mycobacterium
tuberculosis and Candida albicans, where they contribute to
virulence by detoxification of host-derived oxidant species
(216, 217). The Cu binding site is also more open than in the
Cu/Zn-SODs, and in C. albicans, the enzyme is secreted prior
to binding the metal ion, whereas eukaryotic extracellular
Cu/Zn-SODs are usually charged with Cu and Zn within the
cell. The combination of independence from Zn availability
and the capability to bind extracellular Cu ions may be ad-
vantageous in maintaining catalytic activity (217).

Bacterial infection and host metal sequestration mechanisms

Transition metals are essential for microorganisms like
bacteria; thus, during nutrient limitation, mechanisms for
metal acquisition become critical for bacterial cell survival. To
overcome metal scarcity imposed by bacterial hosts, bacteria
have evolved an elegant mechanism of synthetizing metal ion
scavengers, known as metallophores, that possess high affinity
to metal ions. Metallophores belong to a family of small
molecules that bind various metal ions in the extracellular
environment, following by active import of chelated metal
complexes inside the bacterial cells. Normally, metallophores
are divided into different groups based on their affinity toward
a specific metal, such as siderophores for Fe, chalcophore for
Cu, manganesophore for Mn, nickelophore for Ni, and zin-
cophore for Zn ((218), references therein). Staphylopine pro-
duced by the pathogenic bacteria S. aureus stands out as a
broad-spectrum affinity metallophore, as it is able of chelating
14 J. Biol. Chem. (2021) 297(6) 101374
various transition metals (219), thus efficiently overpowering
host immunity.

Another nutrient limitation–induced strategy employed by
the innate immune system involves calprotectin, which is
released at infection sites from epithelial cells and neutrophils
(212, 220). Calprotectin has previously been characterized as a
chelator of Mn and Zn, while recent work establishes that it
also actively sequesters Fe, and calprotectin-treated media
were found to have reduced availability of all three metals
(221). Neutrophils can contain very high calprotectin levels,
sometimes accounting for as much as half of all protein con-
tent of the cytoplasm (222), which indicates the utility of the
broad antimicrobial effect of metal sequestration. Proteins
related to calprotectin of the S100 family of calcium-binding
proteins are also important in host defense (27).

The metal sequestering action of calprotectin is exploited
for competitive advantage in the gut pathogen Salmonella
typhimurium, which expresses a high-affinity Zn transporter
during infection. This allows it to survive the Zn restriction
imposed by the host, whereas other commensal bacteria of the
microbiota are more sensitive, resulting in reduced competi-
tion at the intestinal mucosa (223). The ability to adapt is
particularly important for the transition between the different
host environments exploited by opportunistic pathogens, such
as group A Streptococcus. Recent work has highlighted the
importance of metal homeostasis for survival of these bacteria
in host organisms. The role of metals in the antioxidant de-
fenses is important even while in a nonpathogenic state but
becomes critical when the bacteria become invasive and in-
duces an immune response (26, 30). The activity of calpro-
tectin during S. aureus infection leads to a reduction in
pathogen SOD activity, increased bacterial O2

�− levels, and
improved clearance by the host immune system (148). The
metal binding site of calprotectin is required for the antimi-
crobial effect, whereas supplying excess Mn2+ protects the
pathogen against oxidative stress (148).
Metals in viral infections

Viral genome replication and protein synthesis require trace
metals, and their availability promotes the expansion of viral
populations. Fe, in particular, has been studied for its associ-
ation with viral infections, including those of HIV-1, human
cytomegalovirus, hepatitis B and C viruses, and herpes simplex
virus 1. Some viruses (arenaviruses and mouse mammary tu-
mor virus) have been shown to target Fe-rich cells by utilizing
Fe-import machinery for cell entry or manipulate host Fe
homeostasis to their benefit. The availability of essential
metals, including Fe, Mn, and Zn, can also influence the
progression or resolution of many viral infections. This can
occur as a result of both the immune system effects on metals
and their direct impact on viral pathogenicity (224–226).
Much is still unknown about the relevance of trace metal ions
to virus–host interactions. Computational analysis has indi-
cated that Zn-binding and Mn-binding domains are prevalent
in viral proteomes and that many viral metal-binding proteins
target host metal homeostasis regulators (227). The relevance
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of metal ions to the immune response to the SARS-CoV2—a
cause of an unprecedented COVID-19 pandemic—has been
discussed recently (228). As such, serum Fe levels have been
linked to mortality risk in SARS-CoV2 patients (229, 230).
Based on sequence analysis, it has been suggested that the
cytoplasmic tail of the SARS-CoV2 spike protein may interact
with the Fe exporter ferroportin (231). Whether Fe dysregu-
lation in these patients is a result of inflammation or a
contributing factor to pathogenesis remains currently unclear
(230). However, most viruses require Fe as part of their
replication cycle, and beneficial effects have been observed by
treating other RNA virus infections with Fe chelators or
inducing ferroportin expression to increase Fe efflux. The
possibility of targeting SARS-CoV2 by limiting Fe availability is
under investigation (232). At least two viral proteins encoded
by the severe acute respiratory syndrome coronaviruses ge-
nomes (that are conserved in SARS-CoV2) bind Mn and
function with other divalent metal cofactors. These include an
endonuclease Nsp15, which promotes immune evasion and
has shown activity with coordinated Mg2+ (233). Furthermore,
an essential RNA-dependent RNA polymerase (RdRp) Nsp12,
which shares binding site homology with an RdRp from
poliovirus, was active with a broad range of divalent ions, such
as Mg2+, Mn2+, and Fe2+ (234). Recent work has found that the
catalytic subunit Nsp12 of the Nsp12–Nsp7–Nsp8 complex is
able to accommodate two Fe–S clusters in the Zn-binding
sites. Moreover, it was found that anoxically purified Fe–S–
Nsp12 RdRp complex is even more prominent in the RNA
template binding capacity and the polymerase activity than
that assembled aerobically with two Zn ions (235). Thus,
SARS-CoV2 RdRp is a bona fide subject of metal inter-
changeability relevant to the COVID-19 pandemic. Interest-
ingly, nitroxide-enforced oxidation of Fe–S clusters caused
their disassembly and blocked SARS-CoV2 replication in cell
culture, raising a possibility that these clusters may serve as
preferable cofactors for the SARS-CoV2 RdRp (235). Further
investigation into roles for metal replacement strategies in viral
infection may be beneficial for developing both specific and
broadly applicable antiviral treatments.

Metal imbalances as a causative factor of human
disease states and metal chelation therapy

As they are key elements of numerous cellular biosystems
(12), metal ion imbalances contribute to human disease states
of inherited or acquired origin, such as chronic or aging
enforced. For example, Fe deficiencies manifest in different
types of anemias, whereby insufficient amounts of consumed/
available Fe result in low levels of hemoglobin leading to
insufficient oxygenation of body organs (reviewed in
Ref. (236)). Metal imbalances are linked to pathophysiology of
cardiovascular diseases, the number one killer worldwide
(237, 238). For example, Fe deficiency is widespread in heart
failure patients (239), whereas excessive Fe is linked to
atherosclerosis and coronary heart disease (240, 241). Zn
deficiency manifests in some malignancies, multiple sclerosis,
and sepsis, wherein Zn scarcity was found to shift metal ions
homeostasis leading to Fe and Cu overload (242, 243). In
inherited blood disorders, such as β-thalassemia and sickle cell
disease, mutations in hemoglobin subunit beta prohibit ac-
commodation of Fe causing Fe overload (244). Mutation in the
FXN gene encoding frataxin, the protein involved in Fe–S
cluster assembly (245), cause Friedreich’s ataxia (spinocer-
ebellar degeneration) that is also associated with Fe overload
(246). Another autosomal recessive disease, the Wilson disease
(also known as hepatolenticular degeneration), affects pri-
marily the liver and basal ganglia of the brain, and is caused by
mutations in the ATP7B gene and generation of defective Cu
transport protein leading to Cu build up (247, 248). A growing
body of evidence has revealed that metal imbalances, such as
Fe and Cu overload (249), Zn deficiency (250), manifest in
numerous neurodegenerative disorders, such as Parkinson’s
disease, Alzheimer’s disease, and Huntington’s disease and are
linked to enhanced oxidative stress that causes protein
aggregation.

Having recognized that metal ions overload is a causative
factor of disease etiology and progression, molecules that
possess high affinity for metal ions are used in clinic to trap
and neutralize excessive or toxic metals. Thus, the metal
chelation therapy (MCT) has been administered as one of the
effective ways to fight transition metals’ overload, along with
poisoning of heavy metals (251). MCT has been developed and
used in clinical practice since the 1970s. By forming a complex
with metal ion through ionic and coordination bonding
(detailed in Ref. (218)), metal chelators alter metals’ chemical
properties, making metal ions unavailable for biological ac-
tivities within metabolic pathways. As such, deferiprone,
deferoxamine, and deferasirox are used for the removal of Fe
during treatment of thalassemia, myelodysplasia, and sickle
cell anemia, and penicillamine is used to deplete excessive Cu
during Wilson’s disease therapy (252). Animal studies have
revealed a power of EDTA as an MCT agent in treatment of
diabetic cataract, a condition that is associated with oxidative
damage of lens cells (253). In addition, recently developed
panel of small molecules, known as neuropeptides, which are
produced and released by neurons, has shown to be effective
during treatments of neurodegenerative diseases, providing
neuroprotection. Neuropeptides are able to chelate excessive
ions of Fe and Cu and, therefore, reduce formation of metal-
mediated amyloid aggregates (254). Several excellent recent
reviews (251, 255) discuss metal ion chelators in great details
in a context of disease treatments, including newly developed
drugs that are currently in clinical trials (255).

Conclusions and future directions

The idea of a preferred cation associated with metal binding
sites on biomolecules is strictly context dependent, as many of
the examples discussed previously show. In fact, the chemical
environment exudes a significant influence on metal ion
chemistry. Technical challenges are commonly encountered
when investigating physiologically relevant associations of
biomolecules with metals (198, 202, 256). In a setting where
enzyme activity can be measured in vitro, the strategy of
J. Biol. Chem. (2021) 297(6) 101374 15
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chelating metal ions and then reintroducing them back into
the biomolecule’s structure, followed by testing for activity, is
highly informative.

Here, we provide a new perspective relevant to the investi-
gation of metal-bound biomolecules in the context of the
metal interchangeability phenomenon. As such, we advise re-
searchers to consider the particular cation that provides the
highest activity to a biomolecule and those that may be
functionally interchangeable and allow any activity, as they
may be physiologically relevant under circumstances where
ratios of available metals are disrupted or during stress. In
more complex examples, such as in vitro experimentation to
probe metal requirements, it is not possible, and both purifi-
cation techniques and structural analyses are limited in their
capacity to elucidate physiological metal ion interactions. In
addition, several examples indicate that expressing alternative
isoforms of biomolecules can circumvent metal limitation or
oxidant damage, either by coordinating alternative metals that
reduce the risk of damage or by going without the metal
component altogether. The recent work on binding multiple
metal cations to the ribosome expands on the established
adaptability of protein enzymes in utilizing metals. A
mounting body of evidence demonstrates that numerous
metal-binding proteins maintain an amazing ability to adapt to
metal flux and oxidative stress. The ubiquitous and conser-
vative nature of these proteins and the ribosome sheds further
light on the evolutionary pressures and geochemical shifts,
thus, defining the relationship between biological systems,
oxygen, and metals.

Further work is needed to understand the role of metal
substitution on ribosomal activity and stability, as disrupted
protein synthesis has broad impacts on human health.
Changes in metal homeostasis are associated with many hu-
man diseases, including anemias and neurodegenerative dis-
orders, in addition to the impacts on many pathogenic species
and immune responses described in this review. Of current
relevance, there is promising potential in exploring whether
metal ion replacements can combat the propagation of viral
infections, such as SARS-CoV2. Future work should also
consider that flexibility of metal coordination in biomolecules
may be underestimated and could have a broad reach across
biological systems. Investigation into possible roles for metal
ion interchangeability in fine-tuning cell behaviors and re-
sponses may reveal novel adaptive mechanisms.
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