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Abstract: Zinc is a group IIB heavy metal. It is an important regulator of major cell signaling pathways
in most mammalian cells, functions as an antioxidant and plays a role in maintaining genomic stability.
Zinc deficiency leads to severe diseases in the brain, pancreas, liver, kidneys and reproductive
organs. Zinc loss occurs during tumor development in a variety of cancers. The prostate normally
contains abundant intracellular zinc and zinc loss is a hallmark of the development of prostate cancer
development. The underlying mechanism of this loss is not clearly understood. The knowledge
that excess zinc prevents the growth of prostate cancers suggests that zinc-mediated therapeutics
could be an effective approach for cancer prevention and treatment, although challenges remain.
This review summarizes the specific roles of zinc in several cancer types focusing on prostate cancer.
The relationship between prostate cancer and the dysregulation of zinc homeostasis is examined in
detail in an effort to understand the role of zinc in prostate cancer.
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1. Introduction

Studies of zinc in plants have a long history and have been followed by animal and human
studies [1]. Zinc is an essential cellular component that functions as an antioxidant and maintains
genomic stability [2]. This biologically important metal ion is a constituent of more than 3000 proteins
and is a cofactor for over 300 enzymes [3,4]. Zinc is required for normal growth. Its deficiency
leads to abnormal growth that include improper brain development, prolonged wound healing and
an impaired immune system [5,6]. Inadequate zinc uptake increases the risk of infections and is linked
to aging-related symptoms, such as decreased immune competence, delayed wound healing and
alteration of certain neurological and psychological functions [1].

Zinc is an essential mediator of cell proliferation and differentiation through the regulation of
DNA synthesis and mitosis. Zinc also affects DNA repair pathways by regulating multiple intracellular
signaling pathways and altering proteins involved in DNA maintenance. The effects of zinc on DNA
polymerase were studied in both zinc-sufficient and zinc-deficient conditions over 40 years ago [7,8].
DNA polymerase activity was markedly lower in zinc insufficient rat embryos compared with that in rat
embryos that developed in a zinc-sufficient condition. Another study demonstrated that DNA damage
was caused by diminution of zinc in peripheral blood cells and that repletion of zinc protected from
zinc-mediated DNA damage [9]. Low intracellular concentration of zinc has been associated with the
increased expression of apyrimidinic endonuclease, which cleaves DNA at sites of damage [10]. Zinc in
the form of ZnSO4 inhibits the repair of damaged DNA damage induced by hydrogen peroxide (H2O2)
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in K562 leukemia cells [11]. Withdrawal of zinc from PrEC prostate epithelial cells also stimulates
breakage of single-strand DNA [12]. In addition, genes related to DNA damage response, including
tumor protein p73 and MRE11, were downregulated in these cells, whereas the expression of p53 was
increased. In murine fibroblasts, the addition of zinc can stimulate DNA synthesis and mitogenic
signaling, whereas withdrawal of zinc reduces the secretion of growth hormone [13,14]. In Swiss
3T3 fibroblasts, ZnSO4 can reverse the inhibitory effect of diethylenetrinitrilopentaacetate (DTPA) on
thymidine incorporation into DNA, suggesting that zinc stimulates cell growth by regulating cell
cycle at the G1/S phase [15]. Intracellular zinc can block the G2/M transition in human bronchial
epithelial cells by upregulating p53 and p21 activity [16]. These collective findings highlight the central
role of zinc in the modulation of cell proliferation, mainly by affecting DNA synthesis. Therefore,
zinc homeostasis plays a key role in the development of many diseases, in which the alteration of zinc
is a common event.

2. Zinc Biology

The human body mass contains more than 2 g of zinc. Over 90% is distributed to most tissues,
with only approximately 0.1% of this metal ion circulating in plasma [17,18]. Yet, this small amount of
zinc plays an important role in maintaining homeostasis in the body. Zinc is stored in most organs
and tissues with approximately 60% in skeletal muscle, 30% in bone and 5% in liver and skin and
the remainder distributed in other tissues that include the brain, kidneys, pancreas and heart [19]
(Figure 1). Excess zinc is primarily released through gastrointestinal secretion and endogenous excretion,
with minor loss through urinary excretion. Although zinc is an essential trace element used by many
enzymes and transcription factors, high concentrations are toxic to the cells. Cells adapt to overcome the
toxicity by maintaining the balance of zinc uptake, intracellular storage and efflux [20]. In mammalian
cells, intracellular zinc exists in two forms—a tightly or loosely bound form and an unbound form at
very low concentrations as free Zn2+ ion [21]. Zinc binds avidly to metalloenzymes, metalloproteins
and nucleoproteins and loosely to various proteins and amino acid ligands [22]. Many cells possess
pico-molar levels of free zinc that is not bound to protein, which functions in cell control and cell-to-cell
communication [23,24]. Therefore, strict regulation of the intracellular level of zinc is required for the
maintenance of physiological conditions. A growing body of evidence suggests that both intracellular
and compartmental zinc homeostasis is tightly controlled by the ZnT and ZIP families of transporter
proteins. These crucial transporters are responsible for stabilizing intracellular zinc within cells [25].
The ZIP (SLC39A) family consists of 14 subtypes (ZIP1–14). They carry various metal ions including
zinc into the cell cytoplasm from the lumen of organelles or across the membranes of cells (Table 1).
The ZnT (SLC30A) family consists of 10 subtypes (ZnT1–10) that function in the efflux of cytoplasmic
zinc into the lumen of organelles or into the intercellular space (Table 2). These transporters are either
tissue specific or universally expressed in tissues depending on transporter subtype as summarized in
Tables 1 and 2 and Figure 2. Dysregulation or the malfunction of these transporters leads to various
diseases and subsequent abnormal zinc-mediated metabolism is a common link in the development of
most cancers.
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Figure 1. Zinc storage and distribution in the human body. The human body contains 2 to 3 g of
zinc, which is absorbed by the duodenum and jejunum in the small intestine. Approximately 0.1%
zinc is present in serum, 80% is loosely bound to albumin and approximately 20% is bound tightly
to α2-macroglobulin. Approximately 60% of the zinc is stored in skeletal muscle, 30% in bone and
approximately 5% in the skin and liver. The remaining zinc is distributed in other tissues, such as brain,
kidneys, pancreas and heart. Zinc is excreted primarily through the gastrointestinal tract, with minor
loss through urinary excretion.

Table 1. Human ZIP proteins.

Protein Gene Locus Tissue/Cell Distribution Subcellular Localization References

ZIP1/ZIRTL 1q21 wide spread plasma membrane, [26–28]
ZIP2/Eti-1/6A1 14q11.1 wide spread plasma membrane [29–31]

ZIP3 19p13.3 wide spread, predominant
in testis plasma membrane [32,33]

ZIP4 8q24.3
gastrointestinal tract,
kidney, hippocampal

neurons
plasma membrane [34–36]

ZIP5/LZT-Hs7 12q13.13 pancreas, kidney, liver,
stomach, intestine plasma membrane [37–39]

ZIP6/LIV1 18q12.1 widespread plasma membrane [40,41]

ZIP7/HKE4 6p21.3 widespread ER, Golgi, intracellular
vesicles [42–44]

ZIP8/BIGM103/LZT-Hs6 4q22-q24 widespread, predominant
in pancreas

plasma membrane,
lysosomes, endosomes,

mitochondria
[45,46]

ZIP9 14q24.1 widespread plasma membrane,
trans-Golgi (TGN) [47,48]

ZIP10/LZT-Hs2 2q33.1 brain, liver, erythroid,
kidney plasma membrane [40,49–51]

ZIP11 17q25.1 testis, digestive system TGN, cytoplasm and
nuclei [52,53]

ZIP12 10p12.33 brain, lung, testis, retina plasma membrane, [54,55]
ZIP13 11p11.12 widespread intracellular vesicles, Golgi [56,57]

ZIP14 8p21.2 widespread plasma membrane,
endosomes [58–62]
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Table 2. Human ZnT proteins.

Protein Gene Locus Tissue/Cell Distribution Subcellular Localization References

ZnT1 1q32.3 widespread plasma membrane [25,63,64]

ZnT2 1p35.3
mammary gland, prostate,

retina, pancreas, small
intestine, kidney

plasma membrane,
endosomes, lysosomes,
secretory vesicles and

mitochondria

[65–68]

ZnT3 2p23.3 brain, testes, pancreas synaptic vesicles [69–72]

ZnT4/ Dri27 15q21.1

widespread, predominant
in mammary gland,

placenta, prostate, brain
and kidney

plasma membrane,
endosomes, secretory

vesicles
[73–75]

ZnT5/ ZTL1 5q13.1 widespread, predominant
in pancreas, liver. kidney TGN, plasma membrane [76–78]

ZnT6 2p22.3 widespread TGN, unknown vesicles [79,80]

ZnT7 1p21.2
widespread, enriched in
stomach, prostate, retina,

pancreas, testis and muscle
Golgi, unknown vesicles [81–83]

ZnT8 1q41 pancreas, thyroid, adrenal
gland, testis secretory vesicles [84–86]

ZnT9/ C4orf1 4p13 widespread cytoplasm, nucleus [87,88]

ZnT10 1q41 brain, retina, liver endosomes, endosomes,
plasma membrane [89–91]

Figure 2. Zinc transporters and their subcellular localization. Subcellular localization of ZIP (green
arrow) and ZnT (red arrow) is shown based on currently available information. The cytosolic zinc is
mobilized into or out of different subcellular compartments, as indicated with arrows. Abbreviations
are: TGN, trans-Golgi network; ER, endoplasmic reticulum.

3. Zinc and Zinc Transporters in Prostate Cancer

Zinc has long been known to be highly concentrated in prostate tissue—more than 10 times
enriched compared to that in other soft tissues [92]. Analysis of frozen prostate tissues demonstrated
lower levels of zinc in prostate carcinoma compared to those in normal prostate [93]. Zinc content
of 1018, 1142 and 146 µg/g dry weight in normal prostate, benign prostatic hyperplasia (BPH) and
prostate carcinoma tissue, respectively, was reported [94]. Zinc concentration in malignant prostate is
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approximately 10% to 25% lower than that of normal prostate [95]. Zinc contents in plasma are also
significantly lower in prostate carcinoma (27%) and BPH (18%) compared to those in normal prostate
samples [96]. A meta-analysis documented significantly lower levels of zinc in prostate cancers than in
benign tumors and normal prostates [97]. Taken together, these findings indicate that the development
of prostate malignancy is strongly associated with the reduction of intracellular zinc in malignant cells
and the circulating level in plasma.

As the alteration of zinc homeostasis is controlled by cellular zinc transporters, many efforts have
made to examine how intracellular zinc is regulated through zinc transporters [98–100]. Zinc trafficking
requires specialized plasma membrane transporters. Their dysregulation causes abnormal growth
of the prostate, including cancer. It is not well understood why prostate cancer cells depress
cellular zinc levels. One proposed explanation is that the transformation of citrate producing normal
cells to citrate-oxidizing malignant cells leads to the loss of the ability of the cells to accumulate
zinc [95]. In addition, a genetic alteration in the expression of zinc transporters is associated with this
metabolic transformation.

ZIP1, a member of the ZIP (SLC39) family, carries zinc or other metal ions from the extracellular
space and/or intracellular organelles to the cytoplasm [2]. During prostatic cell transformation, the level
of ZIP1 was remarkably decreased or absent compared to that in BHP or normal prostate [101].
Comparison of RWPE1 non-tumorigenic human prostate cells with its RWPE2 tumorigenic counterpart
revealed the markedly lower zinc uptake in RWPE2 cells than in RWPE1 cells (33% decrease) and the
downregulated expression of ZIP1 protein in RWPE2 cells [102]. Another comparison of the transgenic
adenocarcinoma of the mouse prostate (TRAMP) model to wild type mice demonstrated the markedly
lower zinc level and loss of ZIP1 expression in the prostate gland of TRAMP mice [103]. In LNCaP and
PC3 prostate cancer cell lines, ZIP1 is the major zinc uptake transporter [104]. Forced expression of
ZIP1 in these cells stimulated intracellular accumulation of zinc and inhibited cell proliferation due to
increased apoptosis [26]. ZIP2 serves as another zinc uptake transporter across the plasma membrane
and low levels of ZIP2 are restricted to a few tissues, including prostate and uterine glands [105].
Both ZIP2 and ZIP3 share a similar function with their ZIP1. Both were downregulated in malignant
prostate cells and associated with the loss of zinc accumulation in tumor cells [106]. ZIP4 is also
involved in zinc influx and is reduced in cancer tissues [107]. Despite the general reduction of ZIP
proteins in prostate cancers, a correlation between the expression levels of most ZIP subspecies and
cancer grade has not been established.

In contrast to the zinc influx protein family, zinc efflux transporters seem to be less involved
in the transformation of the prostate gland and consequently have been less studied. In one study,
ZnT1 expression was decreased or remained unchanged in prostate cancers than in BPH [108].
Decreased expression of ZnT4 was observed during the progression of prostate cancers, being
under-expressed in both localized and metastatic prostate cancers compared to that in benign
tissues [109]. ZnT4 expression was reportedly localized in intracellular vesicles and plasma membranes.
At the RNA level, ZnT1, ZnT9 and ZnT10 were significantly upregulated in human prostate cancer
tissues compared to those in adjacent normal tissues, implying that intracellular zinc is diminished
through this upregulation of zinc output transporters [110]. ZnT7 null-mutation in TRAMP mice was
reported to accelerate the formation of prostate tumors compared to that in TRAMP mice retaining wild
type ZnT7 [111]. Expression of other zinc input transporters, including ZnT2, ZnT3, ZnT5, ZnT6 and
ZnT8, has not been fully described and detailed studies are still ongoing. For now, there is not a clear
understanding of zinc equilibrium.

Prostate specific antigen (PSA) is highly expressed in LNCaP cells. This can facilitate LNCaP
cell invasion by degrading the extracellular matrix fibronectin and laminin glycoproteins [112].
Zinc strongly inhibited the enzymatic activity of PSA and suppressed the invasion of LNCaP cells,
suggesting that zinc inhibits malignant prostate cancer cell invasion [113]. Physiological levels of zinc
(0.25–0.5 µg/mL) inhibit nuclear factor-kappa B (NF-κB) activities by reducing RelA activity induced
by tumor necrosis factor-alpha (TNF-α) and scaling down the expression of cellular inhibitors of
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apoptosis protein 2 (c-IAP2) in highly invasive androgen-independent DU145 and PC3 prostate cancer
cell lines [114]. Furthermore, the zinc-reduced expression of vascular endothelial growth factor (VEGF),
interleukin (IL)-6, IL-8 and matrix metalloproteinase-9 (MMP-9), which have been generally identified
as pro-angiogenic and pro-metastatic molecules. Zinc can also diminish the expression of intercellular
adhesion molecule-1 (ICAM1) to suppress tumor cell invasion and adhesion [115]. Homeobox B13
(HOXB13), a DNA-binding transcription factor, is overexpressed in castration-resistant prostate cancer
and causes the zinc concentration to fall. This decrease subsequently stimulates cancer invasion and
metastasis by promoting NF-κB signaling, through the reduction of NF-κB inhibitor (IκBα) [116].
HOXB13-mediated suppression of zinc is accomplished through the stimulation of the expression of the
ZnT4 zinc efflux transporter but does not affect input transporters. These results indicate that the loss
of intracellular zinc could enhance HOXB13 expression in prostate cancer, leading to the stimulation of
the NF-κB signaling pathway to promote prostate cancer metastasis. Zinc also affects the activity of
urokinase-type plasminogen activator (uPA) and aminopeptidase N (AP-N) to suppress the invasion
and metastasis of PC-3 prostate cancer cells [117]. The collective findings strongly indicate that excess
quantities of zinc negatively regulate prostate cancer cell growth, invasion and metastasis.

4. Zinc and Zinc Transporters in Other Cancers

Whereas serum zinc levels are low during breast cancer development [118,119], biopsies from
breast cancer patients have revealed significantly higher zinc levels compared with those in normal
breast tissues [120–122]. Correspondingly, the expression of zinc transporters, including ZIP6, ZIP7 and
ZIP10, were positively correlated with the risk of breast cancer [123]. The involvement of ZIP6 in
longer relapse free survival and prolonged survival of breast cancer patients with ductal carcinoma
invasion has been documented [124]. Knockdown of ZIP6 in MCF-7 breast cancer cells can increase
cell survival in hypoxic environments [125,126]. ZIP6 also reportedly promotes breast cancer cell
invasion and metastasis, together with the high expression of E-cadherin [127,128]. Upregulation of
ZIP7 was reported in high risk breast cancer and was linked to a poor prognosis [129]. ZIP6 expression
was positively correlated with estrogen receptor (ER) and correlated with aggressive breast cancer
with promoted metastasis [130,131]. More than 70% of breast cancer cells are characterized as ER
positive (ER+) and anti-estrogen compounds are among the main therapeutic drugs for ER+ breast
cancer cells. Unfortunately, the efficacy of the anti-estrogen drug tamoxifen for malignant breast
cancer is limited due to the emergence of estrogen-independent breast cancers [132,133]. ZIP6 has
been associated with higher zinc levels in breast tumor cells compared with those in normal breast
cells and anti-estrogen compounds can reduce cellular zinc pools [134]. Zinc and ZIP7 was increased
in tamoxifen resistance MCF-7 cells, which enhanced growth factor activity and induced cancer cell
growth and invasion [135]. Suppression of ZIP7 can repress epidermal growth factor receptor signaling,
which subsequently reduces tumor cell growth and prevents the acquisition of breast cancer resistance
to tamoxifen. These results suggest that abnormal regulation of ZIP6 and ZIP7 and intracellular zinc
contents are strongly involved in breast cancer cell proliferation and migration. ZIP10 expression was
reportedly significantly higher in highly invasive and metastatic breast cancer cells (MDA-MB-231
and MDA-MB-435S) than in less metastatic breast cancer cells (MCF7, T47D, ZR75-1 and ZR75-30).
Accordingly, ZIP10 was associated with lymph node metastasis of breast cancer; the suppression of
ZIP10 can inhibit the migration of breast cancer cells [49].

Dysregulation of zinc and zinc transporters have also been considered as the major factors
for progression of pancreatic cancer. ZIP3 and ZIP4 are two well-studied transporters that display
altered expression in pancreatic tumor tissues. One study described the loss of zinc in ductal and
acinar epithelium of pancreatic cancers in which ZIP3 expression was downregulated compared with
that in normal pancreatic epithelium [136]. ZIP4 is reportedly overexpressed in 94% of pancreatic
adenocarcinomas compared with that in surrounding normal tissues [137]. The forced expression of
ZIP4 increased intracellular zinc levels, increased cell proliferation and dramatically increased tumor
volume in nude mice, suggesting that zinc availability and aberrant ZIP4 expression might be essential
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for pancreatic tumor growth. In esophageal cancers, markedly lower plasma zinc levels as compared
to the levels in esophagitis and normal groups were described [138]. Another study described the
overexpression of ZIP5 in esophageal squamous cell carcinoma compared to that in normal tissue and
that knockdown of ZIP5 reduced cell proliferation, migration and invasion due to the suppression of
COX2 and cyclin D1 [139]. In NCI-H358 lung cancer cells, ZIP1, ZIP4, ZIP7 and ZIP10 were all elevated,
with ZIP4 expression being highest. Although the expression of ZnTs was generally low, ZnT7 and
ZnT9 were significantly overexpressed in lung tumor tissues [140]. In bladder cancers, ZnT1 was
overexpressed and suppression of ZnT1 led to the inhibition of the proliferation, migration and invasion
in BIU87 bladder cancer cells [141]. In hepatocellular cancer, zinc was lost in 55% of hepatocellular
cancers [142]. Increasing numbers of reports suggest that the abnormal regulation of zinc is involved
in many cancers, including prostate, breast and pancreatic cancers. The pattern of zinc alteration
is somewhat tissue specific and zinc generally induces inhibition of cancer cell growth by targeting
the intrinsic apoptotic pathway. Although the mechanisms of how zinc dysregulation drive cancer
development are not very well established, the expression of zinc transporters are commonly altered
in multiple cancers and these transports have been implicated in this process.

5. Zinc as an Agent for Treatment of Prostate Cancer

The human body contains over 2 g of zinc with the highest content present in the prostate [143].
The total cellular zinc concentration for most mammalian cells typically ranges from 100 to 500 µM [144,
145]. However, zinc is concentrated in epithelial cells in the peripheral zone of the prostate in the
range of 800 to 1500 µM [146]. Only limited bioavailable free zinc is available [2,93,95,101,147,148].
The distribution of zinc in the cells is approximately 30% to 40% in the nucleus, 50% in the cytoplasm,
with the remainder in the cell membrane [149,150]. At the same time, the total intracellular zinc
(0.2–1 mM) is divided into three pools, including tightly bound zinc as an immobile and unreactive
pool, loosely bound zinc and a reactive pool of free zinc ion. Approximately 90% of cytoplasmic zinc
is bound to immobile macromolecules, mostly proteins, with 10% bound to mobile low molecular
weight ligands [151]. As previously mentioned, the content of zinc in prostate carcinoma is much
lower than that in normal prostatic epithelial cells [93]. Zinc deficiency in prostate cancer cells
has led to the central dogma that the supplementation of zinc may contribute to the prevention of
prostate cancer as well as halting cancer malignancy. The re-introduction of physiological levels
of zinc into cancer cells has yielded diverse results that have challenged the interpretation of the
biologic functions of zinc. Low doses of zinc may not reach the biological threshold, while at higher
doses zinc may become ineffective due to its toxicity [152]. Therefore, most therapeutic studies have
been done using excessive amounts of zinc due to the aforementioned cellular distribution of zinc.
Table 3 summarizes several prostate cancer therapeutic studies previously performed using various
doses of zinc in vitro and in vivo. Effective growth inhibition for LNCaP cells was accomplished at
100 ng/mL zinc, whereas a higher concentration (700 ng/mL) was required to show similar growth
inhibition in PC-3 cells [153]. Zinc-mediated growth inhibition was accomplished through the
induction of apoptosis, arrest of cells in the G2/M phase of the cell cycle and zinc-mediated increased
expression of p21Waf1/Cip1/Sdi1. Zinc treatment also released cytochrome c from mitochondria to cytosol,
activated caspase 3 and 9 and cleaved nuclear poly (ADP)-ribose polymerase (PARP), which activated
apoptosis in malignant prostate cancer cells [154,155]. The growth of most prostate cancer cells,
including LNCaP, DU145 and PC-3, can be inhibited by the addition of ZnSO4 in a range from 200 to
600 µM [156,157]. Zinc also inhibits hypoxia inducible factor-1 alpha (HIF1α) expression and its activity
to repress cancer stimulating pathways, such as VEGF and Bcl2 [158]. In addition, zinc contributes to
the truncation of the Krebs cycle and inhibition of citrate oxidation, which further prevents cancer cell
growth and proliferation, as well as inhibiting the invasion and migration of cancer cells [95].
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Table 3. Various strategies for prostate cancer therapeutics with zinc.

Cells Animals Zinc Dosages Delivery Effects References

PC3, LNCaP in vitro up to 1 µg/mL ZnSO4 culture media
Inhibition of cell growth: induction of

apoptosis by G2/M arrest and increase of
p21Waf/Cip1/Sdi1 expression

[153–155]

PC3, LNCaP in vitro 50–150 µM zinc acetate matrigel Inhibition of cell invasion: Suppression of
PSA and uPA activities [113,159]

PC-3, DU145 in vitro 0.06–0.55 µg/mL ZnSO4 culture media

Inhibition of cell metastasis by regulation
NF-κB and c-IAP2 activities; stimulation of
AP-1; suppressed expression of VEGF, IL-6,

IL-8 and MMP-9

[114,115]

PC3ZIP1 in vitro; C.B.17 SCID mice 1.5 µg/mL ZnSO4; 2000 ppm ZnSO4
culture media; drinking

water
Overexpression of ZIP1 reduced cell growth
and invasion by Inhibition of NF-κB activity [114,115,160]

PC3 NOD/SCID mice 200 µL of 3 mM zinc acetate intratumoral injection Inhibition of tumor growth enhancement of
animal survival [157]

PC3 NOD/SCID mice 3–20 mg/kg ZnCl2 intraperitoneal injection No effects on xenograft tumor cell growth [161]

PC3 nude mice ZnSO4 (30–45 µg/day) for 28 days osmotic pumps Inhibition of tumor growth by increased
Bax/Bcl-2 protein expression [162]

Transgenic prostate cancer TRAMP mice 0.85, 30, or 150 ppm zinc carbonate
(52.1% Zn) for 22 weeks pellet Increased tumor weights upon deficient or

high zinc uptake [163]

TRAMP-C2 C57BL/6 mice 10 mg/kg ZnCl2 for 2 weeks intraperitoneal injection Repressed tumor growth and androgen
receptor expression [164]

MNU and
testosterone-induced PIN Sprague Dawley rat 100 ppm ZnCl2 for 20 weeks drinking water Reverse effects on MNU and

testosterone-mediated PIN [165]

PSA, prostate specific antigen; uPA, urokinase-type plasminogen activator; c-IAP2, cellular inhibitors of apoptosis protein 2; TRAMP, transgenic adenocarcinoma mouse prostate, MNU,
N-methyl-N-nitrosourea; PIN, prostatic intraepithelial neoplasia.
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Many in vivo studies have verified that zinc efficiently suppresses prostate cancer tumors.
When zinc was administered to PC-3 cell-bearing nude mice by osmotic pumps for 4 weeks,
tumor growth was markedly reduced with the intracellular accumulation of zinc, followed by
the elevated expression of the apoptosis-induced protein Bax/Bcl-2 [162]. Direct injection of 200 to
600 µM zinc into mice-bearing PC3 tumors halted growth of the tumors and subsequently extended
the survival of the animals, with no detectable cytotoxicity to other tissues [157]. Furthermore,
the intraperitoneal injection of TRAMP-C2 bearing mice with 10 mg/kg body weight zinc led to the
remarkable decrease of tumor volume with the reduced expression of androgen receptor [164]. A study
using various doses of zinc in TRAMP mice as an attempt to investigate the chemopreventative
potential of zinc showed that a zinc-sufficient diet protected tumor development in the mice [163].
Administration of 100 ppm (or 0.01%) of zinc in drinking water for 20 weeks reversed the various
effects induced by carcinogenic N-methyl-N-nitrosourea combined with testosterone [165]. These
effects included tumor formation, phosphatase activity and expression of p53, Bcl-2 and caspase-3
on the dorsolateral prostate of rats, implicating zinc in protecting from carcinogen-induced tumor
progression. In a clinical study involving nearly 700 patients with prostate cancer, adequate uptake
of zinc was associated with a reduced risk of prostate cancer [166]. A study involving 525 men with
prostate cancer in Sweden also showed that a high zinc diet reduced the risk of prostate cancers [167].
Although the majority of studies supported the hypothesis that zinc intake by cancer cells can prevent
growth of the cells [146,153,168], other studies reported that zinc supplementation was neutral or
detrimental to prostate cancer progression [169,170]. For example, evaluation of the influence of
zinc treatment on cancer risk in the VITamins And Lifestyle (VITAL) cohort revealed that 10 years
consumption of a zinc diet did not reduce prostate cancer risk, while the intake of an average intake of
>15 mg/day of zinc decreased risk of advanced prostate cancer [171]. A large epidemiological study
performed by the United States National Cancer Institute suggested that supplemental zinc intake at
doses of 100 mg/day for 14 years was not associated with prostate cancer risk, although a higher risk of
advanced prostate cancer was evident in a small group of individuals [172].

6. Perspective

For many years, extensive investigations to decipher the precise role(s) of zinc ion have been
conducted in both normal and cancer cells. Zinc is an essential component for all forms of life and
is a crucial trace element required for the activity of more than 300 enzymes. Over 2000 zinc-finger
transcription factors are deeply involved in growth-modulating cell signaling pathways. Consequently,
zinc deficiency is responsible for the development of various diseases, such as abnormal body growth,
immune dysfunction, diabetes and cancers. Loss of zinc has been documented in patients diagnosed
with a variety of cancer types, including prostate cancer, hepatocellular cancer, pancreatic cancer,
lung cancer, ovarian cancer, esophageal squamous cell carcinoma and breast cancer. Among all soft
tissues, the prostate is most enriched in zinc. Decrease in intracellular zinc is a feature of prostate
cancer development and even progression to malignancy. The diverse functions of zinc in prostate
cancer include inhibition of cell proliferation by induction of the cell cycle and the inhibition of cell
migration and invasion. Zinc and zinc derivatives have been extensively studied to test the hypothesis
that therapies that lead to the accumulation of zinc in cancer cells effectively inhibit the proliferation
of these cells. A great deal of experimental evidence supports the idea that zinc derivatives and
zinc supplements are able to suppress the proliferation, migration and invasion of prostate cancer
cells. Moreover, the appropriate intake of zinc into cancer cells can reduce the risk of prostate cancer.
However, the efficacy of zinc provided in any form seems to be limited mainly due to the inability of
cancer cells to import excessive zinc from the extracellular milieu. Hence, many ongoing studies have
explored the relationship between zinc and functional zinc transporters, such as ZIP1, which is lost or
decreased in many prostate cancers. There are also many conflicting results concerning the curative
and preventative roles of zinc in prostate cancers. Several epidemiologic studies have suggested that
zinc supplementation may increase the risk of advanced prostate cancer. The inconsistency in data
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concerning dietary zinc supplementation and the zinc-related impact on prostate cancer prevention
and treatment has cast suspicion on zinc-mediated therapies. This issue needs to be extensively
investigated. Understanding the mechanism by which zinc is lost during prostate malignancy and
detailed information underlying the protective role of zinc in prostate cancer will help to address its
importance in the malignancy and progression of prostate cancer and thus the value of zinc in prostate
cancer prevention and therapy.
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