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Abstract

Although drug combinations in cancer treatment appear to be a promising therapeutic strategy with respect to monotherapy, it is
arduous to discover new synergistic drug combinations due to the combinatorial explosion. Deep learning technology holds immense
promise for better prediction of in vitro synergistic drug combinations for certain cell lines. In methods applying such technology, omics
data are widely adopted to construct cell line features. However, biological network data are rarely considered yet, which is worthy of
in-depth study. In this study, we propose a novel deep learning method, termed PRODeepSyn, for predicting anticancer synergistic drug
combinations. By leveraging the Graph Convolutional Network, PRODeepSyn integrates the protein–protein interaction (PPI) network
with omics data to construct low-dimensional dense embeddings for cell lines. PRODeepSyn then builds a deep neural network with
the Batch Normalization mechanism to predict synergy scores using the cell line embeddings and drug features. PRODeepSyn achieves
the lowest root mean square error of 15.08 and the highest Pearson correlation coefficient of 0.75, outperforming two deep learning
methods and four machine learning methods. On the classification task, PRODeepSyn achieves an area under the receiver operator
characteristics curve of 0.90, an area under the precision–recall curve of 0.63 and a Cohen’s Kappa of 0.53. In the ablation study, we find
that using the multi-omics data and the integrated PPI network’s information both can improve the prediction results. Additionally,
the case study demonstrates the consistency between PRODeepSyn and previous studies.

Keywords: synergistic drug combinations, deep learning, graph convolutional network, protein–protein interaction network, omics
data

Introduction
Drug combination therapy [1] is usually adopted to treat
complex diseases, such as cancer [2]. Compared with
monotherapy, drug combination therapy can improve
the efficacy of cancer treatment [3], decrease the
dose-dependent toxicity of drugs [4] and prevent the
development of drug resistance [5]. However, the drug

combinations will not only present synergistic effects
but also may have antagonistic or additive effects [6, 7].

One of the biggest challenges in discovering new syner-
gistic drug combinations is the combinatorial explosion.
As the number of drugs increases, the size of the com-
plete drug combination space grows rapidly. Although
the mechanism of drug synergy has been explored
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[8–10], most synergistic drug combinations are currently
proposed based on clinical experience [11, 12]. Early stud-
ies [13, 14] require in vivo experiments. Such trial-based
methods have the drawbacks of being time-consuming,
labour-intensive and costly and may cause patients to
receive unnecessary or even harmful treatments. The
high-throughput screening technology (HTS) can test cell
lines in plates efficiently [15]. However, it is not feasible
to test the complete combination space with HTS, and
it requires significant cost infrastructure construction
[16]. Therefore, researchers turn their attention to
computational methods.

The early design of computational methods is inspired
by systems biology [17, 18] and the integration of biology
and non-biology [19]. Several studies treat the biological
system as a black box and establish statistical models.
But it is difficult for them to fit complex nonlinear biolog-
ical processes. Methods based on the explicit model [20–
23] try to simulate the influence of drug combinations on
the biological network to optimize the combination plan.
However, they are only applicable to specific targets,
pathways, diseases or cell lines.

The boom of artificial intelligence, including machine
learning (ML) and deep learning (DL), has promoted the
proposal of new computational methods. A compara-
tive advantage is that these methods can simulate com-
plex nonlinear processes. The typical pattern of these
methods is to first construct features for cell lines and
drugs and then perform prediction with ML or DL mod-
els. Studies before 2018 adopt various of ML models to
predict the synergy of anticancer drug combinations,
including Random Forest [24, 25], Logistic Regression
[26], XGBoost[27] and Extremely Randomized Trees [28].
Web tools like H-RACS provide convenient services for
predicting drug combinations with ML [29]. In recent
years, the publication of multiple large-scale synergy
datasets [30, 31] provides a data basis for applying DL
methods in drug combination prediction. The applied DL
models mainly include Deep Neural Network (DNN) [32,
33] and Residual Neural Network [34]. There is also a DL
method that focuses on the model’s interpretability [35].
Besides, special technologies such as Ensemble Learning
[36, 37], Transfer Learning [38] and Tensor factorization
[39] are also introduced into the field of drug combina-
tion prediction. Readers could refer to [40] for a more
comprehensive review of ML and DL methods.

Cell line features play an indispensable role in discov-
ering synergistic drug combinations, because the drug
combination that has been validated on one cell line
may not be effective on another [41]. The omics data
are commonly used in ML and DL methods to construct
cell line features [26–29, 32–35]; however, the biological
networks are rarely considered. Li’s group proposes a net-
work propagation strategy that simulates post-treatment
cell line features based on the drug targets and a mouse
gene interaction network [25]. But the propagation strat-
egy considers only the direct linkage between target and
non-target genes, which could be too simplistic to make

full use of the interactions between genes. This is the
only study that attempts to construct cell line features
with network data to our knowledge. Since the network-
based treatment is argued to have various potential bio-
logical and clinical applications [42], the absence of net-
work data in constructing cell line features may prevent
the further development of synergistic drug combination
prediction methods.

To fill the gaps in the application of network data
to construct cell line features, this study proposes
a novel method named PRODeepSyn for predicting
anticancer synergistic drug combinations. PRODeep-
Syn integrates the protein–protein interaction (PPI)
network data with the omics data using the deep
learning model graph convolutional network (GCN) [43]
to predict anticancer synergistic drug combinations.
GCN is designed specifically for graph-structured data
such as biological networks, but only few works [44,
45] use GCN to extract informative features of bio-
logical networks in the domain of drug combination
prediction yet, and none of them consider about cell
line features. Specifically, PRODeepSyn extracts the
topological structure of PPI network data and omics data
to construct low-dimensional dense embeddings for cell
lines with GCN. The GCN model is trained with semi-
supervised learning. Besides, PRODeepSyn uses drug
molecular fingerprints and descriptors to construct the
drug features. Finally, PRODeepSyn predicts the synergy
scores of drug combinations using DNN that has the
Batch Normalization mechanism. On the O’Neil dataset
[30], we have verified that PRODeepSyn outperforms
other state-of-the-art methods, including both ML and
DL methods. We have also performed the ablation
study and sensitivity analysis to present more details
of PRODeepSyn. The case study also proves that the
predictions of PRODeepSyn are consistent with many
previous studies. Overall, PRODeepSyn is expected to be a
satisfactory prediction method of anticancer synergistic
drug combinations.

Materials and methods
Synergy dataset
A large-scale synergy dataset published by O’Neil et al.
[30] is used to train and evaluate our model. This dataset
covers experiment results of 583 different drug com-
binations on 39 cancer cell lines from 7 tissues. Each
experiment was repeated four times with a 4 × 4 dosage
regimen, and the cell growth rate relative to the control
group after 48 hours was measured. The results of single
drug screening on the same cell lines were released
simultaneously. Preuer et al. [32] integrated this dataset
by computing Loewe Additivity Value [46]. The integrated
dataset contains 23 062 samples, each consisting of two
drugs and one cell line, as well as the corresponding
synergy score. All samples are divided into five disjoint
folds with equivalent quantity concerning drug combi-
nations, which means the same drug combination does
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not exist between folds. Therefore, the divided samples
can be used to evaluate the ability of methods to predict
novel drug combinations with cross-validation.

Drug features
As shown in Figure 1A, in order to represent the
structural and physicochemical properties of drugs,
the molecular fingerprint and descriptors are used to
construct the feature vector for each drug. Preuer et
al. [32] provide the SMILES expression of each drug
contained in the O’Neil dataset. We adopt RDKit [47]
to compute the fingerprint and descriptors for each drug
based on their SMILES expressions. Firstly, we generate
the Morgan fingerprint [48] with a radius of 2 for each
drug and represent it as a 256-dimensional binary-
valued vector. Afterwards, we obtain 200 descriptors of
each drug that compose a real-valued vector. At last,
we concatenate two types of feature vectors mentioned
above and filter out features with zero variance. Finally,
253-dimensional Morgan fingerprint together with 163-
dimensional descriptors are retained as features of each
drug. That is, the final feature vectors of drugs are 416-
dimensional. We use the z-score normalization method
to preprocess the drug features to eliminate the possible
impact of the scale of the features.

Cell line features
PRODeepSyn integrates three types of heterogeneous
cell line features containing gene expression data, gene
mutation data and interactions between gene expression
products to construct embeddings for cell lines. The gene
expression data is downloaded from the ArrayExpress
database (accession number: E-MTAB-3610) [49]. A total
of 3739 informative genes are first summarized with the
Factor Analysis for Robust Microarray Summarization
method [50] and then processed by the z-score nor-
malization method. Gene mutation data of cell lines
are obtained from the COSMIC cell lines project [51].
We remove data whose mutation type is coding silent or
unknown and retain the mutation data of 12 333 genes
for 39 cell lines. The gene mutation data of each cell line
is represented as a 12 333-dimensional binary-valued
vector. According to whether the cell line is mutated
on a gene, the corresponding element of the vector is
0 or 1. Interactions between gene expression products
are collected from the PPI network contained in the
STRING database [52]. We ignore the interactions whose
combined scores are lower than 0.7 in STRING and
retain a total of 839 522 interactions between 17 161
proteins. We associate the nodes in the PPI network with
gene expression data and gene mutation data via gene
identifiers and symbols. More details for linking data are
provided in the Supplementary Material.

PRODeepSyn
In this paper, we propose a novel DL method named
PRODeepSyn to predict synergy scores of drug combina-
tions on cell lines. The overview of our method is shown

in Figure 1. Drug features are constructed as described
above, whereas cell line embeddings are constructed
with StateEncoder that integrates the PPI network with
multi-omics data. Afterwards, the Predictor of PRODeep-
Syn utilizes the constructed drug features and cell line
embeddings to predict synergy scores. More details about
PRODeepSyn are introduced below.

Cell line embeddings

The high-dimensional sparse omics data are widely
used to construct feature vectors of cell lines. Instead of
directly using omics data as model input, filtering essen-
tial genes [53, 54] or using AutoEncoder to reduce the
dimensionality of omics data [55, 56] can substantially
reduce the number of model parameters and improve
computational efficiency. PRODeepSyn also aims to
construct low-dimensional dense embeddings for cell
lines. The significant difference is that PRODeepSyn
integrates the information of the PPI network into
cell line embeddings. We expect such embeddings to
represent cell line states that are predictive to drug
synergy scores. We name the expression level of a
certain gene or its mutation result as the explicit state
of the gene. Inspired by the fact that the same gene
expresses differently among different cell lines [57],
PRODeepSyn assumes that the gene explicit state results
from the interaction between the cell line-independent
gene hidden state and the cell line state. When the gene
expression level and mutation result are known, we need
to answer two questions: 1) how to construct the gene
hidden state? 2) How to solve the state of the cell line
through the explicit state and hidden state of genes?

Construction of gene hidden states

For the first question, PRODeepSyn leverages the GCN
model [43] to construct gene hidden states based on the
PPI network, considering that the interactions between
proteins expressed by genes are important in drug com-
bination therapy [25]. The PPI network is a typical kind
of graph-structured data where proteins are nodes and
the interactions are edges. For graph-structured data,
both the node’s properties and the network’s topology
are of great significance. GCN is a graph representation
learning model that can generate low-dimensional dense
embeddings for nodes while retaining the information of
nodes and the network topology. PRODeepSyn constructs
the embeddings of the nodes in the PPI network as gene
hidden states with GCN.

We first agree on symbols to explain the principle of
the GCN model more clearly. Graph G consists of the
vertex set V and the edge set E, i.e., G = (V, E). The
feature matrix of nodes X ∈ R

N×K, where N is the number
of nodes, and K is the number of features. GCN aims
to obtain the node embedding matrix Z ∈ R

N×F, where
F is the dimension of embedding space. The adjacency
matrix of an undirected graph is denoted as A ∈ R

N×N,
in which the element Ai,j is 1 when there exists an edge
between node i and j; otherwise, it is 0. The degree matrix
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Figure 1. Overview of PRODeepSyn. (A) PRODeepSyn constructs drug features with their Morgan fingerprints and descriptors using RDKit based on
drugs’ SMILES expressions. The fingerprints and descriptors are concatenated as the final feature vectors of drugs. (B) PRODeepSyn extracts the hidden
state matrix of genes from the PPI network with the GCN and regards the omics data as the explicit state vector of genes. The dot product between the
projected gene hidden state matrix and the cell line embedding is applied to approximate the gene explicit state vector. (C) PRODeepSyn predicts the
synergy score of a drug combination on a certain cell line using the DNN with the batch normalization mechanism.

of the graph is a diagonal matrix D, where the element
Di,i on the diagonal is equal to the degree of node i (Di,i =∑

j Ai,j).
GCN aggregates the information of the neighbours of

the node and the node itself as the node’s informa-
tion by defining the convolution operation on the graph.
With multiple convolutional layers, GCN generates the

embeddings of a node with information of its multi-hop
neighbours and itself. The output of the l-th layer H(l) is

H(l) = σ(ÅH(l−1)W(l)), Å = D̃− 1
2 ÃD̃− 1

2 (1)

where Ã = A + I and I is the identity matrix, W(l) is
the parameter matrix of layer l, σ is a nonlinear activate
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function. GCN adds the self-loop to each node by adopt-
ing Ã rather than the original adjacency matrix A. Å is the
normalized adjacency matrix. For the GCN model with L
layers, H(0) = X, H(L) = Z.

It can be seen from Equation (1) that the input required
by GCN except for Ã is the feature matrix of nodes. We
use the position gene set, motif gene set and immuno-
logical signature gene set from the Molecular Signatures
Database (MSigDB) [58] to construct node features refer-
ring to a previous study [59]. A total of 971 gene sets con-
taining >95% of the genes corresponding to proteins in
the PPI network are selected to generate 972-dimensional
binary-valued feature vectors for nodes. Only when the
first 971 elements of the feature vector are all 0 will the
last element be 1. If multiple genes are corresponding
to the same protein, the OR operation is applied for
aggregation.

In PRODeepSyn, the GCN model with two graph con-
volutional layers is adopted. We set W(1) ∈ R

972×2egene ,
W(2) ∈ R

2egene×egene , where egene is the dimensionality of
gene hidden state vectors. Each of the graph convolu-
tional layers uses ReLU as the activate function. The i-th
row of GCN’s output matrix Z represents the hidden state
of the i-th gene.

Solution of cell line states

PRODeepSyn answers the second question via the Sta-
teEncoder as illustrated in Figure 1B. It initializes the
embedding matrix C ∈ R

ecell×M randomly, where M is the
number of cell lines, and ecell is the embedding dimension
of cell line states. The gene expression level and gene
mutation results of the cell line are the explicit states of
genes, which are noted as OExp and OMut, respectively. In
the j-th cell line, the relationship among the explicit state
of genes ot

j , t ∈ {Exp, Mut}, the cell line state cj, and the
hidden state matrix of genes Z is modelled as:

ot
j = f (Z) · cj (2)

where the project transformation f transforms the hid-
den state matrix of genes into the cell line space, thereby
it could interact with the cell line state vector through the
dot product to present the explicit state vector of genes
in the cell line.

The StateEncoder of PRODeepSyn consists of a GCN
model and a project model Projector. The structure of GCN
is as described in Section 2.4.2. The Projector contains a
fully connected layer to simulate the project transforma-
tion f , whose output dimension is ecell.

The completed PPI network contains 17 161 nodes.
However, neither of the two types of gene explicit states,
the gene expression data and the gene mutation data,
could be totally matched to the nodes. Therefore, we
define the semi-supervised loss function as:

Lt =
M∑

j

Nt∑

i

(ot
i,j − ôt

i,j)
2 (3)

where Nt is the number of genes corresponding to the
nodes in the PPI network. We retain 3384 genes for the
expression data and 10 707 genes for the mutation data,
i.e., NExp = 3384, NMut = 10707. The predicted explicit
state of the i-th gene of the j-th cell line ôt

i,j is calculated
with Equation (2).

By calculating the loss and back-propagating the gra-
dient, PRODeepSyn can solve the hidden state matrix Z of
genes and the state matrix C of cell lines simultaneously.
Different states solved with different gene explicit states
of the same cell line will be first concatenated and then
z-score normalized as the final embedding of the cell line.

Prediction

After constructing drug features and cell line embed-
dings, we design a DNN termed Predictor for predicting
synergy scores of drug combinations on cell lines. The
structure of Predictor is shown in Figure 1C. It receives
the features of two drugs and the embedding of one
cell line as input and predicts the corresponding synergy
score. It has three fully connected (FC) layers, among
which the first two FC layers use the ReLU activate func-
tion and are followed by the Batch Normalization layer.
We set the number of neurons in the second FC layer to
half of the first one. The last FC layer contains only one
neuron, which represents the synergy score predicted by
the model. The loss function for training Predictor is the
mean square error loss.

Experimental setup
Method comparison

In order to present the ability of PRODeepSyn to pre-
dict the synergy scores of new drug combinations, we
compare PRODeepSyn with other advanced methods on
the large dataset released by O’Neil et al. [30] using a 5-
fold nested cross-validation. PRODeepSyn is compared
with two DL methods including DeepSynergy [32] and
AuDNNSynergy [33] and four ML methods including Elas-
tic Net [60], Support Vector Regression (SVR) [61], Random
Forest [62] and XGBoost [63]. The experiment results
of DL methods are obtained from their original papers,
whereas the results of ML methods are obtained using
the same input as PRODeepSyn. Detailed settings for the
compared ML methods are described in the Supplemen-
tary Material. Although it is oversimplified to treat the
prediction of synergistic drug combinations as a classi-
fication task [64], we also evaluate the performance of
PRODeepSyn and other methods on the task to com-
pare with the previous methods more comprehensively.
Referring to the practice of Preuer et al. [32], we only
consider samples with a synergy score higher than 30
as positive samples, and all others are negative samples.
The predicted synergy scores are also binarized with 30
as the threshold. We exclude the work of Jiang et al. [44]
because their results are obtained with a 10-fold cross-
validation, and the divided dataset has not been released.
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Metrics

For the regression task, we adopt the mean square error
(MSE) as the main evaluation metric. We also report the
root mean square error (RMSE) and the Pearson corre-
lation coefficient (PCC) between the predictions and the
ground truth. Since we use a 5-fold cross-validation for
experiments, we report each evaluation metric’s mean
and SD on the 5-fold data. For MSE, we also report the 95%
confidence interval. Metrics for the classification task
include the area under the receiver operator characteris-
tics curve (ROC-AUC), the area under the precision–recall
curve (PR-AUC), accuracy (ACC), precision (PREC) and the
Cohen’s Kappa.

Global settings

In StateEncoder, we set the dimension of the gene hidden
state vector egene = 128, and the dimension of the cell
line state vector ecell = 384. When training the Predictor,
the optimal hyperparameters come from grid search. We
mainly adjust the hidden layer size and the learning rate
of the model. The number of neurons of the first FC layer
is chosen from {2048, 4096, 8192}, and the learning rate is
chosen from {0.00001, 0.0001, 0.001}. We adopt the mini-
batch method for training, and the size of each batch
is 512. The maximum number of epochs per training is
500. More implementation details are described in the
Supplementary Material.

During training, we adopt the Early Stopping technol-
ogy to prevent the model from overfitting. When the
model’s loss on the validation set does not decrease for
50 consecutive epochs, the training will be terminated.
In the 5-fold nested cross-validation, we use 4-folds to
search for the optimal hyperparameters in the inner loop,
where 3-folds consist of the inner training set and the
other fold is the validation set. In the outer loop, we divide
the 4-folds into the outer training set and the outer vali-
dation set at a ratio of 9:1 randomly, and the other 1-fold
is used as the test set. The model is trained on the outer
training set with the searched optimal hyperparameters
and predicts on the test set after training. The process is
repeated five times to ensure every fold of data is selected
as the test set for exact one time. The drug combinations
in the test set are not included in the training data, which
can be used to evaluate the generalization ability of the
model.

Results
Method comparison
The experiment results of the comparison between
PRODeepSyn and other methods on the regression task
are summarized in Table 1, which involves two DL
methods and four ML methods. As the related data could
not be found in the manuscript of DeepSynergy, we do not
report the 95% confidence interval of DeepSynergy’s
MSE. PRODeepSyn achieves the lowest MSE and RMSE
and the highest PCC. Its MSE is 229.49, which is 10.18%
less than DeepSynergy’s, 4.82% less than AuDNNSynergy’s

Figure 2. Scatter plot of the predicted synergy scores and the ground
truth. The straight line in blue is the figure of the function fitted using
the least squares regression, whose slope is 1.02 and bias is 0.53 (P-value
< 1e-5).

and 22.56% less than XGBoost’s. PRODeepSyn attains the
PCC of 0.75. Figure 2 illustrates the correlation between
the prediction results and the ground truth of all data
points. The straight line in blue is the figure of the
function between the predicted score and the ground
truth fitted using the least squares regression. The slope
of the straight line is 1.02, and the bias is 0.53 (P-value
< 1e-5). Both the PCC of PRODeepSyn and the fitted
function indicate a strong linear correlation between
the prediction results of PRODeepSyn and the ground
truth. The experiment results show that PRODeepSyn
outperforms other state-of-the-art methods.

Considering that many previous studies treat the pre-
diction task as a classification task, we have further car-
ried out related experiments to facilitate comparison and
analysis. The results of each method on the classification
task are summarized in Table 2. It is noteworthy that
all methods have almost the same accuracy, whereas
their values of other metrics vary, resulting from the high
ratio of the negative samples in test data. Therefore, we
consider ROC-AUC and PR-AUC relatively fair metrics
[65], and PR-AUC is better than ROC-AUC on imbalanced
dataset [66]. PRODeepSyn achieves the best PR-AUC and
the very similar ROC-AUC to the best one. We have not
paid attention to the imbalanced distribution of classes
in the training dataset because it is not the focus of our
work. Nonetheless, PRODeepSyn has a comprehensive
advantage over other methods on the classification task.

Predictions aggregated by tissue
As shown in Figure 3, we visualize the prediction results
and the ground truth of PRODeepSyn according to the
tissue type of the cell line. Figure 3A shows the distribu-
tion of the ground truth and the predicted scores given by
PRODeepSyn in the cell lines of each tissue. In the seven
tissues, most of the real and predicted synergy scores are
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Table 1. Results of method comparison on the regression task

Type Method MSE RMSE Confidence
Interval

PCC

DL PRODeepSyn 229.49 ± 42.81 15.09 ± 1.37 [176.34, 282.64] 0.75 ± 0.02
DL DeepSynergy 255.49 15.91 ± 1.56 – 0.73 ± 0.04
DL AudnnSynergy 241.12 ± 43.52 15.46 ± 1.44 [187.09, 295.15] 0.74 ± 0.03
ML Elastic Net 418.06 ± 53.99 20.41 ± 1.30 [351.03, 485.09] 0.45 ± 0.02
ML SVR 325.91 ± 54.75 17.99 ± 1.48 [257.94, 393.89] 0.63 ± 0.02
ML Random Forest 312.75 ± 41.35 17.65 ± 1.13 [261.41, 364.08] 0.64 ± 0.03
ML XGBoost 296.34 ± 46.37 17.16 ± 1.31 [238.77, 353.90] 0.66 ± 0.02

Values of MSE, RMSE and PCC are mean values ± 1 SD. The best and second best performance are shown in bold and with italic, respectively.

Table 2. Results of method comparison on the classification task

Type Method ROC-AUC PR-AUC ACC PREC Kappa

DL PRODeepSyn 0.90 ± 0.03 0.63 ± 0.05 0.93 ± 0.01 0.72 ± 0.06 0.51 ± 0.03
DL DeepSynergy 0.90 ± 0.03 0.59 ± 0.06 0.92 ± 0.03 0.56 ± 0.11 0.51 ± 0.04
DL AudnnSynergy 0.91 ± 0.02 0.63 ± 0.06 0.93 ± 0.01 0.72 ± 0.06 0.51 ± 0.04
ML Elastic Net 0.78 ± 0.04 0.34 ± 0.09 0.92 ± 0.01 0.61 ± 0.33 0.14 ± 0.08
ML SVR 0.88 ± 0.02 0.54 ± 0.05 0.93 ± 0.01 0.80 ± 0.04 0.32 ± 0.02
ML Random Forest 0.87 ± 0.02 0.54 ± 0.04 0.93 ± 0.01 0.74 ± 0.02 0.36 ± 0.04
ML XGBoost 0.87 ± 0.02 0.56 ± 0.05 0.93 ± 0.01 0.74 ± 0.04 0.41 ± 0.04

Values of all metrics are mean values ±1 SD. The best and second best performance are shown in bold and with italic, respectively.

concentrated in the range of [-50, 75]. For negative sam-
ples, the distribution of prediction results of PRODeep-
Syn is similar to the ground truth. For positive sam-
ples, PRODeepSyn tends to give more conservative pre-
diction results. For the prostate, the difference between
the predicted synergy scores of PRODeepSyn and the
ground truth is relatively apparent. We believe that this
is related to the small number of cell lines belonging to
this tissue in the dataset and the scattered distribution of
synergy scores. Figure 3B summarizes the PCC between
the predicted scores and the ground truth on each cell
line, and the color of the bar shows the tissue to which
the cell line belongs. Among them, COLOR320DM has
the lowest PCC, 0.60, whereas UWB1289 has the highest
PCC, 0.87. Among the 39 cell lines, the PCC on only four
cell lines is lower than 0.65, whereas the PCC on 16 cell
lines is higher than 0.75. One possible reason for the
lower PCC of COLO320DM than other cell lines is that
on this cell line there are couples of samples whose drug
combinations are the same but the synergy scores are
very different. For example, the two synergy scores of
GEMCITABINE and MK-8776 on COLO320DM are 20.30
and 44.82, which will even be classified as opposing
samples. The same problem also occurs on EC2, A375 and
several other cell lines with lower PCC. In Figure 3C, we
further aggregate PCC according to the tissue type. The
median values of PCC of all tissues are higher than 0.70
except pleura. The correlation between the prediction
results of PRODeepSyn and the ground truth for cell
lines belonging to the ovary is the strongest. Overall, in
different tissues, there is a strong correlation between the
prediction results given by PRODeepSyn and the ground
truth and no obvious association between PCC and tissue
types is found. PRODeepSyn has the potential value of

predicting anticancer synergistic drug combinations in
the cell lines belonging to various tissues.

Ablation study
Compared with DL methods that only use omics data
to construct cell line features, PRODeepSyn integrates
the PPI network with multi-omics data into cell line
embeddings. To inspect the contribution of using multi-
omics data and integrating the PPI network information
to the prediction, we compare PRODeepSyn with several
variants that include:

• PRODeepSyn-GE. PRODeepSyn-GE is the variant of
PRODeepSyn that only using the gene expression
data as the gene explicit state when solving the state
of the cell line.

• PRODeepSyn-MUT. PRODeepSyn-MUT is the variant
of PRODeepSyn that only using the gene mutation
data as the gene explicit state when solving the state
of the cell line.

• PRODeepSyn-RandomZ. Instead of using GCN to
extract the PPI network information to construct the
gene hidden state matrix Z, the variant PRODeepSyn-
RandomZ solves cell line states with the randomly
initialized matrix with trainable elements.

• PRODeepSyn-AE. This variant first compresses the
gene expression data and the gene mutation data
into the ecell-dimensional space separately and then
concatenates them as the state vectors of cell lines.

Table 3 summarizes the results of the ablation study.
Compared with PRODeepSyn-GE and PRODeepSyn-
MUT, PRODeepSyn has a lower MSE. Although the
improvement is not significant, using multi-omics data
are helpful to improve the prediction results. Compared
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Figure 3. Predictions aggregated by tissue. (A) Comparison between the distribution of the ground truth and the predicted synergy scores aggregated by
tissue. The results of positive samples and negative samples are plotted in the upper part and the lower part, respectively. (B) The PCC values of each cell
line. The color of the bar represents the tissue of the cell line. (C) The boxplot of the PCC values of cell lines aggregated by tissue. The yellow horizontal
line in each box indicates the median.

with PRODeepSyn-RandomZ, using the gene hidden state
matrix computed from the PPI network can obtain a
lower MSE. In PRODeepSyn-RandomZ, the trained matrix
could also represent a kind of gene hidden states since
its interaction with cell line state vectors can fit the gene
explicit states well. However, PRODeepSyn-RandomZ per-
forms worse than PRODeepSyn, indicating that the lack

of PPI network information may reduce the performance.
Besides, PRODeepSyn outperforms PRODeepSyn-AE that
does not integrate the PPI network information. The
superiority of PRODeepSyn over PRODeepSyn-RandomZ
and PRODeepSyn-AE presents that the integration of the
PPI network information could improve the prediction
results.
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Table 3. Results of the ablation study

Method MSE RMSE Confidence
Interval

PCC

PRODeepSyn 229.49 ± 42.81 15.09 ± 1.37 [176.34, 282.64] 0.75 ± 0.02
PRODeepSyn-GE 231.14 ± 44.08 15.14 ± 1.41 [176.42, 285.86] 0.75 ± 0.02
PRODeepSyn-MUT 231.36 ± 41.01 15.15 ± 1.30 [180.45, 282.27] 0.75 ± 0.03
PRODeepSyn-
RandomZ

240.29 ± 40.94 15.45 ± 1.28 [189.46, 291.12] 0.75 ± 0.02

PRODeepSyn-AE 238.11 ± 46.41 15.36 ± 1.46 [180.49, 295.73] 0.74 ± 0.03

Values of MSE, RMSE and PCC are mean values ± 1 SD. The best performance is shown in bold.

Sensitivity analysis
PRODeepSyn utilizes the embeddings of genes obtained
from the PPI network when solving the state vectors of
cell lines. In order to explore the impact of the dimension
of the gene’s embedding space and the dimension of the
cell line’s embedding space on the final prediction, we
conduct the sensitivity analysis. We select the dimension
of gene’s embedding space egene from {32, 64, 128, 256,
512}, while select the dimension of cell line’s embedding
space ecell from {128, 320, 384, 448, 512}. In each exper-
iment, we only modify one of egene or ecell and keep the
other hyperparameter as its original value.

Figure 4 shows the fluctuation of the MSE and PCC
with the change of embedding dimension of the gene
hidden state or the cell line. It can be found from the 1st
column of Figure 4 that the prediction results hardly
change with the embedding dimension of the gene
hidden state. Since the increment of the embedding’s
dimension increases the computational complexity
while bringing no substantial improvement in the
prediction results, it is recommended to embed the
hidden state of genes into a 128-dimensional space. The
2nd column of Figure 4 indicates that the prediction
results keep stable when the embedding dimension of
the cell line changes. Since embedding the cell line
into a 384-dimensional space achieves the lowest MSE
and the highest PCC, and the dimensionality of the
space is moderate, choosing 384 as the embedding
dimension of cell lines is recommended. Detailed results
are provided in Supplementary Tables S2 and S3. Overall,
the disturbance of the embedding dimension of the gene
hidden state and the cell line has slight impact on the
prediction results of PRODeepSyn.

Explanation of Cell line embeddings
As we expected cell line states to play a significant
role in determining whether the drug combinations are
synergistic on the cell line, we are curious about whether
the same drug combination behave similarly on cell lines
with similar state vectors. Here we define the synergy
distance Dist(Ci, Cj) between cell line Ci and cell line Cj

as:

Dist(Ci, Cj) = 1
Bij

Bij∑

k=1

std(sik, sjk) (4)

where Bij is the total number of drug combinations that
has been tested on both Ci and Cj, s∗,k is the synergy score

of the k-th drug combination on cell line C∗, and std(·, ·)
is the function to calculate SD. In the O’Neil dataset, the
number of common drug combinations on two arbitrary
cell lines is always 583, so Bi,j could be treated as a con-
stant when comparing distances among different pairs of
cell lines. We adopt one of the best dimensionality reduc-
tion methods t-SNE [67] to visualize cell line embeddings
in a two-dimensional space.

Figure 5 shows the results of t-SNE. The color of each
point represents the cell line’s tissue. The distances
between many pairs of cell lines in Figure 5 agree with
their synergy distances. For example, in the bottom
border of Figure 5, the synergy distances from SW837 to
DLD1, COLO320DM and OCUBM are 9.95, 12.29 and 13.32,
respectively, which are consistent with their relative
Euclidean distances in Figure 5. Another example is that
in the top border of Figure 5, the synergy distances from
UWB1289 to UWB1289BRCA1, A2780, SW620 and LNCAP
are 9.02, 11.28, 12.38 and 20.49, respectively. The analysis
shows that in Figure 5 the far a cell line from UWB1289,
the larger the synergy distance will be. The consistency of
the synergy distance and the Euclidean distance between
cell lines helps PRODeepSyn outperform other methods.

Case study
We analyze the prediction results of PRODeepSyn and
find that many cases are consistent with previous
studies. For example, Gil-Martin et al. [68] tested the
therapeutic effect of BEZ-235 and Paclitaxel on breast
cancer patients. The experiment did not obtain any
evidence that this drug combination had a synergistic
effect, and the subjects suffered from various adverse
reactions. The prediction results given by PRODeepSyn
are consistent with this experiment. On breast cancer cell
lines OCUBM and EFM192B, the synergy scores predicted
by PRODeepSyn are -3.00 and -13.67, respectively. In
addition, Lara et al. [69] argued that the therapeutic effect
of the combination of MK-2206 and Erlotinib on patients
with non-small cell lung cancer (NSCLC) is worthy of
further exploration. We check the prediction results
of PRODeepSyn for three NSCLC cell lines included
in the dataset, namely SKMES1, NCIH460, NCIH520,
which are 38.36, 21.88 and 19.75, respectively. Since
30 is the threshold for distinguishing strong synergy
from weak synergy [32], the results also indicate that
the combination of MK-2206 and Erlotinib is likely to
show a synergistic effect in the treatment of NSCLC.
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Figure 4. Results of sensitivity analysis. MSE and PCC of PRODeepSyn remain stable when the dimensions of gene hidden states or the dimensions of
cell line embeddings change. The regions in light blue indicate the range of the mean values ± 1 SD.

Figure 5. Visualization of cell line embeddings in 2-dimensional space using t-SNE.

Moreover, Wang et al. [70] conducted in vivo and
in vitro experiments on the combined dosage regimen
of 5-FU and BEZ-235, in which RKO and HCT116 were
selected for in vitro experiments. The experiment results

indicate that this combined dosage regimen can lead
to PUMA-dependent tumour inhibition. For RKO and
HCT116 cell lines, PRODeepSyn gives the predicted syn-
ergy scores of 18.41 and 20.44, respectively. Furthermore,
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Wisinski et al. [71] confirmed that the combination of MK-
2206 and Lapatinib could be tolerated with a higher dose
than monotherapy. They conducted in vitro experiments
on HCT-15 to evaluate the mechanism of this drug
interaction. PRODeepSyn gives higher predicted synergy
scores on the DLD1, HT29 and LOVO cell lines, which have
the same disease as HCT-15, which are 47.74, 32.23 and
45.96, respectively. Another example is that Berndsen
et al. [72] found that the combination of Erlotinib and
Dasatinib can lead to growth retardation of colon cancer
cells. This study conducted in vitro experiments on
SW620, DLD1 and HT29 cell lines. The prediction results
given by PRODeepSyn are consistent with this study, and
the predicted synergy scores are 15.22, 42.36 and 33.46,
respectively. As can be seen from the cases we mentioned
above, the prediction results obtained by PRODeepSyn
are consistent with many previous in vivo and in vitro
studies. Therefore, PRODeepSyn has practical application
value.

Discussion and conclusion
In this study, we propose a new DL method, PRODeepSyn,
to model the potential relationship between drug combi-
nations and cell lines to achieve the purpose of predicting
anticancer synergistic drug combinations. PRODeepSyn
constructs drug features with drugs’ fingerprints and
descriptors and the low-dimensional dense embeddings
for cell lines by integrating the PPI network with omics
data. Specifically, PRODeepSyn first models the gene
explicit state as the interaction of the gene hidden state
and cell line state, where the gene explicit state comes
from omics data, the gene hidden state is extracted from
the PPI network using GCN, and the cell line state is a
randomly initialized embedding. The interaction is rep-
resented using vector inner product. Then PRODeepSyn
updates the cell line embedding and the GCN model
simultaneously by optimizing the semi-supervised
loss function. Theoretically, PRODeepSyn integrates
genomics data, transcriptomics data and the relationship
between proteins into the final cell line embeddings,
benefiting from the powerful ability of GCN to extract the
structural features of the PPI network. The embeddings
with multi-level information have been proved to be
significantly helpful to predict the synergy scores of drug
combinations in our experiments. Besides, PRODeepSyn
uses DNN with the Batch Normalization mechanism
to predict the synergy score of the combination of two
drugs on a certain cell line. The reason for using Batch
Normalization is that it can reduce the dependence
of the DL model on initialized parameters, accelerate
convergence and enhance generalization ability, which
further reduces the labor cost and time overhead of
building a DL model. Meanwhile, PRODeepSyn has the
ability to construct embeddings for new cell lines, which
improves its scalability. After preprocessing the multi-
omics data of a new cell line, the cell line embedding
could be obtained by training with the pre-trained and
frozen gene hidden state matrix in StateEncoder.

We conduct experiments on a large public dataset,
and the results present the superiority of PRODeepSyn to
other state-of-the-art methods. In addition, on cell lines
belonging to different tissues, there is a strong linear cor-
relation between the prediction results of PRODeepSyn
and the ground truth. Therefore, PRODeepSyn has a wide
range of applications. Furthermore, we find that the pre-
diction results of PRODeepSyn are consistent with many
previous studies through the case study. The results of
sensitivity analysis show that PRODeepSyn is not sensi-
tive to the dimensions of gene and cell line embeddings,
which can reduce the workload of optimizing PRODeep-
Syn. Overall, PRODeepSyn shows the ability to identify
anticancer synergistic drug combinations beyond other
computational methods. Notably, in the ablation study,
we find that using multi-omics data and integrating the
PPI network can improve the prediction results, which
may have implications for the study of the synergistic
mechanism of drug combinations.

PRODeepSyn still has some shortcomings. We find that
PRODeepSyn gives more conservative prediction results
for drug combinations that should have high synergy
scores, which may result from the concentration of syn-
ergy scores near 0 in the training set. The problem is
expected to be solved with the publication of more exper-
iment data. Another problem is that in addition to the
PPI network, other graph-structured data, such as drug–
target interaction network and drug–drug interaction
network, are also of great significance for the study of
drug combination therapy, which have not been included
in PRODeepSyn yet. Besides, PRODeepSyn can only pre-
dict the synergistic combination of two drugs at present.
Exploring more generic methods for predicting the syn-
ergy scores of drug combinations consisting of more than
two drugs is the direction of our follow-up efforts.

In summary, our findings suggest that the DL method
integrating biological network has great advantages in
discovering anticancer synergistic drug combinations
and also provides a possible reference for studying the
synergistic mechanism of anticancer drug combinations.
PRODeepSyn is expected to become a powerful tool
for the prescreening of anticancer synergistic drug
combinations.

Key Points

• PRODeepSyn integrates the PPI network and multi-omics
data into cell line embeddings using the GCN.

• PRODeepSyn achieves the best performance compared
with six advanced methods on predicting synergistic
drug combinations.

• PRODeepSyn’s predictions are consistent with many pre-
vious in vivo and in vitro studies.

• PRODeepSyn is expected to become a powerful tool for
the prescreening of anticancer synergistic drug combi-
nations.
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