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Type-I interferons (IFN-I) are a widely expressed family that could promote antivirus 
immunity in the process of pathogens invasion. In a human immunodeficiency virus 1 
(HIV-1)-infected individual, the production of IFN-I can be detected as early as the acute 
phase and will persist throughout the course of infection. However, sustained stimulation 
of immune system by IFN-I also contributes greatly to host-mediated immunopathology 
and diseases progression. Although the protective effects of IFN-I in the acute phase of 
HIV-1 infection have been observed, more studies recently focus on their detrimental 
role in the chronic stage. Inhibition of IFN-I signaling may reverse HIV-1-induced immune 
hyperactivation and furthermore reduce HIV-1 reservoirs, which suggest this strategy 
may provide a potential way to enhance the therapeutic effect of antiretroviral therapy. 
Therefore, we review the role of IFN-I in HIV-1 progression, their effects on different 
immunocytes, and therapeutic prospects targeting the IFN-I system.
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iNTRODUCTiON

Human immunodeficiency virus 1 (HIV-1) is a highly pathogenic retrovirus that causes immune 
system degeneration (1). In the past 30  years, antiretroviral therapy has achieved considerable 
advances. However, despite remarkable scientific achievements in HIV-1 diagnosis and treatment, 
acquired immune deficiency syndrome (AIDS) still prevails and there are estimated 35 million 
people worldwide living with HIV-1 infection or AIDS (2, 3). The innate immune system, a signifi-
cant alarm system in our body, has been caught more attention on resisting foreigner pathogens in 
recent years (4–6). One of the key effector molecules in innate system is interferons (IFNs), which 
rapidly respond to virus infection by a broadly, non-specific manner.

Interferons are classified into three groups based on the structure of their receptors: type I 
(IFN-α, IFN-β, IFN-κ, IFN-δ, IFN-ε, IFN-τ, IFN-ω, and IFN-ζ), type II (IFN-γ), type III (IFN-λ1, 
IFN-λ2, and IFN-λ3). Among these three types, IFN-I bind to a cell surface receptor complex 
known as the IFN-α/β receptor (IFNAR), which consists of IFNAR1 and IFNAR2 chains (7). 
Contrary to the limited expression of type II and type III interferons receptor, IFNAR is widely 
expressed on almost all kinds of immunocytes and epithelial tissue (5, 8, 9), suggesting that IFN-I 
have an extensive influence and are able to arouse quick activation of the whole immune system.

Innate immune responses mainly derive from the recognition of viral pathogen-associated 
molecular patterns (PAMPs) by host pattern recognition receptors (PPRs) such as toll-like receptors 
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(TLRs), retinoic acid-inducible gene (RIG)-I-like receptors 
(RLRs), and other DNA-sensing receptors (10–12). Upon sensing 
PAMPs, several downstream signal molecules and transcriptional 
factors will be recruited, subsequently production of IFNs, espe-
cially IFN-I, is stimulated. At the earliest stage of acute infection, 
the production of IFN-I and other inflammatory cytokines is 
an essential event to determine the rate of virus replication and 
spreads (11, 13, 14). Unfortunately, this response is usually inef-
fective to suppress HIV-1 activity, due to the ability of this virus to 
hijack host immune system and evade the IFN-mediated antiviral 
activities (4). Moreover, the persistent IFN-I secretion greatly 
disturbs the immune homeostasis, contributing to immune 
activation-dependent disease progression (15, 16).

The administration of IFN-I, especially IFN-α, as monotherapy 
or an adjunct to combined antiretroviral therapy (cART), has 
been intensively reported (17), but the results varied greatly. In 
addition, as the continuous IFN-I production impedes immune 
recovery and enhances T cells exhaustion, IFN-I blockade may 
provide another strategy to weaken the virus-induced immune 
hyperactivation in the chronic HIV-1 infection (18, 19). Actually, 
inhibition of IFN-I system is likely to be an efficient way to reverse 
excessively elevated IFN-I signaling and rescue specific anti-
HIV-1 immunity (20). Concerning the extensive impact of IFN-I 
system, it is unclear whether this method to shut off the IFN-I 
system is beneficial to pathogenesis or merely a secondary effect.

In this review, we will discuss the stimulation of IFN-I by 
sensing viral pathogens after HIV-1 infection, the antiviral/
immunomodulatory activities of IFN-I on different immuno-
cytes, and the manipulation of IFN-I system as a therapeutic 
strategy in vivo.

THe iNDUCTiON OF iFN-i iN THe 
PROCeSS OF Hiv-1 iNFeCTiON

Recognition of Hiv-1 by PRRs  
in innate immune System
At the beginning of infection, HIV infects immunocytes such 
as dendritic cells, macrophages and CD4+ T cells in the human 
intestinal mucosal. In this process, virus can be rapidly recog-
nized by innate immune system through a series of complex 
mechanisms as follows. The initial sensing of HIV-1 is mediated 
by PRRs. There are four classes of PRRs family have been identi-
fied, including transmembrane protein as TLRs and C-type lectin 
receptors, as well as cytoplasmic proteins as RLRs and NOD-like 
receptors (21). They recognize conserved structures of HIV-1 
nucleic acid, which is called PAMP. The interaction between 
PAMP and PRRs will result in different level of immunocytes 
activation. And evidence has been found that plasmacytoid 
dendritic cells (pDCs) produce the highest level of IFN-I once 
sensing PAMP, whereas the production of IFN-I is barely detect-
able in other immune cells (22).

HIV in vivo can be divided into two types: cell free virus and 
cell-associated virus. The former is the virus infected directly from 
outside; while the latter is produced through viral RNA reverse 
transcription, integration and packaging in infected CD4+ T cells 
(Figure 1). However, they enter pDCs through separate pathways. 

Cell free virus are taken up by pDCs through endocytosis medi-
ated by envelope–CD4 interaction (23, 24), while cell-associated 
virus enter pDCs by fusion or endocytosis (14). Although cell-
associated viruses are at a high level in vivo, they are a less potent 
inducer of IFN-I than cell free virus (25). One of the possible 
reasons is that most of cell-associated viruses are defective viruses 
which are not able to induce effective immune responses.

Plasmacytoid dendritic cells highly express TLR7, which 
greatly enhances their ability to produce IFN-I up to 1,000-fold 
more than other cell types’ response to HIV-1 infection (26). 
In the cytosol of pDCs, HIV nucleic acid is presented to TLR7 
located in endosomes, which is transferred from the endoplasmic 
reticulum (ER) to endosome via polytopic membrane protein 
UNC93B1 and heat shock protein gp96 (27, 28). After the forma-
tion of endosomes, TLR7 rapidly catches up with single-strand 
RNA (ssRNA) (29). But the specific character of these ssRNA 
has not been identified. Moreover, TLR3 is the other essential 
TLR expressed in pDCs, which detects both ssRNA and double 
strands RNA (dsRNA) (30, 31). Similarly, TLR3 also transferred 
from ER to endosome. In mature endosome, activated TLR7 and 
TLR3 by pathogenic nucleic acid is phosphorylated by tyrosine 
kinase-Src (32, 33). Although TLR7 and TLR3 are both explicitly 
expressed in pDCs, TLR7 plays a more important role in recog-
nition of pathogenic nucleic acid and stimulation of IFN-I in 
response to HIV-1 infection (34).

Although ways of HIV-1 entering into macrophage and CD4+ 
T  cells are similar to that entering into pDCs, the recognition 
of HIV nucleic acid by these cells are completely different. In 
these cells, viral RNA is detected by RIG-I, a cytosolic recep-
tor, without the generation of endosomes. RIG-I is a member 
of DExD/H box RNA helicases family. The crystal structure of 
RIG-I can be divided into three distinct domains: N-terminal 
region consisting of caspase activation and recruitment domains 
(CARD) to trigger IFN-I secretion; a central DExD/H box RNA 
helicase domain binding to specific RNA; as well as C-terminal 
repressor domain (35, 36). Just because of the special structure 
of RIG-I, PAMP of RNA virus whose sequence is marked with 5′ 
triphosphorylated (5′ppp) ends could be well recognized (35). 
It is by 5′ppp marks that RIG-I distinguishes exogenous RNA 
from their own (37). Various studies confirm that RIG-I−/− mice 
become more susceptible to RNA virus infection (35, 38, 39). 
Furthermore, stimulating the RIG-I pathway by retinoic acid 
effectively reactivates HIV reservoirs and promotes apoptosis 
of these infected cells, leading to the enhancement of innate 
immune system to eliminate latent reservoirs (40).

interferon-Regulatory Factors (iRFs) 
Regulating the Production of iFN-i
Interferon-regulatory factors are a member of transcription fac-
tors that place in the central position of innate immune responses. 
Actually, they play a crucial role in bridging PRRs and the induc-
tion of IFN-I in gene-regulatory network (4). IRFs family consist 
nine members: IRF 1–9. The common of these transcriptional 
factors is that they all contain a conserved DNA-binding domain 
to recognize DNA sequences known as IFN-stimulated response 
element (41). Especially IRF-3 and IRF-7, they are main regulators 
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FigURe 1 | Recognition of human immunodeficiency virus 1 (HIV-1) by innate immune system. In plasmacytoid dendritic cells (pDCs), cell-free HIV is taken up 
through endocytosis while cell-associated virus enters into pDCs by fusion and endocytosis. The single-strand RNA (ssRNA) released from virus is recognized by 
TLR3 and TLR7. Then the activated toll-like receptors (TLRs) stimulate MyD88 and TRIF signal pathway, recruit NF-κB and interferon-regulatory factor (IRF)-7, 
respectively, to trigger type-I interferons (IFN-I) production. In macrophages and CD4+ T cells, HIV-1 enters cells mainly through fusion and endocytosis. But the 
ssRNA is detected by retinoic acid-inducible gene (RIG)-I, which stimulates mitochondrial antiviral signaling protein (MAVS)–IRF-3 dependent pathway, and next 
moderately induces the expression of IFN-I.
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in producing IFN-I among pDCs, macrophages and CD4+ T cells 
after the interaction of PAMP and PPRs.

Interferon-regulatory factor-7 has attracted much attention 
for its function in pDCs. Upon recognition of HIV-1 ssRNA 
by TLR7 and TLR3 in endosome, a complex including IRF-7, 
IRAK, TRAF6, and other proteins are rapidly recruited (42, 43). 
However, the complex is engaged by these two TLR through 
distinct pathways: TLR7 is mediated by a MyD88-dependent 
manner whereas TLR3 by TRIF (44, 45). The establishment of 
complex drives the phosphorylation of IRF-7 by IRAK1 and 
IKKα. Then phosphorylated IRF-7 translocates from cytoplasm 
into nucleus, attach to the promoter of IFN-I and increase their 
expression (42, 46). At the same time, the complex activates 
NF-κB by a MyD88-TRAF6 dependent pathway, which further 
stimulates the production of IFN-1. Notably, phosphorylated 
IRF-7 can form a dimer (a homodimer or a heterodimer with 
IRF-7), which stimulates the activity of histone-acetyltransferase 
to loosen chromatin structure and facilitate more efficient tran-
scription of IFN-I (47).

The other significant IRFs that have been intensively studied 
in HIV infection is IRF-3. Similar to IRF-7, IRF-3 also resides 
in the cytosol. However, the recruitment of IRF-3 follows the 
interaction between viral RNA and RIG-I in macrophage and 
CD4+ T  cells (37). During viral infection, 5′ppp RNA PAMPs 
bind to R-terminal region of RIG-I, which cause the release of 
CARD to trigger CARD-depended interaction with mitochon-
drial antiviral signaling protein (MAVS) that is located on the 
outer mitochondrial membrane (48, 49). The activation of MAVS 
strongly catalyzes 2,3′-guanosine-adenosine monophosphate 
(cGAMP), which is the paramount agonist of stimulator of 
interferon genes (STING). STING initially aggregate around the 
MAVS, then stimulate the downstream signaling cascades that 
involve multiple kinases and finally lead to the phosphorylation 
of IRF-3 (50). Following behind phosphorylation, IRF-3 shares 
the similar mechanism of facilitating the transcription of IFN-I 
as IRF-7. Importantly, recent advances show that reverse tran-
scribed HIV-DNA but not its RNA induces IRF-3 activation and 
IFN-I production depend on cGAMP–STING–IFI16 pathway 
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in macrophage (51–53). In addition, the polyglutamine binding 
protein 1 (PQBP1) is recently identified as the co-receptor of 
HIV-DNA to trigger cell-autonomous antiviral responses (54). 
Therefore, PQBP1 as an immune regulator provides a pharma-
cological target to improve the efficiencies of HIV medicine. 
However, sensing of HIV-DNA by IFI16 cannot induce IFN-I 
production in CD4+ T  cells, resulting the HIV evasion from 
innate immune system and formation of HIV reservoirs (55).

Interestingly, IRF-3 functions at the initial transcription 
of IFN-I gene. Whereas IRF-7, the upregulation of which also 
need the stimulation by IFN-I itself, is involved in the late phase 
of IFN-I gene induction. That is to say, the induction of IFN-I 
by IRF-3 is mediated by a two-step activation, which forms a 
positive-feedback-loop (56). It is likely another reason that pDCs 
produce the highest level of IFN-I as is mentioned earlier.

eFFeCTS OF iFN-i ON iMMUNOCYTeS  
iN CHRONiC Hiv-1 iNFeCTiON

Unlike the effective response in other infectious diseases, IFN-I 
in HIV-1 infection becomes rapidly dysfunctional and unable 
to purge the virus finally. Inversely, as the widely expression of 
IFNAR, prolonged virus replication and sustained stimulation 
of IFN-I progressively induce a generalized immune activa-
tion, injured inflammation, as well as T cell exhaustion (2, 46). 
Moreover, a strong correlation between the levels of IFN-I and 
disease progression has already been observed. In the models of 
simian immunodeficiency virus (SIV) infection, the common 
character of long time non-progression macaques is that they 
can induce rapid and transient high levels of IFN-I but declines 
in the chronic phase (19, 57, 58). Though the administration 
of cART can effectively suppress the replication of HIV-1, it 
cannot completely reverse the immune hyperactivation caused 
by IFN-I (59, 60). In the lymphocytic choriomeningitis virus 
(LCMV) mouse models, persistent production of IFN-I exacer-
bates CD4+ T cell exhaustion and is detrimental to its antiviral 
response (61–63). Other researches also indicate that chronic 
infection of LCMV induces inhibitory molecules expression 
and apoptosis of Treg (64, 65). These studies suggest that com-
pare to a positive role of IFN-I on restricting virus spread and 
replication at the acute phase of infection, IFN-I tend to exert 
a negative effect on different immunocytes in chronic HIV-1 
infection.

Plasmacytoid dendritic cells are a special dendritic cell 
subset that produces a large amount of IFN-I in the process of 
HIV-1 infection. With the progression of HIV-1 infection, pDCs 
gradually decrease in blood while accumulate in lymph nodes. 
pDCs from these lymph nodes secrete higher titer of IFN-α 
spontaneously but not express co-stimulatory molecular (66). 
These nonfunctional cells are continuously produce IFN-I but 
cannot develop into mature antigen presentation cells. Instead, 
the redistributed pDCs increase staining of Annexin V and thus 
exhibit apoptosis (67). Even for cART treatment patients, the fre-
quency and function of pDCs in peripheral blood is decline and 
accumulate in gut-associated lymphatic tissue (68). Moreover, in 
the chronic phase of HIV-1 infection, the excessive IFN-I may 

result in the dysregulated activation and even depletion in pDCs. 
In SIV models, a negative correlation between the decline of cir-
culating pDCs and overexpression of IFN-I are observed during 
pathogenic SIV infection of macaques, but not in natural ones 
(69). Furthermore, pDCs with the upregulation of β7-integrin 
and CD103 are aggregated to the colorectum in chronic HIV-1 
infected patients, which facilitates much more production of 
IFN-I (70, 71). Unfortunately, the amount of IFN-I produced 
by these lymphatic tissues is much more than what organisms 
really need to fight infection (71). Furthermore, these redundant 
IFN-I will lead to the activation of innate immune system and 
conversely damage the normal function of pDCs. However, 
the specific mechanism how IFN-I interacts with pDCs has 
not been clearly elucidated. There are two possible reasons for 
this phenomenon: On the one hand, pDCs that are persistently 
stimulated by IFN-I express low levels of migration receptors 
and regulatory factors, such as CCR7, CD40, and CD86. These 
pDCs produce IFN-I since pathogenic nucleic acid traffics to 
the endosome (72, 73), which induces apoptosis to these out-of-
control cells mediated by the TNF-related apoptosis-inducing 
ligand (TRAIL) (74). On the other hand, IFN-I activates the 
non-canonical NF-κB signaling in pDCs. This pathway will pro-
mote the expression of indoleamine 2,3-dioxygenase, the most 
essential factor to gather regulatory T  cells (Treg) (75). These 
pDCs-induced Treg intensively inhibit the maturation of pDCs 
through the engagement of cytotoxic T-lymphocyte antigen 
(CTLA)-4 and PD-1 on these activated pDCs (6).

Natural killer (NK) cells play a crucial role in innate immune 
system that act as the first line to defense HIV-1. First, the 
interaction between killer immunoglobulin-like receptors 
expressed on the surface of NK  cells with their cognate HLA 
ligands sets a guarantee recognize specific HIV-derived peptides 
and eliminate HIV-1 infected cells (76, 77). Second, antibody-
dependent cellular cytotoxicity (ADCC) is the other way of 
NK  cells to control HIV-1 infection. Notably, ADCC activity 
was associated with the modest protective efficacy in the RV144 
HIV vaccine trial (78). Moreover, new data show that the levels 
of NK cells activation is tightly associated with HIV-1 virologi-
cal suppression in patients receiving cART (79). Patients who 
initiate ART early during infection obtain the improvement of 
cytotoxic function of the NK cells while decline of the levels of 
ADCC mediating antibodies (80, 81). These data suggest that 
NK cells. However, during the whole phase of HIV-1 infection, 
the relation between NK cells and IFN-I is complicated. In the 
acute infection, IFN-I has been observed to promote NK cells 
survival, expansion, maturation, activation and enhance their 
cytotoxic activity against virus (82, 83). In IFNAR−/− mice, 
there are barely detectable mature NK cells in peripheral blood 
(84). Identically, impaired cytotoxicity ability as well as a loss 
of highly activated subset of NK cells has been found in rapid 
progressors (85). But in the chronic HIV-1 infection, IFN-I may 
greatly disturb the normal function of NK  cells. First, despite 
viral control well, NK  cells are consistently activated in the 
chronic HIV-1 infection after the establishment of reservoirs. 
In the presence of high level of IFN-I, activated NK  cells 
attenuate the cytotoxicity of CD8+ T  cells response to virus 
infection. As the suppressed function of NK  cells and CD8+ 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Wang et al. IFN-1 in HIV-1 Pathogenesis and Therapy

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1431

T cells, HIV escape from ADCC and CTL effect (86). Another 
research demonstrates that NK cells-depletion mice promoted 
virus-specific T cells response and contributed to viral control 
(87). Second, IFN-I disturbs the balance between STAT1 and 
STAT4, two downstream transcriptional factors of IFNAR in 
NK cells. In HCV/HIV coinfected patients, high level of IFN-I 
is relevant to the upregulation of STAT1 while downregulation 
of STAT4, which increase the expression of perforin induced by 
interleukin (IL)-12 (88). This mechanism further prompts the 
nonfunctional activation of NK cells. Thirdly, IFN-I decreases 
the production of IFN-γ through upregulating the expression of 
IL-10 and PD-L1 in NK cells (89), which further weaken their  
cytotoxic effects.

It is well established that HIV-infected patients maintain 
persistently high circulating CD8+ T  cells number, in spit of 
many years of therapy (90). The CD4/CD8 ratio often fails to 
become normal despite CD4 count normalization. Notably, new 
data showed that the majority of CD8+ T proliferation and activa-
tion was induced in an antigen-independent manner (91). The 
great disturbing of T cell homeostasis makes the immune system 
dysfunctional and exhausted in the chronic HIV-1 infection. It is 
intensely investigated that IFN-I is responsible for the expansion 
of CD8+ T cells. On the one hand, IFN-I has been shown to induce 
memory CD8+ T cells proliferation and differentiation through 
bystander effect (92, 93). Thus, it is hypothesis that sustained 
exposure to IFN-I could contribute to CD8+ T cell persistence. 
On the other hand, during the chronic infection, IFN-I favor 
the formation of terminally differentiated CD8+ T cells that do 
not renew but enhanced cytotoxic function. This subset skewing 
likely contributes to the progressive IFN-I-mediated immune 
dysregulation (61, 89).

As we all known, HIV-1 features as the destroyer of CD4+ 
T cells. It is the death of this kind of cell that propels the late phase 
of clinical procession, AIDS (2, 26). Although IFN-I could silence 
T cells to limit viral replication and program cells death to get rid 
of HIV-1 infection, IFN-I also influence the differentiation of 
T cells and induce death of HIV-1 uninfected cells via bystander 
effect (92, 94). On the one hand, depending on cytokine environ-
ment, naïve CD4+ T cells mainly differentiate into Th1, Th2, Treg, 
and follicular T helper (Tfh) cell populations that have different 
biological functions (95). Actually, continuously stimulated by 
IFN-I facilitate naïve CD4+ T cells differentiate toward Th2 cells, 
leading to a severe disproportionality of Th1 and Th2 (96, 97). 
On the other hand, IFN-I induces apoptosis of uninfected CD4+ 
T  cells in peripheral blood and in secondary lymphatic tissue 
by upregulating TRAIL expression on CD4+ T cells, leading to 
the destruction of lymph node in gastrointestine in the acute 
phase of HIV-1 infection (98). Recent studies revealed that the 
death of 95% resting, non-permissive CD4+ T cells are caused 
by caspase-1-mediated pyroptosis, a highly inflammatory form 
of programmed cell death (99, 100). With the stimulation of 
IFN-I, the expression of PD-1 is upregulated in exhausted T cell. 
Instead, blockade of PD-1/PD-L1 pathway helps to restore the 
function of T  cells and decrease the viral load (101). Another 
studies also show that IFN-I significantly suppress HIV-1-specific 
CD4+ T response, while blockade of IFN-I signaling pathway 
inactivates immune system, downregulates the expression of 

negative immune-regulatory factors and maintains the lymphoid 
structure after chronic LCMV infection (89, 102). In the model 
of humanized mice, blocking IFNAR rapidly enhances CD4+ T 
recovery and reduces HIV-1 reservoirs (103).

Recently, a special subset of CD4+ T cells, Tfh cells, has been 
intensively reported for its function to induce memory B cells 
activation, survival, differentiation, as well as assist B  cells to 
produce antigen-specific neutralizing antibodies. At the same 
time, Tfh cells act as the major CD4+ T cells compartment for 
HIV-1 infection, replication, and long-lived viral reservoirs 
(104, 105). In the chronic HIV-1 infection, the differentiation 
of Tfh cells impairs greatly as the repressive effect by excessive 
production of IFN-I and the activation of signal transducer and 
activator of transcription 3 (106). But this effect can be partly 
conversed by blocking the IFNAR in mice (107). Moreover, the 
population of HIV-specific Tfh cells expand during the chronic 
phase in patients who have a relatively high level of plasma HIV-
RNA and IFN-I, which in turn leads to perturbation of B-cell 
differentiation, resulting in dysregulation antibody production 
(108). While in elite controllers, a stronger capacity to induce 
B cells maturation in Tfh cells is always tightly correlated to the 
low level of IFN-I (109, 110).

In addition, several studies indicate that the IFN-I also dam-
age the normal function of B  cells in the consistent presence 
of IFN-I. Indeed, IFN-I, especially IFN-α, is one of the most 
essential factor that contribute to the B-cell hyperactivation 
and exhaustion in HIV-1 viremic individuals (111–113). The 
loss of CD21 expression on exhausted B lymphocytes is a reli-
able marker of HIV-1 disease progression (114). It has been 
demonstrated that these cells that express low levels of CD21 
is associated with the high expression of inhibitory markers as 
PD-1 and CTLA-4 (115, 116). Interestingly, IFNAR also express 
highly in these cells, which suggests that IFN-I plays a role on 
B cells dysfunction (117, 118). Another subpopulation of lym-
phocytes response to IFN-I is Treg, who work as a dominant role 
in immunosuppressive function to protect body from unwanted 
immune responses and maintain the homeostasis of immune 
system (119). However, the function of Treg is suppressed 
during the process of HIV-1 infection. When IFN persistently 
stimulated by IFNAR expressed on Treg, downstream signaling 
molecules will have impact on the expansion and suppressed 
function of Treg in turn (120). On the one hand, IFN-I inhibits 
Treg proliferation through a higher phosphorylation of STAT1 
and a lower expression of suppressor of cytokine signaling 1 
(121). Notably, this inhibition is tightly correlated with lower 
frequency of virus-specific CD8+ T response and viral clearance 
(122). On the other hand, chronic HIV-1 infection also leads to 
the downregulation of Foxp3. Foxp3 appears to act as a master 
regulator on the development and suppression function of Treg 
(123, 124). The possible mechanism is that IFN-I induces the 
secretion of IL-10 and decreases transforming growth factor-β. 
The overexpression of inhibitory inflammatory factors will 
competitively inhibit the suppressive function of Treg to rectify 
the disorder in immune system, which causes dysregulation in 
Foxp3 (125–127).

Overall, these observations confirm that the detrimental 
effect of IFN-I on immunocytes is evident during chronic HIV-1 
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Table 1 | Studies of IFN-I administration in human.

Participants intervention Conclusions Reference

261 HIV-infected patients failing current 
cART treatment with plasma HIV-1-RNA 
>2,000 copies/mL

0.5, 1.0, 1.5, and 3.0 µg/kg pegylated IFN-α or  
placebo with current cART × 4 weeks followed  
with optimized cART × 24 weeks

IFN-α greatly decreases HIV-RNA level
No significant changes in CD4+ and CD8+ T cells  
count between treatment and control arms

Angel  
et al. (130)

174 HIV-infected patients without receiving 
cART with CD4+ T cells count ≥500 cells/μL

 a. 200 mg/4 h AZT × 52 weeks
 b. 1 MIU/day IFN-α 2b with IFN-dose 

escalation × 52 weeks
 c. 200 mg/4 h AZT in combination with  

1 MIU/day IFN-α 2b × 52 weeks

In combination with IFN-α greater decreases  
HIV-RNA level than AZT alone
IFN-α transiently increase the CD4+ T cells count

Tavel  
et al. (131)

13 HIV-infected patients without receiving 
cART with CD4+ T cells count ≥300 cells/μL 
and plasma  
HIV-1-RNA >5,000 copies/mL

180 μg/week of pegylated IFN-α 2a × 12 weeks Pegylated IFN-α 2a slightly decreases HIV-RNA  
and increases in CD4+ T cells count

Asmuth  
et al. (132)

168 HIV-infected patients receiving cART with 
CD4+ T cells count ≥350 cells/μL and plasma 
HIV-1-RNA <400 copies/mL

1.5 μg/kg/week pegylated IFN-α 2a from day  
15 followed by cART interruption to day 8 after  
each cART resumption

IFN-α greatly decrease the CD4+ T cells  
count and do not prolong the time to  
treatment resumption

Boué  
et al. (134)

89 HIV-infected patients without  
receiving cART

 a. 1 μg/kg/week pegylated IFN-α 
2a × 14 weeks + cART

 b. 1 μg/kg/week pegylated IFN-α 
2a × 14 weeks + cART × 36 weeks followed by 
interruption at week 36, 48, and 60

 c. 1 μg/kg/week pegylated IFN-α 
2a × 14 weeks + cART × 36 weeks followed by 
interruption at week 36, 48, and 60 with IFN-α

Viral rebound and HIV-DNA is lower in IFN-α  
group but no difference after 6-month interruption
CD4+ T cells count is higher in IFN-α group but  
also no difference after 6-month interruption

Goujard  
et al. (133)

23 HIV-infected patients receiving cART  
with CD4+ T cells count >450 cells/μL

 a. 180 μg/week of pegylated IFN-α 2a with 
cART × 5 weeks + pegylated IFN-α 2a with  
cART interruption × 12 weeks

 b. 90 μg/week of pegylated IFN-α 2a with 
cART × 5 weeks + pegylated IFN-α 2a with  
cART interruption × 12 weeks

Pegylated IFN-α 2a results in a sustained  
control of viral replication in 45% of subjects  
with cART interruption and a significant  
reduction of integrated HIV-DNA in CD4+ T cells

Azzoni  
et al. (135)

12 HIV/HCV-coinfected patients receiving 
cART with suppressed HIV-1 viremia

180 μg/week of pegylated IFN-α 2a and ribavirin 
500–600 mg twice daily

Approximately twofold decreases of total  
and integrated HIV-DNA in CD4+ T cells  
during and after IFN-α/ribavirin therapy

Sun  
et al. (138)

 a. 15 HIV/HCV-coinfected patients
 b. 17 HIV-infected patients

 a. 180 μg/week IFN-α and ribavirin 900 mg twice 
daily × 48 weeks + cART

 b. cART

IFN-α obviously decreases CD4+ T cells count  
and HIV-DNA, especially 2-LTR circular HIV-DNA

Jiao  
et al. (136)

162 HCV treatment naïve or experienced 
patients coinfected  
with HIV-1

 d. ca. 750 mg/8 h telaprevir + 180 μg/week IFN-α  
and ribavirin 800 mg/day × 18 weeks + cART

Telaprevir and IFN-α decreases CD4+ T cells  
count and three patients had a viral load  
increase ≥200 copies/mL

Montes  
et al. (137)

IFN, interferon; IFN-I, type-I interferons; HIV-1, human immunodeficiency virus 1; cART, combined antiretroviral therapy.
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infection. Despite the effective suppression of HIV viral load 
achieved by cART, it cannot completely reverse the immune 
hyperactivation and negative function induced by IFN-I. How 
to take advantage of IFN-I to restrict HIV-1 replication while 
restore the normal function of immunocytes is a key point we 
must balance.

THeRaPeUTiC STRaTegieS TaRgeTiNg 
iFN-i SYSTeM IN VIVO

As is mentioned earlier, although it is apparent for the importance 
of IFN-I on limiting HIV-1 in the acute phase of infection, dys-
functional IFN-I is more likely to disturb the balance of immune 
system and be detrimental to the function of pDCs, NK  cells, 
CD4+ T  cells and Treg in the chronic phase. Considering the 
complexity of IFN-I system, manipulating this system may have 

unpredictable consequences in vivo. Thus, it is reasonable to use 
or block this system in the treatment and prevention of HIV 
infection, but the virological and immunological effects must 
weigh against the possible adverse events. Nowadays, therapeutic 
strategies toward IFN-I system consists of two aspects: admin-
istration of IFN-I or inhibiting its signaling pathway. Next, we 
will summarize the related studies about IFN-I system in clinical 
trials or in HIV-1/SIV/LCMV models.

Clinical effects of administration  
of iFN-i in Hiv-1 infection
The administration of IFN-I to resist HIV infection undergoes two 
stages. In the era of pre-cART, IFN-I can be used as a monother-
apy on HIV/AIDS. In 1990, a randomized, double-blind clinical 
trial conducted in 34 HIV-infected patients with the treatment 
of IFN-α 2b showed that early administration of IFN-I could 
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Table 2 | Studies of TLR and IFNAR blockade in vivo.

Species virus Methods Conclusions Reference

Human HIV-1 13 patients without receiving cART with CD4+ T 
≥250 cells/μL treated with chloroquine or placebo  
for 2 months in chronic HIV-1 infection

Significantly reducing CD4+ and CD8+ T cells activation Murray  
et al. (140)

Human HIV-1 83 patients without receiving cART with CD4+ T 
≥400 cells/μL treated with hydroxychloroquine or  
placebo for 48 weeks in chronic HIV-1 infection

 a. Hydroxychloroquine tolerated well
 b. No effect on CD8+ T cells activation
 c. Increasing viral load and declining CD4+ T cells count

Paton  
et al. (141)

Human HIV-1 19 patients on cART with CD4+ T ≤350 cells/μL  
and undetectable viral load treated with chloroquine  
in combination with cART for 24 weeks in chronic  
HIV-1 infection

 a. Chloroquine tolerated well
 b. Increasing the level of IFN-α2 production
 c. No effect on CD4+ and CD8+ T cells recovery, T cell activation  

and inflammation markers in plasma

Routy  
et al. (142)

Rhesus macaques SIV Chloroquine to inhibit TLR7 and TLR9 signaling in  
acute in acute SIV infection

 a. No changing in the level of cell activation
 b. Temporary increasing the expression of interferon- 

stimulating genes
 c. Decreasing CD4+ T cells recovery

Vaccari  
et al. (143)

Rhesus macaques SIV IFNAR antagonist to block IFN-α2 activity or  
exogenous IFN-α treatment in acute SIV infection

Higher viral load and accelerating disease progression  
whether by administration of IFNAR antagonist or induction  
of an IFN-tolerate state

Sandler  
et al. (17)

Mice LCMV Anti-IFNAR (MAR1-5A3) and clodronate liposomes  
in chronic LCMV infection

Preserving the function of virus-specific B cells and accelerating 
neutralizing antibody production

Moseman  
et al. (145)

Hu-mice HIV-1 Using a monoclonal antibody to block IFNAR2  
(clone MMHAR-2) in chronic HIV-1 infection

 a. Reversing immune exhaustion
 b. IFNAR blockade in combination with cART achieving faster  

viral suppression and lower HIV-1 reservoirs

Zhen  
et al. (144)

Hu-mice HIV-1 Using a monoclonal antibody to block IFNAR1  
(extracellular domain and transmembrane domain)  
in chronic HIV-1 infection

 a. Greatly suppressing aberrant immune activation
 b. Reducing the exhaustion of T cells
 c. Decreasing HIV-1 reservoirs and delaying virus rebound after  

cART discontinuation

Cheng  
et al. (103)

HIV-1, human immunodeficiency virus 1; IFNAR, IFN-α/β receptor; TLR, toll-like receptor; cART, combined antiretroviral therapy; SIV, simian immunodeficiency virus;  
LCMV, lymphocytic choriomeningitis virus.

decrease the frequency of viral isolation and slow the progress  
of disease despite a few side-effects such as flu-like symptoms  
and granulocytopenia (128). Another trial fixed attention on 
patients with AIDS-associated Kaposi’s sarcoma. Although the 
absolute CD4+ T cells count in these patients was relatively low, 
50% of them were observed on tumor regression and reduction 
in HIV after treatment with IFN-α for 12 weeks (129).

However, with the development of cART, IFN-I is more likely 
to act as an adjunct therapy instead of monotherapy. In recent 
10  years, most of trials were designed to treat patients with 
IFN-α in association with cART, but the results varied greatly 
(summarized in Table  1). In 2009, more than 200 treatment 
failure patients were enrolled to receive the administration 
of IFN-α before optimization of their antiretroviral therapy, 
finally they were observed a significant decrease in HIV-RNA, 
but no effect on CD4+ T  cells count compared with placebo-
controlled group (130). Subsequently, several studies carried 
out in treatment naïve patients, although the majority of these 
patients had a high level of HIV-RNA at first, administration 
of IFN-α resulted in a great decline in viral load as well as  
a transient increase in CD4+ T  cells count (131, 132). At the 
same time, IFN-α was added to current treatment of cART, 
but the results seemed paradoxical: one indicated that IFN-α 
had a negative effect on disease progression (133), while the 
other suggested IFN-α decreased HIV reservoirs and delayed 
virus rebound after treatment interruption (134). Recently, two 

researches recruited patients who was coinfected with HIV/
HCV and received IFN-α in combination with ribavirin, the 
result of which showed a reduction in integrated HIV-DNA 
and 2-LTR circular HIV-DNA (135–137). Altogether, admin-
istration of exogenous IFN-α intends to decrease HIV-RNA or 
HIV-DNA transiently in these studies. But the mechanism of 
IFN-α-induced reduction of HIV-RNA or HIV-DNA remains 
uncertain. Notably, it is well recognized that IFN-α treat-
ment is related to decreasing CD4+ T-cell counts, raising the  
possibility that reductions of HIV viral load during IFN-α 
therapy may result from its unspecific lymphocellular toxicity 
(138). Although IFN-α could decrease the viral burden, adding  
IFN-α to the current antiretroviral therapy is not likely to 
enhance T cells reconstitution and improve clinical outcome. 
Due to the high variability of HIV, the effects of exogenous  
IFN-α will be rapidly compromised and dysfunctional. Indeed, 
these IFN-α further disturbs the balance of immune system and 
even have a negative effect to some extent.

influences of inhibiting iFN-i  
Signaling In Vivo
Faced with challenge about immune disorder in long-term 
treatment of cART, more attention is fixed on inhibiting IFN-I 
signaling pathway to reverse hyperactivation and exhaustion 
of immune system caused by redundant production of IFN-I. 
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Recent studies in vivo about manipulating IFN-I system consists 
of two aspects: inhibiting TLR to decrease the production 
of IFN-I and blocking IFNAR to interfere with its signaling  
(summarized in Table 2).

As is mentioned earlier, pDCs play a significant role in 
producing IFN-I. It may be an effective way to administrate 
chloroquine, a novel endosomal inhibitor in blocking TLR7 and 
TLR9 in pDCs, to reduce IFN-I products (139). Unfortunately, 
the results of several clinical trials about this strategy seem 
complicated. First, after receiving chloroquine for 2 months in 
13 cART-naïve patients, decreased CD4+ and CD8+ T cells acti-
vation were observed (140). Although the result was encourag-
ing, later research indicated that receiving hydroxychloroquine 
seemed to be no effect on CD8+ T cells activation while hindered 
the recovery of CD4+ T  cells (141). Similarly, chloroquine 
had a negative influence on immunological non-responders 
(142). Therefore, the impact of reducing IFN-I production 
through chloroquine is still controversial, which needs further  
research.

On the other hand, antagonist of IFNAR has been used to 
specifically block IFN-I signaling in recent years. In 2014, a 
study showed that IFNAR blockade in the acute SIV infection 
resulted in increasing viral load, down-expression of antiviral 
genes and leading to the depletion of CD4+ T cells (17). Two 
studies conducted in the model of hu-mice also found that 
IFNAR blockade was an effective way to diminish T  cells 
exhaustion and restore immune function in the chronic HIV-1 
infection. More importantly, declined in HIV-1 reservoirs was 
also observed in these researches (103, 143, 144). However, in 
the model of LCMV, blocking IFNAR can completely reverse 
the depletion of LCMV-specific B cells and promote the secre-
tion of neutralizing antibody to resist infection (145). These 
data suggest that IFNAR blockade in combination with cART 
may provide a potential therapeutic strategy for HIV-1 infec-
tion. On account of the complex impact of blocking IFNAR 
in  vivo, the assessment of anti-immunological consequences 
and side-effects must be carried out before widespread  
implementation.

CONClUSiON

Innate immune system provides an immediate defense against 
pathogens to protect our body from infection by other organ-
isms. As the most important effector molecule, IFN-I is power-
ful to suppress HIV and stimulate the expression of a bunch 
of antiviral genes replication at the early phase of infection. 
Although IFN response seems to be effective, HIV evades the 
IFN-mediated antiviral activities later since the stimulation 
of resistance factors. According to the results of clinical trials 
mentioned earlier, administration of IFN-I may have no benefit 
on clinical outcome, confirming that it fails to restrict and clear 
HIV in vivo. However, several aspects about this process still 
require further investigation: in addition to IFN-α and IFN-β, 
the role of the other subtypes of IFN-I in this process has not 
been clear; the separate pathways to recognize HIV nucleic 
acid (ssRNA, dsRNA, or cDNA) needs to be identified in all 
types of infected cells; and the exact mechanism of HIV escape 

also have to be clarified. Future studies should address these 
uncertain questions.

Even if IFN-I do function in the early HIV infection, continu-
ously production promotes immune activation and ultimately 
exhaustion of immune system in the chronic phase. The 
detrimental effects of IFN-I on different lymphocyte have been 
intensely reported. But the regulatory mechanism in different 
lymphocytes has to be figured out.

Although the long-term clinical results of the adminis-
tration of exogenous IFN-α seem to be invalid in the acute 
phase of HIV-1 infection with or without cART, it has been 
identified that this treatment could reduce the viral load 
transiently. Future studies should lay emphasis on whether 
supplementation of IFN-I to cART therapy during chronic 
infection could further decrease the HIV-1 reservoirs.

Moreover, in animal infectious model, IFN-I blockade 
strat egy contributing to the recovery of T cells and decline in 
HIV reservoirs have been observed, suggesting that animals 
obtain benefits from this strategy. Although the results are 
encouraging, this approach has not been tried in human for its 
complicate effects. Further proof needs to be provided whether 
it is effective to decrease the morbidity of AIDS and reduce res-
ervoirs through blocking IFN-I signaling, as this strategy may 
decrease immune activation whereas increase T cell responses. 
What is more, if it is possible, clinical trials about effective 
monoclonal antibody toward IFN-I blockade are expected to 
conduct in human.

In summary, despite long terms of research, the exact rela-
tionship between the production of IFN-I, the pathway of viral 
evasion, and the induction of pathogenic cellular immunological 
injury has not been clearly deciphered. Numerous questions 
remain to answer. A better understanding of the role of IFN-I in 
HIV pathogenesis will aid in managing this pathway for thera-
peutic purposes.
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