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Mental fatigue is complex disorganization that a�ects the human

being’s e�ciency in work and daily activities (e.g., driving, exercising).

Encephalography is routinely used to discern this fatigue. Several automatic

procedures have deployed conventional approaches to support neurologists

in mental fatigue detection episodes (e.g., sleepy vs. normal). In all of the

traditional procedures (e.g., support vector machine, discrimination fisher,

K-nearest neighbor, and Bayesian classification), only a low accuracy is

achieved when a binary classification task (e.g., tired vs. normal) is applied.

The convolutional neural network model identifies the correct mathematical

manipulation to turn the input into the output. In this study, a convolutional

neural network is trained to recognize brain signals recorded by a wearable

encephalographic cap. Unfortunately, the convolutional neural network works

with large datasets. To overcome this problem, an augmentation scheme for a

convolutional neural network model is essential because it can achieve higher

accuracy than the traditional classifiers. The results show that our model

achieved 97.3% compared to the state-of-the-art traditional methods (e.g.,

SVM and LDA).
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1. Introduction

Mental fatigue is neurological disorganization that affects a driver’s behavior.

Electroencephalography (EEG) is a powerful and non-invasive method that is commonly

used to track brain activity and detect mental fatigue. EEG records are examined

by neurologists to diagnose and classify sleep disorder samples. However, visual

exploration is laborious and requires an expert neurologist. Moreover, the examination

of EEG records reduces the effectiveness of an expert (Ullah et al., 2018). All of these

restrictions have inspired researchers to develop and design an automated system to help

neurologists to categorize normal and sleepy EEG brain signals (Zammouri et al., 2018).
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Recently, a large amount of research has attempted to

distinguish between the signals of sleepy and normal subjects.

Generally, the data quantity in this type of classification is not

good enough to train a classifier due to the lack of experiments.

In addition, the presence of noise in s can generate difficulties in

learning the brain patterns that are associated with normal and

sleepy cases.

The current automatic techniques that are used to detect

mental fatigue use the traditional algorithms of ML, such as

Support Vector Machines (SVM) or Latent Dirichlet Allocation

(LDA) (Ettahiri and Fechtali, 2020), can reach high accuracy for

one problem but can fail in other cases. This difficulty depends

on many things, especially from the fact that labeled data is less

available. To assist and help neurologists, a general automatic

system design is proposed and shows high performance, despite

the small number of training samples.

Experts have presented frameworks to detect the state

of drowsiness using features extracted from EEG signals by

hand-designing methods. Some of them used spectral and

temporal aspects from EEG signals, while others tend to use

a classifier based on the Short-Time Fourier Transformation

(STFT) (Zammouri et al., 2018). Meanwhile, the Deep Learning

(DL) approach codes different numbers of features that are not

related and adapted to the dataset, which demonstrates very

good results in this application. Furthermore, the features pulled

out by the DL have shown to be more robust and vigorous than

the traditional methods. Consequently, to improve the accuracy

of this experience of the driver’s sleep health, our proposed

method is based on DL.

Recently, various DL methods have been shown to have a

good performance in many different field applications. Many

applications use CNN for image recognition and the Deep

Neural Network (DNN) is used to understand music generation

and text readability. The DL method is used to avoid the

selection of adequate feature combinations. Although traditional

methods are fast to train datasets compared to the DL method,

the only obstacle is the data that is needed to train onemodel. An

optimal approach to training the deep model is to apply scheme

augmentation.

The major contributions of this experiment are dataset

preparation and the system architecture, which is based on DNN

for binary EEG signal classification. The rest of this article is

structured as follows. A review of the literature is presented in

Section 2. Section 3 describes the proposed framework model

and data augmentation. The results are presented and discussed

in Section 4. Finally, the conclusion is given in Section 5.

2. Literature review

Knowledge of a driver’s sleep health is a complex

classification procedure, the features are extracted and then

classification algorithms are applied. In this section, the state-

of-the-art of traditional techniques that are generally used to

classify this type of data will be reviewed. In previous studies, the

SVM method gives a slightly lower accuracy of between 75 and

88%, while the Latent Dirichlet Allocation (LDA) and k-Nearest

Neighbors (k-NN) classifiers provide notably lower accuracies of

between 65 and 76.7% and 64.2 and 67.1%, respectively (Ettahiri

and Fechtali, 2020). Meanwhile, Primary Domain Controller

(PDC) networks result in better classification accuracy than

LDA and k-NN in all cases. Moreover, focusing on SVM

(Dimitrakopoulos et al., 2017), the best performance is achieved

by a PDC metric with an accuracy of 84.7% using 21

features (Boracchi et al., 2017). Similarly, PDC networks had

a high performance in terms of accuracy compared to other

classifiers.

A recapitulation of all of the traditional methods to classify

EEG datasets is applied in our study. The Linear Discriminant

Analysis (LDAn) classifier was employed to classify these

features and reached a higher accuracy of 87% for normal

vs. sleepy, while the SVM classifier achieved the maximum

accuracy (i.e., 88% for normal vs. sleepy). The results indicate

that 88% precision is attained. In the majority of recent papers,

SVM is the most commonly used classifier to distinguish

between sleepy and normal volunteers. However, the LDA

shows a better outcome when just a single volunteer is

trained and tested, providing 87.7% overall accuracy. When

doing the generalization for all volunteers, it gives 76.5%

of overall accuracy (lower than SVM classification). Most

feature extraction techniques are designed by hand and are not

adapted to the data. Thus, to ameliorate the accuracy and the

precision of a sleep health detection system, the DL approach

is used to avoid the need for traditional feature extractors

and classifiers. So far, the DL method has rarely been used

for mental fatigue detection because of the small amount of

available data. Consequently, a DL approach proposes a deep

model that involves a small number of learnable parameters

and then efficiently classifies EEG brain signals as a normal or

sleepy person.

This systematic literature review has synthesized and

recapitulated the published works related to deep classification

methods for sleep detection for drivers. Mendonca et al.

(2018) found that for a single source sensor, ECG signals

result in the highest global classification. However, sleep

apnea is a disease that is related to respiration. Thus, signals

due to the use of public datasets that are less affected by

noise give higher accuracy with ECG (Mendonca et al.,

2018).

Craik et al. (2019) described the current practice of DL

in EEG classification. Meanwhile, Zeng et al. (2018) predicted

mental state using two classification models (called EEG-Conv

and EEG-Conv-R). In fact, the DLmodels that are used to detect

the mental state and the EEG make it easier and more precise to

define the state of the brain.
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3. Proposed framework

3.1. Creativity and innovation

In the past decades, there have been numerous

advancements in the field of technology. Since the world’s

problems are increasing in complexity as it progresses, it is

imperative that advances in science and technology be made in

areas such as automatic recognition and detection. One of these

problems is mental fatigue, which contributes to many accidents

around the world. In a driving environment, it is necessary that

fatigue detection is performed in a non-intrusive way and that

the driver is not bothered with alarms when he or she is not

drowsy. Using machine learning and deep learning, we provide

a different method to comprehend the meaning of fatigue, its

detrimental impacts, and strategies to detect fatigue. The work

also discusses classifier performance measures and comparison

analyses with different automatic detection using the EEG

signals. In fact, the fatigue detection requires a lot of analysis,

and especially the analysis of EEG signals, these signals are

difficult to provide and very expensive and depend on several

parameters and many conditions, the first part of this work was

very difficult since we made a lot of time to find our volunteers

and to succeed in this experience, for the part of the analysis

using the different algorithms of deep learning and trying to

adapt them to our data. Therefore, besides proposing a real data

base of EEG signals, we can also mention the adaptation of our

data to the model CNN, also the augmentation the data which

we detailed in the next chapter to get good results.

3.2. Laboratory experience

Before applying any application of the model, the main

idea of this experiment and the dataset that was used need

to be made clear. In this experiment, the impact of sleep

deprivation on mental fatigue is assessed (Daniela et al.,

2010). In total, 20 volunteers were selected to participate in

this study, none of them had a medical history, neurological

or psychiatric disorders, or drug addiction (Ferrara et al.,

2006; Tempesta et al., 2016). The participants were randomly

assigned to one of two groups: (i) the normal sleep group

and (ii) the deprivation sleep group (Ferrara et al., 2006).

EEG signals were collected using the Open VIBE interface,

which was developed by INRIA, and ENOBIO 8 cap material

was used.

EEG signals were collected from 20 people using ENOBIO 8,

which allows us to perform tests in three sessions, each session’s

duration is 7 min (total 21 min per volunteer), with 40 trials in

each session. Therefore, the EEG signal analysis is important to

get conclusions for different volunteer groups. The EEG signals

are able to define mental fatigue and its impact. The DL (CNN

model) is adapted to the problem of EEG classification and then

FIGURE 1

Placement of the electrodes. Blue color: electrodes used in our

experiment.

compared to those obtained using SVM and linear discriminant

analysis.

3.3. Participants

Five healthy men and five healthy women aged between 26

and 36 years old participated voluntarily in the first part of this

experiment. In the second part, 10 volunteers from different

countries took part in the study, aged between 25 and 30 years

old. In the two experiment groups, the volunteers were informed

of the experiment. No ethical review or approval was required

for this study and none of the subjects suffered from any mental

illnesses or disorders that can disturb the collected results.

The volunteers were selected by recruiting from different

genders. To get better EEG signals, only measured signals

without noise are considered. Sometimes, noise can appear

because of cosmetic products, hair gel, and curly hair. In

addition, the age range is important to suit the case drivers.

3.4. Data acquisition

EEG data were recorded in the SICOMO laboratory

(Polytechnic University of Cartagena, Spain) and the OpenVibe

acquisition protocol was respected. The EEG headset with eight

electrodes was placed as shown in Figure 1.

In the first group (normal subject) the apparition of alpha

waves (Figure 1) shows that the subject is in a calm state,

that waves normally appear in the resting mood, meditative

state for the brain. While the Beta waves are needed to

react and make decisions, Alpha waves help in absorbing new
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FIGURE 2

Division of the signal architecture.

FIGURE 3

1 P convolutional neural network (CNN) architecture.

information, overall mental coordination, remaining alert yet

calm, mind/body integration, and learning.

The sampling frequency was set at 500 Hz. The EEG signals

recorded are filtered using a pass-band filter [1–30 Hz]. The

purpose of a filter is to eliminate noise components from signals.

The distinction between noise and signal would be simple if the

signal was well-known. In this work, the original signals arrive

simultaneously to the eight electrodes. The signal, in this case,

can be expressed as follows:

X = AS+ N (1)

Where X = [X1, . . . .,XN] is the signal matrix and S =
[S1, . . . , SN] is the original data.

3.5. Problem statement

The acquisition system generating EEG signals is the original

of our dataset which is shown in Figure 1 is characterized

by a reel data made in the laboratory. Furthermore, our

dataset is not huge in quantity but with big size dimension

signals and each signal has mono or multi sub signals with

different dimensions and quantities. Seeing that, the detection
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while true do

Load Data

Load CNN

for Each training data and Test data do

Add data augmentation

if Data set is like the pre trained data then

Train the network

else if Data set is not similar to the pre trained data

then

Replace final layers train network

end if

Predict and Access network accuracy deploy results

end for

end while

Algorithm 1. Prepossessing and training process.

of mental fatigue is a complex, challenging mission. The

classification mission often used feature extraction methods

that have been proven to be effective for different object

recognition tasks. Indeed, deep learning reduces this phase by

automating the learning and extracting the features from the

specific architecture in the network. Major problems limiting the

use of deep learning methods are the availability of computing

power and training data. Training a convolutional network

from start to finish on such hardware of ordinary consumer

laptops and with the dataset’s size would be enormously

time consuming.

In this work, we had access to a high graphics processor

applied for the search goal. Moreover, convolution networks

need a wide quantity of medium-sized training data. As the

collection and recording of a sufficiently large dataset are hard-

working all works in this topic focus on ready datasets. This

is a problem because we did not have an available benchmark

of EEG signals of pipeline signals that is pretrained previously

and we do not have the same EEG signals quality. For the same

reasons, we construct data ourselves from the few data we have

of EEG signals by cutting and flipping horizontal and vertical,

rotating, or subsampling with different crops and scales which is

detailed in the part (Data Augmentation). The general step of the

proposed method is detailed illustrating the adjustment process

in Algorithm 1 and Figure 2.

3.6. Overview of convolutional network
structure

The linear and non-linear processes have been implicated

with the convolutional neural model which is a set of

overlapping layers. The CNN head structure blocks are

constituted by the convolutional layer, cluster layer, rectified

linear units (ReLU) layer linked to a fully connected layer and

a loss layer bottom (Figure 3).

3.6.1. The detailed network architecture

Convolutional neural network is one of the pretrained

system based on a deep learning system with a specific

architecture. Three convolutional layers constitute the net with

core sizes 5∗5, 3∗3, and 3∗3 for each convolutional Conv1,

Conv2, Conv3, respectively, considering the specificality of the

structure of the files in the dataset.

The resolution related to the first Convolutional layer is

227∗227. It is stated to have 96 cores with a stride of 4 pixels

and a size of 11∗11. In total, 256 kernels with a stride of 1 pixel

and a size of 5∗5 are stacked in the second convolutional layer

and filtered from the pooling output of the first convolutional

layer. The output of the previous layer is connected to the

remainder of convolutional layer with a stride of 1 pixel for

each convolutional layer with 384, 384, and 256 kernels of size

3∗3 and without pooling grouping. The following layer is piled

to 4,096 neurons for each fully connected layers and a max-

pooling layer. After all, the last fully connected layer’s output is

powered by SoftMax which generates a two class label sharing

out. In this architecture, a max pooling layer is piled with 32

pixels size and the stride of 2 pixels only after the two beginning

and the fifth convolutional layers. The application of ReLU non-

linearity activation function layer in each fully connected instead

of sigmoid and Tanh activation functions improve the speed

of convergence. A full network requirement and the principal

parameters of the CNN design are presented in the following

Table 1 and detailed in the third section.

3.7. Data augmentation implementation
and layers results

3.7.1. Data augmentation experimental study

In deep learning works, we need an enormous amount of

dataset to escape from many problems of unnecessary learning.

Below diverse uses, changing the image geometrically is applied

to raise this amount of data, two types of data augmentation

are used: image translations and horizontal reflections and

altering the intensities of the RGB channels. In our case, those

methods are not suitable for enlarging our EEG data. Compared

with the image, the EEG signal is a continuous signal that

changes over time. Regardless, the performance of the feature

extraction, the features still are a time series. Consequently,

the rotation or shifting of the EEG data of the feature on

the time domain will be destroyed. To avoid this issue, we

prefer to use the noise addition method to augment the EEG

samples. In theory, there are many ways to add noises in the

EEG data like (Gaussian, Poisson, Salt, Pepper, etc.). Therefore

some of the EEG signals has a very strong randomness and
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TABLE 1 The principal parameters of the convolutional neural network (CNN) design.

1 Data CSV input 39*39*3 CSV with zero center normalization

2 Conv1 Convolution convolution with stride [4 4] and padding [0 0 0 0]

3 Relu1 ReLU ReLU

4 Norm1 Cross channel normalization Cross channel normalization with 5 channels per element

5 Pool1 Max pooling 3*3 max pooling with stride [2 2] and padding [ 0 0 0 0]

6 Conv2 Convolution 256 5*5*48 convolutions with stride [1 1] and padding [2 2 2 2]

7 Relu2 ReLU ReLU

8 Norm2 Cross channel normalization Cross channel normalization with 5 channels per element

9 Pool2 Max pooling 3*3 max pooling with stride [2 2] and padding [ 0 0 0 0]

10 Conv3 Convolution 348 3*3*256 convolutions with stride [1 1] and padding [1 1 1 1]

11 Relu3 ReLU ReLU

24 Prob Softmax Softmax

25 Output Classification output Cross entropy

TABLE 2 Training results for the first epoch.

Epoch Iteration Time elapsedHH:MM:SS Validation accuracy (%) Validation loss Base learning rate

1 1 00:00:10 67.47 1.0146 0.0010

1 3 00:00:15 70.19 0.6706 0.0010

1 6 00:00:16 75.77 0.3102 0.0010

1 9 00:00:16 88.37 0.3085 0.0010

1 12 00:00:17 97.09 0.2529 0.0010

non-stationary behavior. If we add a randomly some local

noises, such as Poisson noise, Salt noise, or Pepper noise,

which will change the features of EEG data locally. Based on

these considerations, in our work, it might make more sense

to multiply our signal by a noise array (centered around 1),

rather than adding a noise array, we focus on adding noise

generated from the multiplication to each feature sample of

the original training data to obtain new training samples. The

probability density function P of a Gaussian random variable z is

defined by

PG(z) =
1

σ

√
2π

e
−(z−µ)

2σ2 (2)

3.8. Layers fine tuning experimental
results

For classification means, transfer learning methods use new

deep grids to leverage information from the preliminary test

delivered by a pretrained network to apply it to new patterns

in new data. Usually, the training of data from scratch is slower

than using the transfer learning and fine-tuning method.

So, using these types of networks allows us to pick up

new works without configuring a new network and with a

great graphics processor. We evaluated the network by training

on EEG signals. For test, 20% of the two categories were

chosen as the test and validation datasets, and the rest is

the training dataset (80%). Two categories are applied for

experiments, and their mean classification accuracy was taken

as the results. The signals employed with fixed resolution size

as the input of the network would convolve and pool the

activations repeatedly, then forward the results into the fully-

connected layers and classify the data stream into 2 categories.

To prevent decreasing error caused by the low amount of data,

the initial learning rate base-lr is set as 0.001. Furthermore, the

soft max output layer Fc8 is characterized by 2 categories and

the hidden layers Fc6 and Fc7 are piled with 4,096 neurons.

Inaccuracy of predictions in classification is presented by the

loss function (LF) which measures the optimal strategy. The

system is performing well according to the smallest value of

LF. As can be seen in Table 2, after 80 iterations, the loss curve

tends to zero while the classification accuracy curve tends to 1

which meets the requirements of the optimization objectives.

The validation classification accuracy reaches as high as 0.65

when the iteration is 1 while increases to 1 when the iteration

is 80 and, the actual test accuracy in Table 1 shows the effect

of fine tuning layers of the network, in the form of 1p CNN

algorithm, where the network will be fine-tuned from layer 6

to layer 8 and all the previous layers are kept constant with no

update.
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FIGURE 4

Threshold for positive classification.

FIGURE 5

The ROC of the model.

3.9. Evaluation of the model proposed
with k-Fold cross-validation

The neural network model has to be evaluated by

scikit-learn for training data, which is able to estimate the

models employing multiple procedures (Andrzejak et al.,

2001; Brownlee, 2017). Meanwhile, k-fold cross-validation is

commonly used to evaluate ML models. The model evaluation

procedure architecture is first explained. In this case, the number

of folds is fixed at 10 (an excellent by default). Then, the data

are mixed before partitioning them (shuffle the data). Thus, the

evaluation of the model (estimator) on the dataset deploys a

10-fold procedure (k-fold). The evaluation of the model takes

approximately 10 s, and it returns an object that helps to describe

the evaluation of the 10 constructed models for each dataset

split.

kfold = KFold

(

n_splits = k, shuffle = True, random_state

= seed
)

k = 10; (3)

The results obtained and the SDs are regrouped for

model accuracy in the dataset. This problem has a reasonable
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estimation of the performance of the model on unseen data, also

within the realm of known top results.

4. Discussion

The EEG signals (i.e., normal vs. sleepy) involved a lot

of algorithms to test the classification in binary problems

when comparing it with the state-of-the-art methods (Khan

et al., 2012; Hussain et al., 2016). To the best of the

author’s knowledge, the DL method has never been used

for this type of problem. This classification consists of

extracting the discriminatory features from EEG signals and

thus accomplishing classification. A general review of all state-

of-the-art related techniques is provided, which uses many

feature extraction and classification methods for mental fatigue

classification from the extracted EEG signals. The SVM classifier

was employed in a previous study to classify these features with

the same dataset to achieve maximum accuracy. The maximum

accuracy achieved for the subjects is 88.7%. With another

classifier, TREE, the achieved accuracy was 75.77% for the same

dataset.

This shows the vigor of this proposed framework based

on 1-D CNN and indicates that it has a greater stimulus than

the other methods. The accuracy achieved with the proposed

system is 97.33% for the dataset for the 20 volunteers, as shown

in Figure 4.

Previous work has proposed framework systems

for sleep detection for drivers (Ettahiri and Fechtali,

2020). The recognition of mental fatigue was classified

by SVM (88.7 %), TREE(78%), LDA(87%), and KNN

(86%). Table 3 represents a comparison in term of the

accuracy corresponding to each method. The maximum

accuracy was detected in our subjects with the SVM

classifier. In comparison, with the proposed method, we

achieved a maximum (Table 4) accuracy of 97.3%, which

demonstrates the efficiency of the DL compared to the

traditional methods.

In other comparisons of different approaches, the authors

used a publicly available dataset, thus they were able to

provide a fair comparison of different approaches. The CNN

approach was compared with one research based approach on

the LSTM network and seven feature-based research studies

(Jiao et al., 2020). The best accuracy was obtained with their

proposed method, while the LSTM method had a slightly

lower accuracy. On average, all seven feature-based approaches

had more than 5% lower accuracy. The goal of this study

(Chen et al., 2018) is to propose a comprehensive approach

based on EEG signals to explore whether FBN changes from

the alert state to the drowsy state and to find out ideal

neurophysiology indicators to detect driver drowsiness in terms

of FBN. Based on this, two functional brain network (FBN)

approaches, SL and MST, are first combined and applied to

TABLE 3 Accuracies using LDA, SVM, KNN, and TREE classifiers.

Tree LDA SVM KNN

BP 0.7875 0.8750 0.8875 0.7875

CSP 0.9125 0.9375 0.9250 0.8375

BP+CSP 0.9500 0.9375 0.9250 0.8625

TABLE 4 Metric method to evaluate the model.

Class Accuracy Precision F1-score

0 0.97 0.91 0.87

1 0.89 0.85 0.88

feature recognition and classification. For classification, these

brain network features are fed into four classifiers considered

namely support vector machines (SVM), K nearest neighbors

classifier (KNN), logistic regression (LR), and decision trees

(DT) (Min et al., 2017).

We have added other metrics methods (Figure 5).

5. Conclusion

This paper proposes an automatic framework system to

detect driver sleep fatigue (sleepy and normal). The suggested

model is based on DL. For this framework, a model based

on CNN is introduced that uses a minimum number of

learnable parameters (electrodes). The proposed model has

an ensemble of CNN models that include EEG signals as

an input, which are divided into classified sub-signals by

CNN models. Finally, to deal with the small size of the

dataset, the augmentation scheme has been introduced into

the CNN framework. The CNN framework is achieved and

trained without great effort on chips where memory is

limited. The proposed system has a good performance with

a small dataset and few parameters. It will help neurologists

and experts to detect the state of the brain when it

feels sleepy.
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