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THE BIGGER PICTURE The web provides access to millions of datasets. These data can have additional
impact when it is used beyond the context for which it was originally created.We have little empirical insight
into what makes a dataset more reusable than others, and which of the existing guidelines and frameworks,
if any, make a difference. In this paper, we explore potential reuse features through a literature review and
present a case study on datasets on GitHub, a popular open platform for sharing code and data. We
describe a corpus of more than 1.4 million data files, from over 65,000 repositories. Using GitHub’s engage-
ment metrics as proxies for dataset reuse, we relate them to reuse features from the literature and devise an
initial model, using deep neural networks, to predict a dataset’s reusability. This work demonstrates the
practical gap between principles and actionable insights that allow data publishers and tools designers
to implement functionalities that provably facilitate reuse.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The web provides access to millions of datasets that can have additional impact when used beyond their
original context. We have little empirical insight into what makes a dataset more reusable than others and
which of the existing guidelines and frameworks, if any, make a difference. In this paper, we explore potential
reuse features through a literature review and present a case study on datasets on GitHub, a popular open
platform for sharing code and data. We describe a corpus of more than 1.4 million data files, from over
65,000 repositories. Using GitHub’s engagement metrics as proxies for dataset reuse, we relate them to
reuse features from the literature and devise an initial model, using deep neural networks, to predict a data-
set’s reusability. This demonstrates the practical gap between principles and actionable insights that allow
data publishers and tools designers to implement functionalities that provably facilitate reuse.
1 INTRODUCTION

There has been a gradual shift in the last years from viewing da-

tasets as byproducts of (digital) work to critical assets, whose

value increases the more they are used.1,2 However, our under-

standing of how this value emerges, and of the factors that

demonstrably affect the reusability of a dataset is still limited.

Using a dataset beyond the context where it originated re-

mains challenging for a variety of socio-technical reasons, which

have been discussed in the literature;3,4 the bottom line is that

simplymaking data available, evenwhen complyingwith existing

guidance and best practices, does not mean it can be easily

used by others.5
This is an open access article und
At the same time, making data reusable to a diverse audience,

in terms of domain, skill sets, and purposes, is an important way

to realize its potential value (and recover some of the, sometimes

considerable, resources invested in policy and infrastructure

support). This is one of the reasons why scientific journals and

research-funding organizations are increasingly calling for

further data sharing6 or why industry bodies, such as the Interna-

tional Data Spaces Association (IDSA) (https://www.

internationaldataspaces.org/) are investing in reference archi-

tectures to smooth data flows from one business to another.

There is plenty of advice on how to make data easier to

reuse, including technical standards, legal frameworks, and

guidelines. Much work places focus on machine readability
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and interoperability.2 For example, the Joint Declaration of Data

Citation, a statement endorsed by 120 research organizations,

affirms that ‘‘sound, reproducible scholarship rests upon a

foundation of robust, accessible data.’’7 There is an increasing

drive to publish scholarly data in line with FAIR principles, that

is to make data Findable, Accessible, Interoperable, and Reus-

able.2 The Share PSI group (https://www.w3.org/2013/share-

psi/bp/) made similar recommendations for data published by

public administrations. More recently, governments and re-

searchers have started to explore different approaches to

data governance, as a way to foster growth and competition

in areas heavily disrupted by artificial intelligence, including

transport8 and finance.9

While some of the technologies and guidelines are more

widely used than others, most existing work in this space re-

mains normative and lacks operational detail. As a community,

we know very little and have even less measurable evidence

on what makes a dataset more reusable.

The aim of this paper is then to begin to bridge the gap be-

tween such normative guidelines and operational details. We

do this through a review of the literature coupled with a deep

dive into a specific case study. Concretely, the contributions of

the paper are:

1. a compilation of reusability features of datasets and of the

mechanisms used to publish and share them, which are

commonly linked to reusability, based on a literature

review

2. a large corpus of 1.47 million datasets from 65,537 data

repositories and their characteristics made available via

GitHub, (https://github.com/laurakoesten/Dataset-Reuse-

Indicators) a popular platform used to share data sci-

ence work

3. a case study that uses a five-step approach to understand

projected data reuse in a particular corpus context:

including a machine learning model to estimate how

much a dataset will be reused based on features of the re-

pository where it was published, the actual data, and its

documentation, trained on the GitHub corpus
From the literature, we identify features pointing to reusability

of datasets that can be captured automatically (or semi-auto-

matically). We then determine correlations between these and

actual reuse, using engagement metrics of the platform where

the data was published as proxies for reuse.

Several widely shared platforms for sharing and reusing data

are available online, such as GitHub—originally focused on code

reuse or other more recent ones, such as Kaggle, (https://www.

kaggle.com/) data.world, (https://data.world/) or governmental

dataportals, focusingmore ondatasets. Eachof those are unique,

not just in how they are built and how data can be retrieved, but

also in the interactions they support and track. We focus this

work onGitHub as one of the largest andmostwidely used collab-

orative platforms with a large amount of datasets.

We select a set of four GitHub-specific engagement metrics:

the number of forks, watchers, stars, and committers. We then

create a model that predicts how likely it is for a dataset to be

reused on a four-point scale, reaching an accuracy of 59% in

the highest reusability category for our corpus.
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This case study provides an indication that such an approach

can help flag areas of improvement in how datasets are pub-

lished, for instance, around documentation; as well as monitor

the uptake of openly available datasets, by prioritizing those

reuse features that are likely to have higher impact on

engagement.

The findings confirm a tension between, on the one hand, ini-

tiatives promoting data reuse principles and technical standards,

and, on the other, operational, automated approaches that allow

data publishers and system designers to capture reuse in terms

of specific, observable features and provide actionable sugges-

tions for improvement. The findings also point to several under-

explored opportunities to encourage and facilitate dataset reuse

on the web. We outline a potential direction to further develop

both, guidance for dataset reuse as well as functionalities to pre-

dict a dataset’s reusability. We also recommend missing infor-

mation to be added at the time of data publishing to enhance

the value of existing dataset and enable meaningful reuse by

wider audiences.

2 DATASET REUSE: THE VIEW OF THE LITERATURE

We summarize guidance and recommendations for dataset

reuse from the literature, drawing on several areas, including

data science, information science, scientific data sharing, and

human-data interaction. We begin by setting the overall context

of the value of data through reuse, in particular in the context of

FAIR data. We then present a compilation of data reuse features.

In the section entitled ‘‘GitHub Case Study’’ we will link these

features to platform-specific reuse metrics and present a ma-

chine learning model that can predict how much a dataset will

be reused.

2.1 Why Reuse?
Data reuse has many economic and societal benefits—it facili-

tates reproducible research, and fosters innovation and collabo-

rations.10–12 Providing access to the data is a first important step

to reap these benefits. Equally important is to make this data

easy to use by people who were not involved in its publication.13

One of the key challenges to accessibility and uptake of the

data published on the web is to create supporting formats and

capabilities to make it useful in as many contexts as possible.14

Reuse is more common in some domains than in others. For

example, scientists reuse data of their peers to reproduce previ-

ous experiments; as such the value of data management and

documentation to scientific work is increasingly recognized.4

Developers define benchmark datasets and gold standards

that everyone can use to compare related algorithms and ap-

proaches.15,16 They reuse datasets to ensure that approaches

remain comparable. Machine learning is dependent on the avail-

ability of relevant datasets to train algorithms. In this case, reuse

is an economic necessity—machine learning architectures need

to be trained on large amounts of data and not many organiza-

tions can afford to create them from scratch.17

Data are recognized as an asset in itself, cited and archived

just like scientific literature.18 Policy makers are devising new

regulation to ensure access to high-value data assets as a

means to promote open science19 and make markets more

competitive.9,20

https://www.w3.org/2013/share-psi/bp/
https://www.w3.org/2013/share-psi/bp/
https://github.com/laurakoesten/Dataset-Reuse-Indicators
https://github.com/laurakoesten/Dataset-Reuse-Indicators
https://www.kaggle.com/
https://www.kaggle.com/
https://data.world/
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2.2 Capturing Context and Documentation as Pre-
requisites to Reuse
There aremany factors that impact on one’s ability to reuse data.

Documentation and context are commonly recognized as essen-

tial.3,4 This had led to efforts to anticipate future uses of data and

preserve and describe them. As new use cases arise, the data

science community has suggested ways to augment these de-

scriptions—for instance, machine learning specialists need in-

formation about the quality and bias in the data to inform model

building.21,22 As a result, we now have a range of proposals for

standardized documentation for data, going beyond metadata

schemas and vocabularies, such as DCAT (https://www.w3.

org/TR/vocab-dcat-2/) or schema.org, (https://schema.org/

Dataset) which are primarily used to search and browse dataset

repositories.21,23,24

Barriers to, as well as motivations for data sharing have been

investigated qualitatively (e.g., in Van den Eynden et al.25). Peo-

ple struggle to understand data without context, and while

context can mean different things, reuse without any context

reference is almost impossible to do well.26,27 When discussing

reuse, we also need to take into consideration the social role that

data play in producing scientific work.11,28 Similarly, we have to

acknowledge the complex decision-making processes that feed

into the creation of a dataset.

Someauthors argue that eachdomain (and ultimately each type

of data) will present its own requirements for reuse.29 We delve

into the difference between quantitative versus qualitative data

reuse in more detail below. However, even with such disciplinary

distinctions, our paper shows one way to improve current reuse

practices, before focusing on domain-specific requirements.25

2.3 Different Practices for Quantitative and
Qualitative Data
Different data sciencemethodologies may require different ways

to document data. Broadly speaking, it is more common to reuse

quantitative data than qualitative data.30 Carlson and Ander-

son31 comment on how highly individualized data collection pro-

cesses are across quantitative and qualitative disciplines. The

nature of null-hypothesis significance testing, which is common

in the former, leads to efforts to reduce confounding factors as

much as possible, hence creating a data environment with clear

cut boundaries, which should, in theory, be easy to document.32

In reality, many authors describe the complexities and variety of

decision-making points in this type of analysis, which pose chal-

lenges for reuse.33,34 Nevertheless, a detailed account of the

experimental set-p is common for quantitative methods; the

same would be beneficial to support the reuse of qualitative

data, which, some authors claim, is more situated within its

context and hence presents more barriers to reuse or secondary

use.35,36

Reuse of qualitative data comes with unique challenges, many

of them connected to ethical considerations, as explained in

detail by Poth.35 One of the main issues is that original consent

forms often do not include the possibility of data reuse, or are

not available to the data consumer. Archives of social sciences

data, such as the UK data archive, now integrated with the UK

Data Service (https://ukdataservice.ac.uk/) or GESIS (www.

gesis.org/) in Germany point toward the existing practice of qual-

itative data reuse.
In Koesten et al.,37 the authors describe the information struc-

tures needed for both qualitative and quantitative data reuse

among researchers, highlighting that, while there is a lot of over-

lap, there are also certain aspects of the study design worth de-

tailing for specific methods, due to their high impact on results.

This includes, for instance, information about whether a survey

question is required or not, because, for the former, participants

are more likely to select a random answer to be able to continue,

also mentioned by Koesten et al.37
2.4 Existing Guidance and Principles and Their
Limitations
As noted in Section 1, the FAIR principles are a strong example

of community and policy push toward more reusable data.38

Thus, they provide an important reference point for thinking

about data reuse.

The FAIR principles are a compilation of high-level, trans-

disciplinary best practices for making data findable, accessible,

interoperable, and reusable.2 One of the key messages in FAIR

data science is that metadata and metadata standards should

be articulated and made publicly available to the greatest extent

possible.39 The ‘‘R’’ in FAIR is about reusability and refers to the

following points, focusing primarily on metadata:

1. meta(data) should be richly described, with a plurality of

accurate and relevant attributes

2. (meta)data should be released with a clear and accessible

data usage license

3. (meta)data should link to detailed provenance information

4. (meta)data should meet domain-relevant community

standards

There are a variety of other proposals for data publishing,

sharing, and reuse, which follow similar aims. Some of them

focus on a sector (e.g., SharePSI (https://www.w3.org/2013/

share-psi/) for public administration) or on a set of technologies

(e.g., the web mark-up vocabularies, such as Dublin Core,

(https://www.dublincore.org/groups/tools/) DCAT, (https://

www.w3.org/TR/vocab-dcat/) schema.org,https://schema.org/

Dataset and PROV (https://www.w3.org/2001/sw/wiki/PROV))

or on data quality (e.g., W3C (https://www.w3.org/TR/vocab-

dqv/)). Implementing these standards to a sufficient quality level

to enable data reuse is often difficult.40–42

Measuring ‘‘FAIRness’’ is not yet an established practice,43

although some initial work exists, thanks to the FAIR metrics

group (http://fairmetrics.org). This means, among other things,

that someonemaking the effort into publishing their data accord-

ing to (their interpretation of) FAIR, has limited ways to gauge

how meaningful their work is in practice. An uptake in data cita-

tion may very well help with this, although to date we have not

seen a comprehensive overview of actionable, general-purpose

reuse indicators.

Domain-specific efforts, such as the Minimum Information

Standards or Models in the Life Sciences have emerged as a

means of more standardized reporting of experiments to in-

crease the quality and reusability of data.44 These standards or

models are a collection of domain-specific guidelines and

checklists. They originated in the Biological and Biomedical

domain but are being extended to other areas (https://
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fairsharing.org/). These standards target a similar problem that

we aim to address in this work, namely: narrowing down docu-

mentation effort to the minimum required for others to reuse

data. In the case of these Minimum Information Standards, there

a focus on community-defined guidelines for experimental data

in a domain. In contrast our work can be seen as a higher-level

approach, focusing on general-purpose scenarios that can be

operationalized broadly.

2.5 Reuse Features
Having introduced reuse from different angles, we now focus on

compiling a list of reuse features (Table 1). This list is informed by

a review of the literature covering works from several disciplines,

which consists of 40 papers published from 1996 to 2019. For

each paper, we looked for principles and guidance around pro-

cesses and technologies for data sharing and reuse practices.

Some of the resulting features are mentioned in relation to spe-

cific domains—in those cases, we kept only those that we

came across in several papers from different communities, or

those we thought to be more widely applicable.

We grouped the features into eight categories, all related to the

context in which a dataset was created and meant to be used

and the related documentation. These categories are: (1) access;

(2) summaries and understandability; (3) methodological

choices; (4) data quality; (5) connections; (6) versioning and prov-

enance; (7) ethics; and (8) semantics.

2.5.1 Access

Access to data is among the most commonly mentioned attri-

butes in the reuse literature. This includes the display of a data-

set’s license and format, which are established practice on data

publishing platforms. Restrictive and missing licenses create

downstream reuse implications.46 A clear access mechanism,

such as a download link or API encourages reuse and its opera-

tionalization is paramount for reusability. Authors have also

included the availability and executability of the code that was

used to generate data, which is increasingly requested by scien-

tific journals (https://www.nature.com/sdata/policies/editorial-

and-publishing-policies/#code-avail).

Recent approaches develop means to access remote data by

allowing differentiated access to retrieve or run code remotely,

without gaining access to the raw data.77 This facilitates the anal-

ysis of potentially sensitive data without physically sharing the

data, in a protected environment. While our work does not cover

this scenario directly, we assume most of the reuse features are

equally applicable, independently of whether the data can be ac-

cessed directly. Essentially, many of the attributes necessary to

reuse data are independent of having direct access to the data.

2.5.2 Summaries and Understandability

The process of data collection, processing, and cleaning that

takes place before a dataset is published can be very complex

and is often not reflected in the dataset itself, nor in the docu-

mentation attached to it.56

Summarizing elements can include text, such as in the

description of a dataset,62,78 visual summaries of statistics or

trends represented in the data,79 or more sophisticated statisti-

cal representations.22

Marchionini and White80 distinguish between overviews, or

‘‘surrogates,’’ and metadata: the former are designed to support

people to make sense of the information object before fully
4 Patterns 1, 100136, November 13, 2020
engaging with the object itself, whereas the latter are mostly

for machine consumption and filtering. Many data publishing

platforms include a file that serves as context for the dataset,

often describing its purpose. For instance, README files on Gi-

tHub can contain a variety of formats, such as text, images,

code, or tables.

Increasingly, there is a trend to display column-level sum-

maries (e.g., on Kaggle (https://www.kaggle.com/)), indicating

descriptive statistics, units of measurements, expected value

types linked to a schema, and value constraints, pointing to

methodological choices. Some of these are also included in ex-

isting standards and recommendations, for instance, by the

W3C, to make it easier for people to make sense of the data.45

Related to this category is the understandability of headers. This

includes a definition, or if needed a narrative, of how categories

used in the data were created or derived from the data.22,59,60

Visual representations displaying statistical properties of the

dataset or analysis results are mentioned in the literature.22,58

Similar to describing the datasets methodology, the more trans-

parent choices and processes of these visual representations

are made, the easier it is for a user to understand their value.

The importance of spatial and temporal boundaries for data

reuse is recognized in the literature and practitioners’ guides

alike.45,61,81,82 Representations of granularity allow data con-

sumers not just to judgewhether the data cover the desired loca-

tion and dates, but also whether the level of aggregationmakes it

suitable for the task at hand. Related to the temporal scope of a

dataset, but a more structural indicator, are indications of the

time of data collection as well as the last update or expected fre-

quency of updates and maintenance of the dataset (which is

mentioned as an aspect of data quality in Table 1).

2.5.3 Methodological Choices

There is general consensus that information about the methodo-

logical basis on which a dataset was created is necessary for

informed reuse. However, the concept of methodology remains

vague in many recommendations or is tied to a particular

domain. We describe a general-purpose view on common de-

nominators of choices during dataset creation that are said to

be necessary for dataset reuse.

The importance and difficulties of understanding a dataset’s

context of creation and the decisions taken by those compiling

and organizing the data ismentioned frequently.3,48,60,83We focus

on those aspects that could beexpressed in actionable indicators,

rather than a wider discussion of context, common in the reuse

literature. A recent example of this broad focus on context is in Fa-

niel et al.,3 in which context includes a wide range of methodolog-

ical characteristics, as well as the producer and data analysis.

Methodological choices include detailed accounts of every

aspect of the experimental design, including its setup, testing,

and cleaning of the data. The level of detail depends on the

type of data and the type of reuse and will hence have to be

decided for each dataset to strike a balance between publisher

effort and likely reuse scenarios.

Aside from describing the creation strategy of the dataset, this

can also include units and reference systems used in the

data,54,67 cleaning and pre-processing protocols,3,13,21,68 and

pointers to other information sources, such as code. For

instance, Carlson and Anderson31 mention the algorithm used

to calibrate the device for an experiment.

https://fairsharing.org/
https://www.nature.com/sdata/policies/editorial-and-publishing-policies/#code-avail
https://www.nature.com/sdata/policies/editorial-and-publishing-policies/#code-avail
https://www.kaggle.com/


Table 1. Compilation of Reusability Features for Datasets

Feature Description References

Access

License (1) available, (2) allows reuse W3C https://github.com/

laurakoesten/3,22,45–47

Format/machine readability (1) consistent format, (2) single value type

per column, (3) human as well as machine

readable and non-proprietary format, (4)

different formats available

W3C2,22,48–50

Code available for cleaning, analysis, visualizations 51–53

Unique identifier PID for the dataset/ID’s within the dataset W3C2,53

Download link/API (1) available, (2) functioning W3C47,50

Documentation: Summary Representations and Understandability

Description/README file meaningful textual description (can also

include text, code, images)

22,54,55

Purpose purpose of data collection, context of

creation

3,21,49,56,57

Summarizing statistics (1) on dataset level, (2) on column level 22,49

Visual representations statistical properties of the dataset 22,58

Headers understandable (1) column-level documentation (e.g.,

abbreviations explained), (2) variable types,

(3) how derived (e.g., categorization, such

as labels or codes)

22,59,60

Geographical scope (1) defined, (2) level of granularity 45,54,61,62

Temporal scope (1) defined, (2) level of granularity 45,54,61,62

Time of data collection (1) when collected, (2) what time span 63–65

Documentation: Methodological Choices

Methodology description of experimental setup

(sampling, tools, etc.), link to publication or

project

3,13,54,60,63,66

Units and reference systems (1) defined, (2) consistently used 54,67

Representativeness/Population in relation to a total population 21,60

Caveats changes: classification/seasonal or special

event/sample size/coverage/rounding

48,54

Cleaning/pre-processing (1) cleaning choices described, (2) are the

raw data available?

3,13,21,68

Biases/limitations different types of bias (i.e., sampling bias) 21,49,69

Data management (1) mode of storage, (2) duration of storage 3,70,71

Documentation: Quality

Missing values/null values (1) defined what they mean, (2) ratio of

empty cells

W3C22,48,49,59,60

Margin of error/reliability/quality control

procedures

(1) confidence intervals, (2) estimates

versus actual measurements

54,65

Formatting (1) consistent data type per column, (2)

consistent date format

W3C41,65

Outliers are there data points that differ significantly

from the rest

22

Possible options/constraints on a variable (1) value type, (2) if data contains an ‘‘other’’

category

W3C72

Last update information about data maintenance if

applicable

21,62

Completeness of metadata empty fields in the applied metadata

structure?

41

Abbreviations/acronyms/codes defined 49,54

(Continued on next page)
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Table 1. Continued

Feature Description References

Connections

Relationships between variables defined (1) explained in documentation, (2) formulae 21,22

Cite sources (1) links or citation, (2) indication of link

quality

21

Links to dataset being used elsewhere i.e., in publications, community-led projects 21,59

Contact person or organization, mode of contact

specified

W3C41,73

Provenance and Versioning

Publisher/producer/repository (1) authoritativeness of source, (2) funding

mechanisms/other interests that influenced

data collection specified

21,49,54,59,74,75

Version indicator version or modification of dataset

documented

W3C50,66,76

Version history workflow provenance W3C50,76

Prior reuse/advice on data reuse (1) example projects, (2) access to

discussions

3,27,59,60

Ethics

Ethical considerations, personal data (1) data related to individually identifiable

people, (2) if applicable, was consent given

21,57,71,75

Semantics

Schema/Syntax/Data Model defined W3C47,67

Use of existing taxonomies/vocabularies (1) documented, (2) link W3C2

This table does not claim to be comprehensive but aims to provide an overview of themany recommended documentation practices for dataset reuse.

W3C refers to The Data on The Web Best Practices Vocabulary (https://www.w3.org/TR/vocab-dqv/)
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Documenting methodology also includes potential biases and

limitations due to choices in the datasets creation. Kale et al.33

discuss how researchers convey uncertainties, such as the as-

sumptions andconstraints behind their analysis bywriting caveats

in limitations sections or preparing supplemental presentation

slides. Equally, information about data management strategies,

including how data are stored and preserved on a particular type

of storage medium, help paint a more complete picture of a data-

set, and can be critical to automate processing.3,70,71

2.5.4 Data Quality

Data on the web contain inconsistencies, and incomplete and

misrepresented information. At the same time, quality is not a

fixed characteristic of a dataset, but depends on the task. Data

quality is commonly described as ‘‘fitness for use’’ for a certain

application or use case.65,84 Quality assessment may depend

on various factors (dimensions or characteristics), such as accu-

racy, timeliness, completeness, relevancy, objectivity, believ-

ability, understandability, consistency, conciseness, availability,

and verifiability.65 Koesten et al.62 collected perceptions of data

quality in the context of dataset selection, including provenance

or descriptions of methodology, which we discuss separately.

Quality has been studied in relation to specific data formats.

For instance, Zaveri et al.85 analyzed quality dimensions

focusing on linked data, a set of technologies recommended to

publish data on the web to aid interoperability across applica-

tions.86 They defined four core dimensions: accuracy, complete-

ness, consistency, and timeliness.

Despite the efforts, data quality dimensions are not easily

transferable across domains.87 However, a number of quality
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metrics for structured data have been proposed in the literature,

such as metrics for correctness of facts, adequacy of semantic

representation, and the degree of coverage.72,85 Consistent

formatting and the machine readability of a dataset (as

mentioned under access) have also been stated as quality

indicators.2,50

Discussions of data quality often include how well an aware-

ness of uncertainty attached to the dataset is communi-

cated,33,37 as well as the negotiation of potential biases or the

meaning of missing values. All these aspects often require the

user to access additional information, and remain challenging.69

This indicates that data quality is inseparable from documenta-

tion efforts, be that as metadata or other forms of contextual

material.

Above all, quality is task dependent, hence aspects, such as

missing values or categorization procedures can determine

quality perception.88 For instance, certain tasks are more sensi-

tive to missing data than others, which means information about

missing data can be crucial to evaluate fitness for use (e.g.,

Koesten et al.5). Missing data has been discussed in depth

from a statistical point of view, including different methods to

tackle it (e.g., Little89). Not many studies have looked at interac-

tion challenges in dataset reuse resulting from missing data.

Missing data can mean different things and the meaning should

be documented to facilitate understanding.

2.5.4.1 Metadata Quality. Other authors discuss the quality of

metadata, rather than the data to be a defining factor in assess-

ing open data quality. Umbrich et al.41 point out that low meta-

data quality (or missing metadata) affects both the discovery

https://www.w3.org/TR/vocab-dqv/
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and the consumption of the datasets. In that sense, the quality of

metadata can be seen as one aspect of data quality, but includes

in itself a number of different concepts (such as completeness,

accuracy, or openness; among others41).

2.5.5 Connections

We refer here both to connections within a dataset as well as to

connections to external resources. Within a dataset this in-

cludes relationships between variables through formulae or

other dependencies that state relations within the data.21,22

For instance, several columns referring to a location but in

different levels of granularity, or a column being the result of

a calculation between other columns. Connections outside

the data may include links to sources of the data,21 to the data-

set being used elsewhere (e.g., links to projects or dataset ci-

tations), as well as contact information for the authors or

owners of the data.59,73 These may or may not be directly

actionable (i.e., working links).

2.5.6 Versioning and Provenance

Versioning information is often linked to reusability.66,90 Version

numbers make a revision of a dataset uniquely identifiable.45

Similarly to code, datasets evolve over time. Version histories

help track choices in the curation of a dataset and revert to the

most suitable version, facilitating reuse.50

There are different definitions of provenance in the literature:

narrower ones refer to the data producer and the publishing insti-

tution, (https://dublincore.org/) wider ones include a broad

description of datasets or data points lineage,91,92 overlapping

with what we discussed under methodological choices. Informa-

tion about the publisher can give an indication of the authorita-

tiveness of the source, but should also inform about the funding

mechanisms or potential other interests that could have influ-

enced data collection practices (e.g., Faniel and Yakel59).

Some disciplines have their own reference datasets offered by

authoritative sources.93

Provenance information has been discussed widely in litera-

ture (e.g., Herschel et al.92 and Moreau and Groth94 ) and can

give an indication of the authoritativeness, trustworthiness,

context, and purpose of a dataset tomake sense of it and assess

its integrity and value. This includes information on publisher

and/or data producer as well as a contact point for questions

or community engagement around the dataset.45,95

Provenance is sometimes understood as a dataset’s trace-

ability.65,66 It has conceptually found application in provenance

trails to automatically create application-level provenance infor-

mation during workflows.96,97

Similarly, information about prior reuse, as well as advice on

data reuse are said to support reusability. This is an emerging

practice across data science communities, as it can be seen

for instance, on Kaggle, (https://www.kaggle.com/) where data-

sets are discussed via example projects.3,59

2.5.7 Ethics

Ethical considerations and the documentation or protection of

personal data are a complex andmulti-layered category in them-

selves. Our aim here is to provide a general-purpose perspective

with a focus on reuse, rather than a comprehensive introduction

into frameworks and techniques, such as for anonymization. This

includes considerations of identifiability, especially if combined

with other data sources and questions of consent, laws and reg-

ulations, and ethical-review processes, but also whether the
data collected represents social groups fairly or whether it con-

tains potentially sensitive content. This is discussed in more

detail by authors, such as Gebru et al.,21 Holub et al.,75 and

Knoppers.71

2.5.8 Semantics: Taxonomies, Schemas, and Vocabularies.

Data are encoded in a specific way, using technical schemas,

data models, and language dialects. Using existing vocabularies

and other knowledge structures to organize a dataset enhances

itsunderstandability;2,45,67 themeaningof attributes isdocumented

in the vocabulary and, as more and more datasets use the same

structure, they become easier to integrate. In this context, it is

also important to note the importance of vocabulary extensions,

to fit specific use cases while still maintaining a common core.

To summarize this section, we found a large number of poten-

tial reuse requirements, guidelines, and recommendations in the

literature. However, in most cases their definition leaves room for

interpretation or they are implemented in various ways across

data publishing and sharing platforms. Our aim is to go a step

further, taking Table 1 as a starting point to develop more quan-

tifiable measures, which can be provably linked to reuse.
3 GitHub CASE STUDY

Data achieve their impact if they are widely reused. Our literature

review has produced a comprehensive list of features of datasets

and related processes, which should be considered by data pro-

ducers and system designers to make their data easier to use by

others. In this section,weuse a case study to explore an approach

that grounds these activities into actionable steps andmetrics. By

understanding which aspects of dataset publishing and use

impact reusability, one could potentially improve publishing prac-

tice, iterate over the design of portals and other sharing platforms,

and prioritize publishing and maintenance work.

We organize our case study adopting a five-step approach

that we formulate as high-level steps to suggest the potential

of applying the concept to other data reuse contexts in

future work:

1 Corpus building—scope the assessment exercise, for

instance, by deciding the specific collection of datasets

that will be considered.

2 Features and metrics—define reuse features and metrics

and ways to measure them. For the features, consider

those from Table 3 as a starting point. If you do not have

a standard data reuse metric, think about proxy metrics

and validate them. Both features and metrics will depend

on the capabilities of the data publishing medium and the

underlying technical infrastructure.

3 Data collection and analysis—for each feature, you will

need to decide how you will measure it. Some features

will be straightforward, like establishing whether a link is

available or not. Others will require custom techniques.

For the metrics, you can rely on technical capabilities,

which may be built into the publishing software you are us-

ing, or compile aggregated metrics derived from lower-

level system logs.

4 Reuse prediction—build a statistical model to predict reus-

ability, informed by the analysis from the previous step.

Train and test the model.
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5 Recommendations—take action and derive recommenda-

tions to datasets, processes and system capabilities.

While engagement metrics and the interactions captured will

vary for each portal and dataset corpus, we believe there is value

in presenting this approach as a potential direction of conceptu-

alizing and advancing efforts to increase dataset reuse. The ma-

chine learning model, detailed later, follows a modular design to

simplify its adaption in other dataset-reuse-prediction tasks.

Hence, this approach could potentially be adopted by data pub-

lishers, repository managers, or system designers. Our model

considers each potential type of reuse equally. Hypothetically

different types of reuse could be modeled differently, depending

on the complexity of the scenario.

For our case study, we downloaded a large corpus of datasets

fromGitHub, a popular platform for sharing code as well as data-

sets with an accessible, extensive, and varied collection of struc-

tured data. First, we used descriptive statistics to understand the

engagement patterns and thus potential reuse and took a qual-

itative look at the highly reused repositories to understand their

documentation practices. Secondly, we built a predictive model

to attempt to link indicators as derived from the literature to these

engagement proxies. We now describe each of these steps but

first begin with a description of how we constructed the corpus.

The annotated corpus and the code are available on GitHub

(https://github.com/laurakoesten/Dataset-Reuse-Indicators).
4 CORPUS BUILDING

For the purpose of our analysis, we used the following working

definition of a data repository on GitHub: a repository that has

tabular data of a minimum size of ten rows in a CSV, XLSX, or

XLS file type.

We used Google’s public dataset copy of GitHub and the Big-

Query service (https://cloud.google.com/bigquery/public-data)

to build an original list of repositories (that were not forks of ex-

isting repositories) that contain a CSV or XLSX or XLS file. We

then used the GitHub API to collect information about each re-

pository in this original list.

The resulting dataset consists of 87,936 repositories that contain

at leastaCSV,XLSX,orXLSfile,alongsidecomplementary informa-

tion on their features (e.g., number of open and closed issues and

license) from GitHub. This corpus had more than two million data

files. We then excluded those files with less then 10 rows, which

was the case for 65,537 repositories with a total of 1,467,240 data

files. From these, 1,373,335wereCSVfiles, 56,485wereXLSXfiles,

and 37,420 were XLS files. Per repository, we found an average of

7.4% ± 13.4% data files (med: 1.852%). With very few exceptions

all repositories have an associated license.

Table 2 summarizes the statistics for the entire dataset corpus.

The top languages as provided by the GitHub API can be seen in

Table 7.
5 REUSE METRICS AND FEATURES

5.1 Reuse Metrics
In our case study, we identified a set of engagement metrics with

datasets published on GitHub that are indicative of reuse and

available via the GitHub API.
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Watchers: watching a repository registers the user to receive

notifications on new discussions, as well as events in the user’s

activity feed.

Forks: creating a fork describes producing a personal copy of

someone else’s project.

Committers: number of parties, identified via email addresses,

which have committed on the master branch. Note that it is

possible that the same person commits with different email

addresses.

Stars: repository starring lets users bookmark repositories.

Stars are shown next to repositories to show an approximate

level of interest and have no effect on notifications or the activity

feed.24
5.2 Reuse Features
We mapped the features presented in Table 1 to GitHub. We

considered three sources of data to populate these features:

(1) the repository where the dataset was published; (2) the RE-

ADME file as the main documentation of the work; and (3) the

data files themselves. Like our engagement metrics, the features

we use are only proxies, but provide a useful and importantly

measurable starting point for more standardized indicators of

dataset reuse (Table 3).

As noted earlier, these features will feed into the model that

predicts reusability, as explained in Sections 6 and 7.
6 DATA COLLECTION AND ANALYSIS

6.1 Reuse Metrics
6.1.1 Data Collection

Engagement data were collected via the GitHub API as follows:

Watchers: watchers are called subscribers in the GitHub

API.25We collectedwatcher count by calling the API iteratively.26

Forks: similar to the case of watchers, we collected forks

count by calling the API iteratively.26

Committers: as noted earlier, we considered number of

different email addresses that have committed on the master

branch. We collected these counts by using regular expressions

on each data repository.git file.

Stars: repository starring lets users bookmark repositories.

Stars are shown next to repositories to show an approximate

level of interest and have no effect on notifications or the activity

feed.27

6.1.2 Data Analysis

6.1.2.1 Descriptive Statistics and Correlation Analysis. Table 4

summarizes the basic data for the four engagement metrics in

our corpus.

We note that stars and watchers show the highest correlation,

which might be due to them being treated similarly in the inter-

face (r = 0:0:57, p <0:001). There is also a high correlation of

forks and stars (Spearman r = 0:69, p <0:001)/and with

watchers (r = 0:57, p <0:001). Forks have a lower correlation

with committers (Spearman r = 0:38, p <0:001). Stars and

watchers show a high correlation (r = 0:57, p <0:001), this might

be because they are treated similarly in the interface. Committers

are highly correlated with watchers (r = 0:46, p <0:001). Com-

mits are different, they do not correlate linearly. The top reposi-

tories have around 25,000 commits.

https://github.com/laurakoesten/Dataset-Reuse-Indicators
https://cloud.google.com/bigquery/public-data


Table 2. Characteristics of the Dataset Repository Corpus Used in This Study

Type Characteristics Mean (±SD) Quantile

Data file no. of rows (csv) 4,115 ð±50; 094Þ [39.0, 92.0, 108.0]

no. of columns (csv) 20.5 ð±373Þ [3.0, 5.0, 12.0]

no. of rows (xls(x)) 607 ð±13610Þ [28.0, 65.0, 108.0]

no. of columns (xls(x)) 30.5 ð±412:1Þ [8.0, 15.0, 19.0]

no. of missing values csv (ratio) 8.9 ð±17:5Þ [0.0, 0.0, 11.5]

avgerage size of data files (csv) 331,343 ð±3; 719; 328Þ [1,625.0, 8,375.0, 47,752.5]

average size of data files (xlsx) 428,586ð±2; 595; 222Þ [18,804.0, 34,723.0, 121,633.0]

Repository size of repository 51,372 kilobytes ð±211; 729Þ [983.0, 7,740.0, 32,715.0]

no. of open issues 5.2 ð±51:2Þ [0.0, 0.0, 0.0]

no. of closed issues 40.6 ð±552:3Þ [0.0, 0.0, 2.0]

description length 7.2 ð±9:2Þ [1.0, 5.0, 10.0]

ratio of data files per repo 7.2% ð±13%Þ [0.3, 1.9, 8.0]

age of repository (days) 1,521.9 ð±539:7Þ [1,108.0, 1,478.0, 1,844.0]

ratio of problematic files with respect to a

standard config (Pandas)

0.3% ð±2:6%Þ [0.0, 0.0, 0.0]

README no. of words in README (non-code related) 378.2% ð±1; 126:6%Þ [10.0, 112.0, 431.0]

no. of tables 0.1 ð±1:0Þ [0.0, 0.0, 0.0]

no. of code blocks 1.4 ð±4:7Þ [0.0, 0.0, 1.0]

no. of headers 3.6 ð±17:0Þ [1.0, 1.0, 5.0]

no. of urls 9.1 ð±36:9Þ [1.0, 3.0, 12.0]

no. of images 0.7 ð±3:9Þ [0.0, 0.0, 0.0]

Average values are reported in the ‘‘mean (±SD)’’ format. Quantiles values are reported in the [x25, x50, x75] format, where x25, x50 and x75 represent the

25th, 50th, and 75th quantile of a particular group’s characteristic.
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6.1.2.2Grouping andRanking Repositories by Engagement. To

have a clearer picture of those features which are characteristic of

increased reuse, we grouped and ranked repositories by engage-

ment. To do so, and to tackle tie scores with respect to the

engagementmetrics,weopted for amodified version of theBorda

count that rewards repositories that have the same engagement

counts per metric. This count is also used when the number of el-

ements in a list is large (>30,000) and is popular due to its limited

time complexity.98 The average number of ties for repositories

with a Borda count of over 50 is low (7,025 repositories), which

counterbalances the integration of ties using Borda.98

We used the aggregated Borda count as a reference to create

four reuse ‘‘profiles.’’ Group 1 includes the repositories with the

lowest Borda count up to 8, which reflects aminimumof engage-

ment with the repository. Group 2 included those with up to three

engagement counts in each category (Borda counts 9–20),

group 3 includes thosewith up to 9more counts in each category

(Borda counts 21–64) and group 4 includes all repositories with

more engagement counts (Borda count 65–2,608). Other consid-

erations in group definition were to keep the sample roughly

balanced as well as incorporating the distribution of the aggre-

gated ranked list.

d Group 1: 4–8; up to one count, 35,096 repositories

d Group 2: 9–20; up to three more in each category, 16,494

repositories

d Group 3: 21–64; up to nine more in each category, 8,196

repositories

d Group 4: 65–2,608; more than nine in each category, 5,751

repositories
Figure 1 shows how data repositories are distributed accord-

ing to their rank after aggregation.

Table 5 displays average population statistics of the data

reuse metrics across the four groups of reuse. Table 6 shows

characteristics (mean, standard deviation, and median) of the

dataset corpus according to the four groups of reuse. Median

values are reported in the xmin.~x.xmax format, where xminxmin

is the minimum and xmax the maximum of the x variable.
6.2 Reuse Features
6.2.1 Descriptive Statistics

Table 7 summarizes the values for all reuse features, grouped

into the three types introduced earlier: repository, README file

a.k.a. documentation, and data files. We annotate statistical sig-

nificance determined by pairwise one-way ANOVA in the cases

that the groups share a common standard deviation, otherwise

we used Welch’s t test.

6.2.2 Analysis of README Files

We selected the top ranked 20 repositories, according to our

aggregated list of engagement metrics, for a manual analysis

of their README files. These files provide a potential interesting

source of information regarding the documentation indicators as

discussed above.

We expand our analysis of reuse features manually to further

include non-measurable elements identified in Table 1. Those

that occur frequently could indicate useful areas of investment

in regard to automation and tracking as they naturally come up

in unstructured documentation of the most reused dataset

repositories.
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Table 3. Features Used as Proxies for Reuse in the GitHub Case Study

Repository README File Data Files

(I) age of repository (in days)

rðaÞ ˛N
(I) length of the README (no. of tokens)

rðgÞ ˛N
(I) no. of ROWS of each individual data file

f ðrÞ ˛N

(II) size of repository (in kb)

rðsÞ ˛N
(II) unique URLs

tðuÞ ˛N
(II) no. of COLUMNS of each

individual data file: f ðcÞ ˛N f ðcÞ

(III) license of repository

rðIÞ represented as a one-hot input vector

whose dimensionality equal to the total

number of different licenses in the dataset

(III) language of the README (English or

not): tðuÞ ˛ f0;1g
(III) missing values (ratio of missing values to

total values): f ðnÞ ˛ ½0; 1�

(IV) textual description

rðxÞ = x1;x2;. xT Where x1;x2;.xT is the

sequence of words from which a data

repository’s description consists

(IV) no. of inline coding blocks: tðbÞ ˛N (IV) size of each data file (kb): f ðsÞ ˛N

(V) ratio of open to closed issues: rðiÞ ˛ ½0;1� (V) no. of highlighting coding blocks: tðfÞ ˛N –

(VI) ratio of data files to all files in a

repository: rðfÞ ˛ ½0; 1�
(VI) no. of headers: tðhÞ ˛N –

(VII) ratio of problematic files with respect to

a standard configuration: rðnÞ ˛ ½0;1�
(VII) no. of tables: tðtÞ ˛N –

(VIII) no. of images: tðiÞ ˛N –
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As shown in Table 8, 78.6% of the README files could be

matched to an English language dictionary. Other languages

were represented by below 2%. For 8% of the files we could

not identify the language.

We also analyzed the filesmanually to get a better understand-

ing of those features that are not possible to assess automati-

cally. We applied thematic analysis, taking the features from Ta-

ble 1 as primary categories to code for in the sample repositories.

d links to basic concepts

d links to resources

d developer instructions/best practices

d installation and processing instructions

d mailing list/contact person/community

d description of purpose

As expected, noneof these repositories seem to bepersonal but

ratherbelongto large,oftencommercial,projects. For larger repos-

itories representing projects the READMEs included links to

external documentation, such as a project website. We included

the content of these resources in our analysis of documentation

practices if they were easily accessible and mentioned in the

README.

7 REUSE PREDICTION

We created a model predicting a datasets likelihood to be

reused based on these four groups of reuse. Our model uses

features of repositories, README files, and data files to learn
Table 4. Engagement Metrics: Proxies for Reuse

Metrics Mean (±SD) Median

No. of watchers (subscribers) 6.1 ð±50:1Þ 0.1:0.8581

No. of forks 15 ð±378:8Þ 0; (max 77,118)

No. of committers 28.3 ð±604Þ 2; (max 24,463)

No. of stars 40.8 ð±797:4Þ 0; (max 133,515)
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what makes a dataset reusable in this particular context. We

propose an architecture based on the combination of feedfor-

ward architectures and bidirectional recurrent neural networks

(RNNs) that seeks to predict the reuse group to which a data re-

pository belongs. The reuse group is one of four, as explained in

Section 6.

Let dðr;f ;tÞ be a data repository, where r, f, and t are feature vec-

tors that describe its general repository features (e.g., license

and description), its enclosed data files, and the accompanying

README file, respectively. We built a model that predicts the

group y˛f1;2;3; 4g to which dðr;f ;tÞ belongs. Our end-to-end ar-

chitecture consists of: (1) a feedforward architecture that pro-

cesses the features associated with the README file, (2) a bidi-

rectional RNN formed of gated recurrent units (GRUs)

processing the enclosed data files, and (3) a similar bidirectional

GRU coupled with a feedforward architecture that process the

textual description rx˛r of dðr;f ;tÞ and the rest of the general re-

pository features r, respectively.

The more direct and accurate indication of actual dataset

reuse that can be acquired, the more accuracy the prediction

model can gain as it is limited to the engagement proxies from

which we derive reuse probabilities.
7.1 Processing the Repository Features
We use a feedforward architecture to process the general fea-

tures of each repository as these are presented in Section 5.2,

except its textual description, rðxÞ, for which we use a bidirec-

tional GRU and its license, rðlÞ, which is processed through a sim-

ple fully connected layer. The vector that is given as an input to

the feedforward architecture is computed after we concatenate

all the intermediate feature vectors that correspond to each

separate general repository feature (except the textual descrip-

tion and the license). We use the real values for each of those

constituent features, except the license for which we use one-

hot encoded vectors.28 The length of the license vector equals

the total number of different licenses in our dataset, including a

None license entry for the data repositories without any license



A B Figure 1. Distribution of Data Repositories

according to the Borda Count

(A and B) (A) depicts the repositories that belong to

groups 1 and 2, and (B) the ones that belong to

groups 3 and 4, with respective Borda counts of

lower and greater or equal than 21.
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information. The size and age of each data repository are trans-

formed to a logarithmic (To avoid zero values, we incremented

each variable by one before computing its natural logarithm)

scale before they are used in our model. The vector representa-

tion ~r for the rðaÞ, rðsÞ, rðiÞ, rðfÞ, and rn features is computed by for-

ward propagating as follows:

~r =
�
rðaÞ; rðsÞ; rðiÞ; rðfÞ; rðnÞ

�
; (Equation 1)

where ½.;.� represents vector concatenation.

7.1.1 Processing the Description

We used a bidirectional GRU to encode the information in the

data repository’s description rðxÞ. Let h
!l

tx
; h
)l

tx
˛Rm be the aggre-

gated output of a hidden unit of the forward and backward pass

respectively at time step tx = 1.T and layer depth l = 1.L. The

vectors at zero layer depth, h0tx = Wx/hxtx , represent the tokens

(i.e., words), x1;.;xT , of x that are given to the network as input.

The parameter matrixWx/h has dimensions ½jXj;m�, where jXj is
the size of the input dictionary (i.e., all the unique words that

appear in the descriptions of the data repositories in our corpus).

We initialized this matrix using GloVe embeddings99 and allowed

the network to fine-tune it during training. At each time step t, h
!l

tx

and h
)l

tx
are computed as follows:

h
!l

tx
= GRUx

�
h
!l

tx�1;h
l�1
tx

�
; (Equation 2)

h
)l

tx
= GRUx

�
h
)l

tx�1;h
l�1
tx

�
: (Equation 3)

The context vector hltx˛R
2m that encapsulates the information

from both the forward and backward pass at each layer l and

time step t is computed as hltx = ½ h!l

tx
; h
)l

tx
�, where ½.;.� repre-

sents vector concatenation. Subsequently, the vector that en-

capsulates all the information from x, is computed by aggre-

gating the hidden states of the two passes at their last

processing time step (i.e., tx =T and tx = 1 for the forward and

backward pass, respectively) of the topmost layer s.t. ~x =

½ h!L

T ; h
)L

1�.
We compute the vector representation r of the general repos-

itory features of a data repository by incorporating the textual

description and license to the rest of the general repository fea-

tures as follows:
r =
�
Wlr

ðlÞ + Wr~r + Wx~x
�
; (Equation 4)

where Wr : R
5/Rm and Wx : R2m/Rm are biased linear map-

pings and Wr : R
E/Rm is an unbiased linear mapping.

7.2 Processing the Data File Features
Let f= f1; f2;.; fF : fj)½f ðrÞj ; f

ðcÞ
j ; f

ðnÞ
j ; f

ðsÞ
j �cj˛½1;F� be the

sequence of data files that exist in the data repository dðr;f ;tÞ

s.t. f
ðrÞ
j Rf

ðrÞ
j +1cj˛½1; F � 1�, where f

ðrÞ
j , f

ðcÞ
j , f

ðnÞ
j , and f

ðsÞ
i are the

respective number of rows, columns, missing values, and

the size of each individual data file. Similarly to the case of the

description, we use a bidirectional GRU at each time step,

tf˛½1;F�, of which we process a single data file. Consequently,

the vector representation of the corresponding forward and

backward pass, h
!l

tf
and h

)l

tf
, respectively, are computed as

follows:

h
!l

tf
= GRUf

�
h
!l

tf�1; h
l�1
tf

�
; (Equation 5)

h
)l

tf
= GRUf

�
h
)l

tf�1; h
l�1
tf

�
: (Equation 6)

Similarly to the case of the textual description, the vector that

encapsulates all the information from the sequence of data files,

f, is computed by aggregating the hidden states of the two

passes at their last processing time step (i.e., tf =F and tf = 1

for the forward and backward pass, respectively) of the topmost

layer s.t. ~f = ½ h!L

F ; h
)L

1�.

7.3 Processing the README Features
Similarly to the case of the general repository features, we use a

feedforward architecture to process the features associated with

a README file of a data repository (cf. Table 3). Given tðgÞ, tðuÞ,
tðbÞ, tðfÞ, tðhÞ, tðtÞ, tðiÞ ˛N, and tðuÞ˛0; 1, represented as a two-

dimensional one-hot vector, we compute a vector ~t by concate-

nating the intermediate features as follows:

~t =
�
tðgÞ; tðuÞ; tðbÞ; tðfÞ; tðhÞ; tðtÞ; tðiÞ; tðuÞ

�
: (Equation 7)

7.4 Predicting the Category of Reuse
After computing the r, ~t, and~f vector representations for the gen-

eral repository, data files, and README features, respectively,
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Table 5. Characteristics of the Reuse Metrics for Each Group of Reuse: 1 = Lowest Reuse, 4 = Highest Reuse

Characteristics Mean G1 Mean G2 Mean G3 Mean G4 Quantile G1 Quantile G2 Quantile G3 Quantile G4

Watchers (subscribers) 1.0 ( ± 0.6) 2.8 ( ± 2.1) 7.3 ( ± 6.8) 44.7 ( ± 163.7) [1.0, 1.0, 1.0] [1.0, 2.0, 4.0] [3.0, 5.0, 9.0] [8.0, 17.0, 37.5]

Forks 0.1 ( ± 0.4) 1.3 ( ± 1.6) 5.5 ( ± 5.8) 158.8 ( ± 1,269.8) [0.0, 0.0, 0.0] [0.0, 1.0, 2.0] [1.0, 4.0, 8.0] [11.0, 29.0, 79.0]

Committers 1.6 ( ± 0.8) 3.7 ( ± 2.5) 10.2 ( ± 11.4) 287.6 ( ± 2,020.8) [1.0, 1.0, 2.0] [2.0, 3.0, 5.0] [3.0, 6.0, 13.0] [5.0, 18.0, 62.0]

Stars 0.2 ( ± 0.5) 1.9 ( ± 2.2) 9.2 ( ± 9.1) 445.1 ( ± 2,658.5) [0.0, 0.0, 0.0] [0.0, 1.0, 3.0] [1.0, 7.0, 14.0] [19.0, 61.0, 186.0]
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the system projects the three modalities into a shared feature

space. The resulting context vector cd for a data repository

dðr;f ;tÞ is computed as follows:

cd = ReLUðr + Wt
~t + Wf

~fÞ; (Equation 8)

where Wt : R
9/Rm and Wf : R

2m/Rm are biased linear map-

pings and Wr : R
E/Rm is an unbiased linear mapping. After

computing cd, our architecture predicts the category of reuse

to which a data repository dðr;f ;tÞ belongs by forward propagating

a set of fully connected layers:

~y = ReLU
�
W

ðIIÞ
d ReLU

�
W

ðIÞ
d cd

��
; (Equation 9)

where W
ðIÞ
d and W

ðIIÞ
d : Rm/Rm are biased linear mappings. The

conditional probability distribution of the dataset reuse category

to which dðr;f ;tÞ belongs is represented with the softmax function

over the total four categories of reuse:

p
�
y
��dðr;f ;tÞ� = softmax

�
Wy~y

�
; (10)

whereWy : R
m/R4 is a biased linear mapping. Our model learns

tomake a prediction about the reuse category of a data repository

by using the negative cross-entropy. During training and given a

particular data repository dðr;f ;tÞ, the model predicts its category

of reuse and it fine-tunes its parameters by seeking to minimize

the negative log likelihood cost of the predicted probability distri-

bution with respect to the actual reuse category of dðr;f ;tÞ.
7.5 Training Details
Both bidirectional RNNs used in our architecture (i.e., for pro-

cessing the textual description and the data files of a given

data repository) are implemented with 2 layers of 512 bidirec-

tional GRUs. We included the jXj= 5k more frequent tokens

from the textual description. Occurrences of rare words in the

text of a description are replaced by the special <rare> to-

ken.100,101 We augment each textual description with start-of-

sequence and end-of-sequence tokens. For the purposes of

the training and subsequent evaluation of our approach, we

randomly split our dataset into training, validation and test,

with respective portions of 70, 15, and 15.

We initialize all parameters with random uniform distribution

between �0:001 and 0.001, and we use batch normalization

before each non-linear activation function (i.e., ReLU) and after

each fully connected layer.102 The training objective of our sys-

tem is to minimize the mean of the negative log-likelihoods of

the predictions for a mini-batch of 128 data repositories. The

weights are updated using Adam103 with a learning rate of

10�3. An l2 regularization term of 0.01 over each network’s pa-

rameters is also included in the cost function.
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To sidestep the uneven distribution of data repositories across

the four categories of reuse (cf. Section 6.1.2), we opted to over-

sample the minority classes during training. We found that this

worked slightly better than weighting examples from the un-

der-represented classes higher in the computation of the nega-

tive log-likelihoods.

7.6 Prediction of Data Repository Reusability
We describe the performance of our model and provide context

to the limitations of the features we were able to use in this

approach.

Combining all the available information (i.e., repository, data

file, and README features) enables our predictive model to

achieve its highest accuracy score of just under 60%. This

means given the characteristics of a dataset, its repository,

and its README file, we can predict with this accuracy whether

it is going to be in the most reused group. Table 9 shows scores

and gives an indication of the importance of the different

feature types.

Table 10 shows the performance of our best performing sys-

tem (i.e., the one capable of processing all the available features)

across the four different classes of our classification task. We

see that F1 scores improve substantially for the groups that

more distinctively represent reuse category (i.e., groups 1 and

4). Inspired by this result, we opt to group repositories that

belong to groups 3 and 4 and repositories that are part of groups

1 and 2 into two different categories, a reused and a not-reused

one, respectively. We measure the performance of our best per-

forming system on this binary classification task.

The results are reported in Table 11, indicating that our model

predicts the likelihood of a data repository not being reused with

high confidence (in more than four out of five cases). Due a vari-

ety of external reasons that go beyond features that can be

implicitly obtained via GitHub, accurately predicting that a data

repository will be reused is a more challenging task. However,

our model achieves a promising performance providing ground-

work for further research in this area.

We use the features in Table 3 in the model, as these are pro-

vided by the GitHub API and tracked across the large number of

dataset repositories we investigated. However, hypothetically

many other indicators listed in Table 1 could be represented as

part of this architecture if tracked across a large number of dataset

repositories. This opens up a large space for both research in this

area to develop the model further, but also shows how publishers

and other data stakeholders could track reuse and impact.

8 FINDINGS

The final step reflects upon the results of the analysis, including

the prediction model to identify recommendations and areas of



Table 6. Characteristics of the Dataset Corpus and for Four Groups of Reuse: 1 = Lowest Reuse, 4 = Highest Reuse

Type Characteristics Mean G1 Mean G2 Mean G3 Mean G4 Quantile G1 Quantile G2 Quantile G3 Quantile G4

README no. of words in

README

(non-code related)a

286.2

( ± 963.8)

345.1 ( ± 835.6) 541.9

( ± 1,509.7)

801.9

( ± 1,808.7)

[6.0, 48.0, 287.0] [15.0, 125.0,

389.8]

[63.0, 250.0,

626.0]

[151.5, 416.0, 869.0]

no. of tablesa 0.0 ( ± 0.5) 0.1 ( ± 0.6) 0.1 ( ± 1.6) 0.3 ( ± 2.2) [0.0, 0.0, 0.0] [0.0, 0.0, 0.0] [0.0, 0.0, 0.0] [0.0, 0.0, 0.0]

no. of code blocksa 0.9 ( ± 3.5) 1.3 ( ± 4.2) 2.3 ( ± 6.1) 3.5 ( ± 8.1) [0.0, 0.0, 1.0] [0.0, 0.0, 1.0] [0.0, 0.0, 2.0] [0.0, 1.0, 4.0]

no. of headersa 2.3 ( ± 4.1) 3.6 ( ± 5.6) 5.3( ± 7.9) 8.8 ( ± 54.6) [0.0, 1.0, 3.0] [1.0, 1.0, 5.0] [1.0, 3.0, 7.0] [2.0, 6.0, 10.0]

no. of URLSa 6.0 ( ± 10.4) 8.1 ( ± 18.4) 12.8 ( ± 21.1) 25.2 ( ± 113.7) [1.0, 2.0, 8.0] [1.0, 4.0, 11.0] [2.0, 8.0, 17.0] [6.0, 15.0, 28.0]

no. of imagesa 0.3 ( ± 1.7) 0.7 ( ± 5.5) 1.1 ( ± 4.8) 2.5 ( ± 6.1) [0.0, 0.0, 0.0] [0.0, 0.0, 0.0] [0.0, 0.0, 1.0] [0.0, 1.0, 3.0]

Repository repository sizea 33,689.8

( ± 152,529)

50,916.3

( ± 194,154)

70,511.1

( ± 225,835)

133,307.1

( ± 423,076)

[580.0, 5,386.5,

22,780.2]

[1,230.0,

7,667.0,

33,723.8]

[2,174.5,

14,557.0,

52,912.2]

[4,896.5, 27,393.0,

113,130.0]

no. of open

issuesa
1.1 ( ± 10.8) 2.0 ( ± 13.2) 6.4 ( ± 21.8) 38.1 ( ± 163.7) [0.0, 0.0, 0.0] [0.0, 0.0, 1.0] [0.0, 1.0, 4.0] [0.0, 5.0, 25.0]

no. of closed

issuesa
1.9 ( ± 13.5) 7.6 ( ± 31.7) 38.4 ( ± 130.8) 3,74.7

( ± 1,823.4)

[0.0, 0.0, 0.0] [0.0, 0.0, 3.0] [0.0, 2.0, 19.0] [2.0, 25.0, 175.5]

description lengtha 6.2 ( ± 8.3) 7.7 ( ± 9.2) 8.9 ( ± 11.2) 9.6 ( ± 10.2) [0.0, 4.0, 9.0] [2.0, 6.0, 11.0] [4.0, 7.0, 11.0] [4.0, 7.0, 12.0]

ratio of data

files per repositorya
8.2 ( ± 14.0) 7.1 ( ± 12.7) 5.4 ( ± 10.9) 3.6 ( ± 8.7) [0.2, 2.3, 10.0] [0.4, 2.2, 7.7] [0.3, 1.4, 5.3] [0.1, 0.7, 2.8]

age of repository

(days)a
1,467.9

( ± 490.0)

1,513.4

( ± 545.2)

1,627.7

( ± 592.3)

1,725.3

( ± 653.0)

[1,067.0, 1,448.0,

1,791.0]

[1,093.2,

1,453.0,

1,816.0]

[1,214.0,

1,562.0,

1,964.0]

[1,256.5,

1,628.0, 2,082.5]

ratio of problematic

files for a standard

config (Pandas)b

0.3 ( ± 2.7) 0.4 ( ± 2.8) 0.3 ( ± 2.6) 0.2 ( ± 1.5) [0.0, 0.0, 0.0] [0.0, 0.0, 0.0] [0.0, 0.0, 0.0] [0.0, 0.0, 0.0]

Data File average size

of data files (csv)b
309,999.4

( ± 4,314,537)

337,453.3

( ± 2,901,912)

532,226.8

( ± 3,595,252)

248,120.4

( ± 2,268,705)

[1,732.0, 7,017.0,

33,942.0]

[1,419.0,

6,046.5,

53,402.0]

[1,692.0,

10,398.0,

79,279.0]

[4,763.8, 28,315.0,

73,671.0]

average size of

data files(xls(x))b
426,555.6

( ± 2,755,034.2)

528,439.2

( ± 2,953,938)

360,737.8

( ± 2,050,485.3)

330,846.9

( ± 1,518,167.8)

[20,430.2,

30,511.0,

83,968.0]

[20,287.0, 45,568.0,

147,138.5]

[16,856.8,

45,056.0,

203,837.5]

[16,896.0, 34,462.0,

95,356.0]

no. of rows (csv)a 3,845.2

( ± 50,528)

4,324.6

( ± 52,089)

6,221.6

( ± 55,637)

3,087.6

( ± 35,192.0)

[41.0, 85.0, 569.0] [33.0, 79.0,

719.0]

[42.0, 147.0,

930.0]

[41.0, 118.0, 293.0]

no. of columns

(csv)b
23.3 ( ± 340.0) 16.3 ( ± 376.5) 23.7 ( ± 524.6) 14.7 ( ± 363.2) [3.0, 7.0, 18.0] [2.0, 4.0, 7.0] [3.0, 6.0,

13.0]

[4.0, 11.0, 11.0]

no. of rows (xls(x)) 1,337.2

( ± 22,013.9)

409.4

( ± 10,184.4)

324.2

( ± 8,992.9)

1,105.0

( ± 16,615.8)

[26.0, 64.0, 141.0] [64.0, 86.0,

122.0]

[19.0, 31.0,

52.0]

[20.0, 46.0, 176.0]

no. of columns

(xls(x))

29.8 ( ± 397.2) 36.2 ( ± 531.0) 23.8 ( ± 155.0) 25.6 ( ± 423.3) [5.0, 9.0, 16.0] [19.0, 19.0,

19.0]

[9.0, 12.0,

16.0]

[6.0, 10.0, 15.0]

missing values

ratio (csv)a
8.7 ( ± 16.6) 7.2 ( ± 19.1) 10.5 ( ± 20.5) 13.0 ( ± 13.6) [0.0, 0.0, 11.3] [0.0, 0.0, 0.0] [0.0, 0.0, 11.7] [0.0, 19.0, 19.8]

Quantiles values are reported in the [x25, x50, x75] format, where x25, x50 and x75 represent the 25th, 50th, and 75th quantile of a particular group’s characteristic.
aIndicates statistically significant differences (p%0:05) of pairwise comparisons across all four groups.
bDenotes cases for which statistical significant differences are observed between the values of groups 1 and 4 but not necessarily between the rest of pairwise comparisons.
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Table 7. The Percentages with which the Most Frequent

Programming Languages Are Met in Our Corpus

Language %

Python 17.84

PHP 14.29

JavaScript 12.48

Java 9.40

HTML 6.63

C++ 4.26

Jupyter Notebook 3.95

Ruby 3.63

R 3.50

None 3.572

The programming language of each data repository is determined based

on the language that is used in the majority of its code files.
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improvement. Here, we discuss these in the context of the Gi-

tHub Case Study.

8.1 Features of Popular Data Repositories
In our study, we looked at a large corpus of 1.4 million datasets

using common structured formats, such as CSV and Excel. We

structured our analysis in three parts: repositories (which are

essentially folders of code, data, and other resources), docu-

mentation of repositories (README files), and the data files

themselves. We clustered the repositories into four groups,

with group 4 achieving highest reusability according to the indi-

cators.Wemanually inspected the READMEfiles, which arewrit-

ten in free text to detect themes.

Most features show significant differences between all four

groups. The features with no significance include the number

of columns and rows of the xls(x) files as well as the number of

columns in the CSV files.

As shown in Table 6, the size of the repository increases with

higher reuse probability. The most reused datasets also seem

to have more detailed README files. All README-related fea-

tures show significant differences between the reuse groups,

indicating higher complexity for the more reuse repositories in

terms of their building blocks (more tables, images, links to

other sources and code). The README files of the repositories

from group 4 were also found to have more words in the files

and to be significantly larger in size than in the other groups.

They further contain more headers, which points to a higher de-

gree of structure in the documentation. Repositories from the

most reused group also tend to have more detailed and longer

descriptions.

Furthermore, popular repositories show a higher number of

closed issues and slightly more open issues, which confirms

higher engagement.

We also tried to open the data files (using a standard library, in

our case Pandas (https://pandas.pydata.org/)). The most reused

group showed the lowest ratio of problematic files and can in that

respect be considered to be more accessible and potentially of

better quality. In our analysis, we also consider such aspects,

for instance, missing values (see Table 6).

The age of a repository does not seem to be a strong indicator

for reuse; the difference is limited to a standard deviation of
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76 days (median). This means that older repositories, which

could potentially have larger engagement metrics due only to

their age, did not influence overall reuse ranking considerably.

This gives us more confidence that our ranking is indeed a proxy

of reuse and is not is just an artifact of age.

Looking at the number of rows in CSV files, the group with the

highest reuse probability is more homogeneous, with a low stan-

dard deviation and the least number of rows in the data files, but

with a high median in terms of file size. Comparing the number of

rows and columns we assume that these indicators are not likely

to be deterministic for reuse. The file size for the most reused

group is smaller in contrast to group 3, which we hypothesize

could be due to the added technical barrier of reusing large

data files.

The ratio of data files in the repository decreases in the more

reused groups. This might be due to larger repositories, contain-

ing more and different file types, including supporting material

that facilitates the use of the repositories code and data. This

could also partially explain the high ratio of missing values that

can be observed in the data files of the more reused groups,

since they might require tailored configuration setting for open-

ing them (which in many cases are described in their supporting

material). In that case our approach of opening them with the

standard configuration of the Pandas library might not read the

file structure correctly.

8.2 Predicting Reuse
We combined the characteristics just discussed in a proof-of-

concept machine learning model that estimates dataset reus-

ability. The results are useful in multiple ways and demonstrate

the feasibility of the approach.

Repository features account for over 50% of accuracy in the

prediction. To some degree this is due to the nature of theGitHub

environment, which is used to publish and share, among other

things, software and data. GitHub is not designed as a data por-

tal, does not offer capabilities to search for datasets or engage

with them outside of a repository. In the same time, the link be-

tween datasets and context for reuse could be observed in

native data environments as well.42

The main value of our prediction work is in showcasing how

machine learning could be used in practice, using GitHub as

a case study. As such, it is meant as a prototype that is useful

for other contexts from a modeling perspective. We believe

the accuracy could substantially improve with a larger corpus

of datasets and by further tailoring the architecture to the

task at hand but this would need to be validated in

future work.

We believe this case study provides initial evidence for how

data publishers, portal owners, and other stakeholders could

close the gap between principles and practice of data reuse,

through the use of automatic tools to monitor reuse and explore

which design decisions and capabilitiesmake a difference. In our

case study, we combined a several feature types—counts, ra-

tios, binary categories, as well as short text snippets—and tied

them together to represent a dataset and the environment in

which it is published. Another added variable is the variation of

tabular data files per repository, which reflect real-world data-

sets that likely have a range of characteristics, such as number

of columns, rows, or missing values.

https://pandas.pydata.org/


Table 8. Analysis Results of README Files

Characteristic Mean (±SD) Median

No. of headers 3.6 ð±17Þ 1

No. of tables 0.08 ð±0:97Þ 0

No. of images 0.684 ð±3:9Þ 0

No. of text (words) (without code) 378 (±1,127%) 112

No. of code blocks 1.4 ð±4:7Þ 0

Table 9. Accuracy and F1 Scores for Predicting the Reuse

Category of the Data Repositories in the Validation and Test Set

System

Accuracy F1

Validation Test Valididation Test

Data files 49.10 49.11 38.92 38.46

Description 42.69 42.33 44.32 43.79

README 46.29 46.75 47.17 47.32

Repo 53.71 53.29 54.14 53.73

Repo + Description 53.72 53.58 54.31 54.31

Repo + README +

Description

56.13 55.93 57.05 56.71

Repo + README +

Description + Data Files

59.41 59.23 59.15 58.58
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8.2.1 Exemplary Recommendations for the GitHub

Usecase

To summarize, our results suggest the following recommenda-

tions for dataset publishers on GitHub:

1. provide an informative short textual summary of the

dataset

2. provide a comprehensive README file in a structured

form and links to further information

3. datasets should not exceed standard processable

file sizes

4. datasets should be possible to open with a standard

configuration of a common library (such as Pandas)

Ourmachine learningmodel indicates that these three aspects

directly impact on how reused the data are going to be.

In the following section, we discuss more general implications

and lessons learned from the this work.

8.2.2 Mapping Reuse Features to GitHub

Many of the reusability features compiled in Table 1 were not

measurable in the GitHub Case Study. GitHub suggests some

of them explicitly, such as license info, the owner or author of a

dataset, the availability of code, a README and a repository

description or the file format. Our results showed the importance

of not just a minimum length README file, but of a structured

description of the dataset and its repository, pointing to various

aspects of summary representations and understandability. This

also suggested the importance of connections, namely, being a

contact point as well as links to the dataset being used else-

where. Beyond that, connections could also be seen as access

to richer types of context, external concepts, and the ability to

ask questions through community engagement (discussion fo-

rums, FAQs with advice on data reuse and caveats, more exten-

sive project documentation or methodology). Our results further

suggest the importance of a processable size of a dataset,

compatible with common libraries, which points to the impor-

tance of the feature prior reuse/advice on data reuse. In sum-

mary, if wide uptake and reuse is the goal of a data publisher

on GitHub, datasets need to be accessible in terms of machine

readability and format, and comewith code as well as documen-

tation to help users understand context, including advice

on reuse.

Being able to measure the various reusability features enables

us to study which ones are the most useful in a particular repos-

itory or portal context and consequentially to prioritize efforts to-

ward those features that help people reuse datasets. On the one

hand this exemplifies the limitations of our work (see Section 10),

but on the other hand it facilitates an informed discussion about

the features worth measuring, which we discuss in the next

section.
9 DISCUSSION

The lack of tools that support tracking and analyzing the usage of

data throughout their publication cycle has been pointed out in

the literature (e.g., in Allen and Hartland70). Our literature review

depicts a huge space, within and across disciplines and do-

mains, of guidelines, frameworks, and technologies that are ex-

pected to be instrumental to enable data reuse. We have shown

that some of them can be mapped to an existing data publishing

and sharing infrastructure, namely, GitHub. We believe there is a

large design space to create tools that capture and use reuse in-

dicators for increased transparency and accountability around

datasets.
9.1 Revisiting Reuse Principles
The GitHub use case exemplifies the importance of measurable

reusability features. While not all features mentioned in Table 1

are easily measured, an even smaller number are currently being

logged by common data repositories. Given that the ability to

track and measure is a prerequisite to determining which fea-

tures are useful indicators for reuse, this should be considered

early in repository development and setup.

Our findings suggest that features related to understandability

should be prioritized. Actively supporting people in understand-

ing and working with the data are critical for facilitating reuse.

This includes providing data in a way consumers can easily try

and work with: small datasets that are easy to process, example

code, accessible and structured context and explanations, links

to external sources, plus the support of engagement around the

dataset. The literature has shown that social interaction,

including the ability to ask questions about the data, supports

reuse.95 Our findings further suggest that the level of detail and

structure of the README, as well as to some extent of the data-

set repository, influences the likelihood of reuse.

Given current limitations to quantify reuse features we believe

the next step is to implement functionalities to track a larger

number of features within a repositories context. For instance,

this includes the impact of using common vocabularies, as rec-

ommended as part of the FAIR principles, on dataset reuse. We

hypothesize that if a vocabulary is used by software the impact

on reusability will likely be more significant. The impact of visual

summary representations of the dataset or of individual columns
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Table 10. F1 Scores of the Predictions of Our Best Performing

System on the Test Set across the Four Different Reuse

Categories of Classification Task

Class Precision Recall F1 No. of Samples

Group 1 0.76 0.78 0.77 3,493

Group 2 0.40 0.27 0.32 1,646

Group 3 0.31 0.41 0.35 821

Group 4 0.48 0.63 0.54 568

Table 11. F1 Scores of the Predictions of Our Best Performing

System on the Test Set in a Binary Classification Task for Reuse

Predictions

Class Precision Recall F1 No. of Samples

Not-reused (groups 1 and 2) 0.92 0.84 0.88 5,139

Reused (group 3 and 4) 0.56 0.74 0.63 1,389

Instances of data repositories that belong to groups 1 and 2 are consid-

ered as not-reused, whereas repositories that belong to groups 3 and 4

are considered as part of the reused class.
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on reuse likelihood would be an interesting area to explore, given

the importance of structured documentation our results suggest.

For other features, such as reporting methodology, representa-

tiveness or relationships between variables one might need to

think about standardized ways of capturing such information,

either from the dataset or from the creator, before being able

to measure impact on reusability. Such efforts are realized in

some domains (i.e., Gamble et al.44), but often result in extensive

manual documentation.

9.2 Designing Documentation for Reuse
README files on GitHub are completely flexible, they have no

required structure or content. Our findings showed most READ-

MEs of the top ranked data repositories are structured via

headers and categories and contain different content types.

This points to the opportunity to create checklists or templates

for data descriptions, which was contemplated previously in

the literature,21,22 and encourage structure and a variety of build-

ing blocks, through an authoring tool (similarly as for data visual-

ization or data-driven storytelling104). This could also be

achieved by extending existing interfaces for metadata provi-

sioning (for instance, in CKAN or any other repository software),

but including a range of aspects that are not captured by existing

metadata vocabularies, which are meant for machine consump-

tion to enable search.62 Similar concerns around creating docu-

mentation for the purpose of reuse, without large overhead,

apply for reuse of other digital artifacts (e.g., code components,

design systems). Facilitating documentation to navigate uncer-

tainty around datasets could help align the expectations of re-

users with the actual utility of a dataset for their task.3,57

Extensive documentation has been proposed in various forms;

for instance, in the form of checklists that are standard in safety

critical domains.22 Recent calls for more comprehensive docu-

mentation practices in the machine learning community have re-

sulted in an increasing interest in ‘‘datasheets’’ or similar con-

cepts.21,22 This work aims to contribute toward consolidating

these efforts by focusing on observable features and metrics

that are likely to contribute to eventual reuse.

Narrowing the breadth of reusability features can support the

creation of intelligent user interfaces that facilitate impactful

documentation. This can be anywhere on the spectrum of simple

checklists, to capturing the complexities of communicating

study designs and methodological details using different media

types, such as tutorial style videos or interactive environments

exploring a datasets creation timeline in a virtual space.

9.3 Managing Reuse
Our prediction model offers a prototype tool that would enable

dataset creators to get an idea of the expected reuse of a dataset
16 Patterns 1, 100136, November 13, 2020
before publishing. Ultimately this would allow a system to create

tailored recommendations for reuse indicators to increase a da-

taset’s reusability by analyzing the files and documentation

characteristics.

Our proposed tool, or a more sophisticated version, could be

coupled with other approaches to help identify missing features

and suggest improvements to both the dataset and the docu-

mentation. This could include measuring the completeness of

the data, testing data validity,105 or semi-automatic support for

dataset summary creation.62

We are aware that asking people to create more documenta-

tion comes at a cost. Parts of it could be generated automati-

cally, but there are limitations.106 Our approach is different as it

does not require data producers to change how they release da-

tasets dramatically. We suggest mapping recommendations

from the literature to actual capabilities of the system. We use

existing engagement metrics to train a model that can identify

the expected reusability of a dataset based on observable reuse

features of a data repository and its environment. To improve the

performance of the model, one could include a whole range of

additional features, including information about the producers

or the domain of the dataset as well as user activity logs.
9.4 Applying the Model in Different Contexts
While our prediction model is not out-of-the-box applicable to

every dataset repository, its modular design provides its users

with the necessary capacity to model alternative use cases. We

present a set of modules for processing features of different na-

ture ranging from tabular data (i.e., in Section 7.2) and mark-

down files, consisting of different structural sections, such as

tables, URLs, and codeblocks (i.e., in Section 7.3) to combina-

tions of textual data with other continuous and discrete vari-

ables (i.e., in Section 7.1.1). Furthermore, any feature in the pro-

posedmodules can be easily amendedwithout any subsequent

change in the formulation of the rest of the model’s architec-

ture. While each data source provides different features and

reuse proxies, we believe that the plug-and-play design of

our prediction system can simplify its adaption in other data-

set-reuse-prediction tasks, once the input and output are prop-

erly determined.
10 LIMITATIONS

In this section, we discuss the limitations of this work regarding

the dataset corpus and the GitHub use case, as well as the

limited availability of measurable reuse metrics and reuse

features.
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10.1 Corpus
GitHub has primarily been developed as a platform to share and

engage with code, not structured datasets. However, it is one of

most widely used collaboration platforms in this space and our

analysis showed the large amount of structured data published

through GitHub. Kalliamvakou et al.107 found that GitHub is

also used to archive data. Due to the nature of the platform it

can be assumed that many datasets are connected to code

that represents, while limited, a use case of data sharing and

reuse on the web.

The dataset corpus reflects that GitHub repositories (aswell as

individual files) are restricted in size31; which means very large

data files cannot be archived on the platform. This is also rele-

vant for image- or audio-oriented datasets which tend to be large

in size and are therefore unlikely to be stored on GitHub.

To obtain more evidence of the potential generalizability of the

sketched approach, similar studies with other data portals or

corpora would need to be conducted. While other platforms

(e.g., Kaggle32 and Zenodo33) have different engagement met-

rics we believe that, dependent on data access, the approach

can be applied to different contexts. This is an important direc-

tion for further research.

10.2 Reuse Metrics
We used engagement metrics and features characterizing the

repository as proxies for the reuse indicators. We did not have

access to the number of downloads per dataset via the GitHub

API. Most data portals have this information readily available

and adding to the model is straightforward. One can imagine

other potential metrics as proxies for reuse indicators as well

as different metrics for different types of reuse. This work pro-

vides a starting point to think about what we could predict and

recommend if we start measuring and capturing reuse indicators

more directly and for different contexts.

10.3 Features
Many of the reuse indicators from Table 1 could not be automat-

ically measured in our use case analysis and not all might be

measurable. There is a limited availability of automatically extract-

able features on GitHub and we hypothesize this to be the same

for other online platforms used for data sharing and reuse. These

reuse indicatorsmight further look different or bemore specific for

certain domains and data types. For instance, the indicators for

streaming data would likely include different elements.

We accessed the data files to understand the share of missing

values, whether they can be opened with a standard configura-

tion, and the number of rows and columns to get an understand-

ing of the shape of the dataset corpus. We did not perform

further analysis of the files themselves as this was outside the

scope of this work. It would be interesting to run a similar style

of study that links quality scores to reuse; a related work for Wi-

kidata has shown how such scores for individual data records

are impacted by who creates the data and how.108

When language was used as a feature, we restricted this to

checking the language of the README file. While this is restric-

tive, we chose the English language as a feature because it was

represented in over 70%of all README files. All other languages

were represented with a significantly lower ratio, hence we

excluded them from our feature list.
In terms of missing values, we focused on CSV files only. Table

6 does not show the ratio of missing values for XLS(X) files. This

omission is due to the XLS(X) structure of separate sheets and

different formatting options. As they do not conform to a regular

structure, it is difficult to be properly understood by the default

parameters of a widely used library, such as Pandas34 (which

we used to determine the ratio).

The manual analysis of README files might be influenced by

the fact that GitHub likely has a fairly technical target audience

and the presentation of documentation could be tailored to their

perceived needs.107,109 The original purpose of the dataset or re-

pository might not be stated explicitly, even for well reused ones,

as the ‘‘purpose’’ is implicit in the project that they are attached to.

Finally, not everything about a dataset can be captured, taking

into account the complex and situational processes of its crea-

tion. However, we believe our work contributes to help focus

automation efforts for the purpose of dataset reuse.

11 CONCLUSIONS

We presented a detailed compilation of reuse features from liter-

ature. To understand how they look like in data projects, we car-

ried out a case study of structured datasets published and

shared on GitHub. We analyzed the structure of the repository

they sit in, their documentation and, to some degree, the data

files themselves. We established a gap between the features

associated to reusability in the literature and those that could

be observed or collected on GitHub.

Some aspects of data work cannot be turned into indicators

easily, for instance, methodology, ethical details, and even

more the social processes and negotiations happening during

data creation. Our recommendation for data publishers is to

invest into meaningful indicators for those features that can be

demonstrably linked to increased uptake. This could be built

on by integrating functionalities that measure engagement with

datasets in an automated way and recommend indicators that

would increase reuse probability. This would allow authors to in-

crease a dataset’s potential for reuse before publication,

focusing on not just the data but also on documentation and

other potentially relevant features of a project. Our recommen-

dation for data science experts, including community initiatives

and standardization bodies, is to ground recommendations

and guidance into capabilities and activities commonly occur-

ring in data projects, similar to the mapping we have carried

out in Section 5.

We would like to extend this work by looking at other online

platforms for data sharing, such as from the data science com-

munity or a collection of widely reused research datasets.

In summary, we hope that this paper illustrates the challenges

of preparing datasets for reuse and moves the discussion for-

ward on helping give data providers concrete, measurable,

and operational advice on how to make their datasets more

reusable.

12 EXPERIMENTAL PROCEDURES

12.1 Resource Availability

12.1.1 Lead Contact

Paul Groth is the lead contact of this study and can be reached at: p.groth@

uva.nl.
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12.1.2 Material Availability

The source code for the machine learning model used in this study can be ob-

tained via this GitHub repository: https://github.com/laurakoesten/Dataset-

Reuse-Indicators.

12.1.3 Data and Code Availability

The data and code have been made public at: https://github.com/

laurakoesten/Dataset-Reuse-Indicators, including data for all dataset reposi-

tories used in this work, and data used for training the model. In addition,

the data can be found at: Koesten, Laura, Vougiouklis, Pavolos, Groth, Paul,

& Simperl, Elena (2020). Dataset Reuse Indicators Datasets (Version 1.0) [Da-

taset]. Zenodo. http://doi.org/10.5281/zenodo.4015955.
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