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Thermotaxis is a model to elucidate how nervous systems
sense and memorize environmental conditions to regulate
behavioral strategies in Caenorhabditis elegans. The genetic
and neural imaging analyses revealed molecular and cellular
bases of this experience-dependent behavior. Surprisingly,
thermosensory neurons themselves memorize the sensed
temperatures. Recently developed techniques for optical
manipulation of neuronal activity have facilitated the revela-
tion that there is a sophisticated information flow between
sensory neurons and interneurons. Further studies on thermo-
taxis will allow us to understand the fundamental logics of
neural processing from sensory perceptions to behavioral
outputs.

Introduction

How the nervous system regulates animal behavior depending on
environmental stimuli is a fundamental question in biology.
Because of the anatomically characterized nervous system that is
composed of only 302 neurons, C. elegans is suitable for dissecting
behavioral regulation at a small circuit and single neuronal level.
Despite its simple nervous system, C. elegans perceives a number
of environmental stimuli, such as chemicals, mechanical stretch,
light, and temperature, and produce appropriate behavioral
outputs by utilizing different sets of behavioral strategies.1-4

Hedgecock and Russell (1975) first reported an interesting
behavior, in which the animals remember the ambient tempera-
ture in association with its past cultivation conditions, and
migrate to and move isothermally around that temperature on a
temperature gradient.5 Since this behavior, called thermotaxis, is
experience-dependent, thermotaxis provides a great opportunity
to study sensory perceptions, behavioral regulations, neural
plasticity such as learning and memory and so forth.6-8 Through
the application of calcium imaging and optogenetics in addition
to molecular genetics, our knowledge of these mechanisms has
advanced in the last several years. In this review, we first discuss
different thermotaxis responses observed in different assay

systems. Second, we describe the recent findings of thermosensory
neurons acting both as a temperature signal receptor and a
memory device, new thermosensation systems and the complex
flow of temperature information from thermosensory neurons to
downstream interneurons. Finally, we show the importance of
thermosensation on the physiology of animals and the usefulness
of thermotaxis for genetic identification of new molecules that
function in the nervous system.

Thermotaxis Assays: The Steepness
of Thermal Gradient Makes a Difference

Hedgecock and Russell (1975) originally analyzed worm thermo-
taxis using two types of temperature gradients.5 One is a uniform
linear temperature gradient of 0.5°C/cm, that examines the
accumulation of worms. The other is a nonlinear radial tempera-
ture gradient on 9 cm Petri dish for examining tracks of individual
worms (Fig. 1A). In both assays, a few hour-cultivations of
animals with food at a certain temperature drove them to move
toward warmer or colder regions until they reached the region that
nearly corresponded to their previous cultivation temperature, and
then moved isothermally (IT behavior).

Many studies that used similar assay systems to Hedgecock
and Russell (1975) reproduced the original results (Fig. 1A and
Table 1).6-11,14 However, some studies using different assay
systems showed that worms do not possess the ability to move to
a higher temperature on a temperature gradient (Table 1).7,15-18

To understand this discrepancy, differences in assay systems such
as steepness of the temperature gradient, difference in wild type
strains, or temperature of starting point, were systematically
analyzed.19 Jurado et al. (2010) showed that the steepness of the
temperature gradient is a key parameter, which explains the
different results observed in different assay systems.19 When
the steepness of the temperature gradient is less than 1.0°C/cm,
the distribution spectra of animals on the thermal gradient are
similar to those reported in Hedgecook and Russell (1975). By
contrast, when the steepness of the temperature gradient was more
than 1.0°C/cm, the distribution spectra changed: while animals
cultivated at low temperatures accumulated to the cultivation
temperature, animals cultivated at high temperatures showed an
almost athermotactic phenotype. Given that the steepness is
important for thermotaxis, particularly in the case for cultivation
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at high temperatures, the different results reported in several
studies (Table 1) are reasonably explained. It is thus necessary to
consider the assay conditions carefully, particularly the steepness
of a temperature gradient, when comparing thermotactic res-
ponses in different studies. Computer simulation analyses based
on random walk theory also suggested that the steepness is an
important factor to determine whether worms show migration
toward warmer temperatures (thermophilic movement) or
not.20,21 One of the simulation studies hypothesized that animals
become athermotactic in a region much colder than the cultiva-
tion temperature, because calcium imaging analyses showed that
thermosensory neurons AFD and AWC do not respond to
temperature change at this region (discussed below).21 The
simulation showed that if the temperature gradient is steep,
animals are easily trapped in the colder region, resulting in
athermotactic rather than thermophilic behavior.21 Although this
behavioral model is solely based on random walk theory, it is
possible that worms also utilize other types of behavioral strategies
including “weathervane strategy.”22 Revealing such strategies
would be essential to fully understand why the steep gradient
abolishes thermophilic drives.

Neural Circuit that Regulates Thermotaxis

To understand neural mechanisms regulating thermotaxis, it is
important to understand the underlying neural circuit. The

original neural circuit model was established by a series of laser
ablation experiments (Fig. 1B).11 In the model, temperature
information sensed by a major thermosensory neuron AFD and
other unidentified neuron X is transmitted to two downstream
interneurons, AIY and AIZ, which drive two opposite thermo-
taxis responses, migration toward warmer temperatures (thermo-
philic movements) and migration toward colder temperatures
(cryophilic movements), respectively. Then, these two drives are
integrated in the RIA interneuron. Consistent with the notion
that the AFD neuron acts as a thermosensory neuron (Fig. 2A),
AFD responded to thermal stimuli in calcium imaging using
yellow cameleon 2.12, a genetically encoded calcium sensor
(Fig. 2B).23

Genetic and physiological studies showed that the AWC
olfactory neuron is also involved in temperature sensation
(Figs. 1B and 2A).12,24,27 The mutant for EAT-16, a homolog
of a mammalian regulator of G protein signaling (RGS) proteins,
was isolated as a thermotaxis defective mutant that migrates
toward colder temperatures than the previous cultivation
temperature (cryophilic defect). The thermotactic defect of eat-
16 mutants was not rescued by expressing the cDNA in the
originally identified thermotaxis neurons, but was rescued by the
expression in the well-characterized olfactory neuron, AWC.12,27

Calcium imaging using yellow cameleon 2.12 showed that the
calcium concentration of AWC deterministically increased as
much as the AFD thermosensory neuron in response to warming

Figure 1. Thermotaxis behavior in C. elegans. (A) C. elegans cultivated at a particular temperature with food migrates to the cultivation temperature both
on linear (left) and radial (right) thermal gradients. Start points of assay are shown with X. White dots on pictures of linear thermal gradient indicate
terminal points of individual animal movements after 1 h thermotaxis test. Typical tracks of animals on the radial thermal gradient are shown. The figures
are modified from previous reports.9,10 (B) A model of thermotaxis neural circuit. Temperature stimuli are sensed by AFD, AWC, ASI and unidentified “X”
thermosensory neurons, and the thermal information transmitted to AIY and AIZ interneurons and integrated in RIA interneuron. AIY and AIZ
interneurons mediate migration to higher temperature (thermophilic, T) and to lower temperature (cryophilic, C and c), respectively. The diagram is
modified from previous reports.11-13
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(Fig. 2C), while the responses of ASH and ASE neurons were
much smaller.12 These results suggest that the AWC neuron is
part of the thermotaxis neural circuit (Figs. 1B and 2A). An
independent study using a calcium indicator, GCaMP and a
different temperature stimulus showed that the AWC neuron did
respond to temperature change but the individual responses
were stochastic; the event rate of stochastic calcium spike
monotonically increased with amplitude of temperature change
(Fig. 2D).24 Different observations might be caused by the
different calcium indicators. GCaMP3 has a shorter decay time
than FRET-based calcium probes like yellow cameleon.28 Thus,
an array of small calcium spikes may be integrated with yellow
cameleon, while each of such spikes may be detectable with
GCaMP. Also, the different results were obtained with different
temperature stimuli. For example, AWC may change its response
depending on the patterns of temperature stimuli. Further, in
contrast to the results obtained from the imaging analyses, the
electrophysiological analysis showed that ionic current was not
detected upon temperature change in AWC.29 One possible
explanation for this discrepancy is that thermosensing properties

physiologically differ between AFD and AWC neurons, which
should be clarified in future investigations.

Recently, ASI neurons previously designated as pheromone
sensing neurons, were also reported to be involved in thermo-
sensation in rather unusual assay conditions including a quite
sharp steepness of the gradient (1.0°C/cm) (Fig. 2A).13 Animals
cultivated at either 15°C or 20°C are set at the starting points
where the temperature is 4, 5, 6, 7, 8, 9 or 10°C higher than the
cultivation temperature, respectively. In this assay, wild type
animals showed robust cryophilic movement, while tax-4 mutant
animals defective in cGMP-dependent cation channel moved
randomly. The defects of tax-4 mutants were rescued by express-
ing tax-4 cDNA in different combinations of AFD, AWC and
ASI neurons (Fig. 2E). The rescues required quite complex
combinations of these neurons and changed in accordance with
the assay parameters such as cultivation temperature and starting
point temperature (Fig. 2E). Further, inactivating the different set
of these three neurons caused defects in the cryophilic movement
depending on the assay parameters (Fig. 2E). The results from
cell-inactivation experiments are not necessarily consistent with

Table 1. Different assay systems for analyzing thermotaxis

Experimental conditions Evaluations * References

Thermal gradients Assay times

Spacial nonlinear 0.5°C/cm–3.5°C/cma 1–2 h track 5, 10, 11, 12, 32, 34, 35, 45, 59, 63, 64

linear 0.5°C/cm 1 h distribution 5, 9, 12, 26, 32, 37, 45

(~0.5°C/cm) 0.5°C/cm to 1 h (time course) distribution 18

0.5°C/cm 1 h run duration 24

0.5°C/cm 30 min run duration 61

0.5°C/cm 30 min IT duration 24

0.5°C/cm 25 min IT temperature 18

0.4°C/cm 23 min IT temperature 15

linear 1.15°C/cm to 1 h (time course), 8 h distribution 17

(~1°C/cm) 1.0°C/cm 35 min run duration 13

0.8°C/cm 30 min IT duration 24

1.1°C/cm 30 min IT temperature 39

1.0°C/cm 25 min IT temperature 18

0.9°C/cm 35 min IT length and
temperature

33

linear 1.4°C/cm 1 h distribution 16

(1.4°C/cm) 1.4°C/cm 10 min instantaneous velocities 16

linear
(various)

0.2°C/cm, 0.4°C/cm, 0.6°C/cm,
0.8°C/cm, 1.0°C/cm, 1.2°C/cm

1 h distribution 19

0.3°C/cm, 0.5°C/cm, 1°C/cm, 1.5°C/cm 10 min distribution 20

0.40°C/cm, 0.75°C/cm, 2°C/cm 23 min IT amplitude 15

Temporal crawling ± 0.5°C/min 5 min run duration 15

swimming ± 4°C/min 30 sec turning rate 15

± 2°C/min 15 minc turning rate 36

various stimulib

ex. from 0.4°C/min to 6.4°C/min
5–15 mind turning rate 61

*Values were calculated from these ‘evaluations’ by respective equations in some articles. aCassata et al., Genesis, 2000. bSine-wave, upstep and downstep.
crepeated up (1min) and down (1min). dinvolved the presentation of multiple stimulus waveforms.
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Figure 2. Neural response to thermal stimuli. (A) Thermosensory systems in C. elegans. Thermosensory neurons and tissues. AFD, AWC and ASI head
sensory neurons and PVD and FLP multidendritic neurons respond to temperature stimuli.11-13,23-25 A transcriptional mechanism mediated by HSF-1
in non-neuronal cells responds to cultivation temperature and modifies thermotaxis.26 (B–D) Physiological responses in AFD (B) and AWC (C and D)
thermosensory neurons. Relative increases or decreases in the intracellular Ca2+ concentration have been measured with yellow cameleon (YC) and
GCaMP. Schematic colored lines indicate the ratio (YFPF535/CFPF480) change of YC (DR/R; B and C) and the fluorescence change of GCaMP (DF/F;
D). Temperature change are shown with solid black line. Broken black line shows Ca2+ event rates (/min) measured with GCaMP (below in D). Ca2+ event
rates were low when non-variable temperature stimulus was applied, but event rates increased monotonically with increasing amplitude of the
temperature stimulus. The figures are modified from previous reports.12,23,24 (E) Distinct subsets of thermosensory neurons function for robust cryophilic
movement in different experimental conditions. Neurons whose ablation impairs the cryophilic movement (necessary) and neurons in which expression
of TAX-4 cDNA is sufficient for rescuing the defect of tax-4 mutants (sufficient) are listed. The table is modified from a previous report.13
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the results from rescue experiments (Fig. 2E). Beverly et al.
(2011) suggested that the degeneracy within these three neurons
contribute to generate robust cold navigated behavior. Calcium
imaging showed that ASI could respond to temperature change
and that the operating temperature range of ASI changed in the
absence of AFD. These results may implicate the regulation of
ASI thermosensitivity through neuroendocrine signaling from
AFD.13

Thermosensory Neurons as Temperature Signal
Receptor and Memory Device
of Environmental Temperature

Recent physiological studies progressed our knowledge on pro-
perties of the AFD thermosensory neuron. According to the first
calcium imaging of the AFD neuron using yellow cameleon
2.12,23 the calcium concentration of AFD transiently increased
in response to warming above the threshold that was set by a
previous cultivation temperature; the AFD of animals cultivated
at 20°C responded to warming above 19°C (Fig. 2B). Similarly,
the AFD of animals cultivated at 15°C or 25°C responded to
warming above the threshold temperature that was near the
cultivation temperature 15°C or 25°C, respectively (Fig. 2B).23

When various patterns of temperature stimuli were used,30 AFD
responded to both warming and cooling, and discriminated
temperature changes as small as 0.05°C. Interestingly, the sensory
ending of AFD, that is disconnected from the cell body, still
retained the ability to respond to the temperatures above the
threshold temperature. These results suggest that the threshold
temperature for calcium influx is stored at the sensory endings
of the AFD neuron, thereby acting as the primary site for tem-
perature memory. A recent electrophysiological analysis also
showed that AFD responds to both warming or cooling by
opening or closing ion channels, respectively.29 Because of the
ability to store temperature memory and the multiple responsive
properties to temperature, the AFD neuron can be used as a
model to understand the mechanisms of a single-cell memory,
which would be as important as modulation of synaptic strength
for memory formation.

As described before, calcium imaging of AWC showed that
the calcium concentration of AWC is increased in response to
temperature changes (Fig. 2C and D).12,24 Kuhara et al. (2008)
further showed that the temperature threshold for calcium
influx in AWC exhibits the dependency on the past cultivation
temperature, suggesting that AWC possesses the similar plasticity
as AFD does (Fig. 2C).

Molecular Analysis of Thermosensory Neurons

Recent molecular analysis of AFD neurons certainly advanced our
understanding of the molecular mechanisms underlying AFD
function (Fig. 3A). Three guanylate cyclases (GCY-8, GCY-18,
GCY-23) and cGMP-dependent cation channel (CNG channel),
consisting of TAX-2 and TAX-4 subunits, were identified for
thermosensation in the AFD neuron.31,32 A recent study demon-
strated that disruption of any of the three guanylate cyclases causes

distinct abnormalities in the IT behavior and AFD responses:33

mutations in gcy-8 gene caused defects in IT execution and AFD
responsiveness to temperature stimuli, while mutations in gcy-18
or gcy-23 changed temperature range where IT is executed to
lower or higher range, respectively. These results suggest the
intricate regulation of cGMP levels is required for proper thermo-
sensory function of AFD. TTX-4/Protein kinase C epsilon/eta
and TAX-6/Calcineurin were identified as negative regulators
of AFD activity and plasticity.34,35 Loss of DGK-3, one of the
diacylglycerol kinases in C. elegans, impairs the adaptation speed
for a new cultivation temperature, but does not alter the
adaptation speed of a temperature threshold for calcium influx
in the AFD neuron. This defect was rescued by AFD-specific
expression of dgk-3 gene, suggesting that DGK-3 regulates
the output of AFD for the behavioral plasticity rather than
regulation of the thermosensitivity per se.39 CMK-1, a homolog of
Ca2+/calmodulin-dependent protein kinase I/IV (CaMK I/IV), is
required for activity-dependent AFD-specific gene expressions.36

Further, the mutant for the gene crh-1 encoding the cAMP
response element-binding protein (CREB), which is regarded as a
key transcription factor for memory formation across species,40,41

was found to show abnormal thermotactic behavior and lowered
the magnitude of AFD calcium responses as compared with wild
type animals.37 The behavioral defects were completely rescued
by AFD-specific expression of crh-1 cDNA.37 Animals expressing
the dominant negative form of CRH-1 in AFD needed longer
conditioning time to change their preferred temperatures than
wild type animals.37 It remains to be elucidated as to how CREB
regulates the excitability of the AFD neuron. Also, it is important
to address how these molecules orchestrate the full functions of
the AFD neuron. Microarray analysis of cultivation temperature-
dependent AFD specific gene expressions may be a potent way to
obtain clues on the complex molecular interactions. The sensory
ending of AFD is embedded into the sheath cell that is thought to
be equivalent to glia.42 Ablation of sheath glia does not eliminate
AFD function but results in thermophilic behavior, suggesting
that the interaction between AFD and sheath glia is essential for
thermosensation.43

A subset of molecules was revealed to function in temperature
sensation in AWC (Fig. 3B).12,24 Temperature information is
transmitted through a G protein signaling pathway that involves
G a (ODR-3), guanylate cyclase (ODR-1), regulator of G pro-
tein signaling (EAT-16) and CNG channel (TAX-4/TAX-2). A
homolog of G protein-coupled receptor SRTX-1 was also identi-
fied to function in the AWC neuron for IT behavior.24 Whether
SRTX-1 directly perceives temperature and transmits signals to
the G protein pathway is currently unknown. Most of these
molecules in AWC thermosensation are shared by olfactory
sensation. The question arises whether AWC discriminates tem-
perature and odor stimuli. AWC relieves inhibition of the down-
stream interneuron AIY on perception of odorants.44 By contrast,
AWC transmits temperature information through excitatory
signals to AIY.45 It is likely that temperature and odor stimuli
are discriminated in AWC. How does the AWC neuron discri-
minate between the two stimuli using a quite similar signaling
pathway? The AFD neuron transmits either excitatory or
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inhibitory signals to AIY, dependent of the magnitude of the
intracellular calcium concentration (discussed below).46 Similarly,
AWC might send either excitatory or inhibitory signals to AIY.
Calcium imaging using GCaMP showed that temperature and
odor stimuli cause different patterns of calcium influx in
AWC.24,44 It is plausible to assume that the two stimuli may
activate the G protein signaling pathways in a different strength or
frequency, thereby generating various types of transmissions from
AWC to AIY.

AFD and AWC neurons seem to utilize similar G protein
signaling pathways for temperature sensation (Fig. 3A and B),
which resembles the signaling cascade in mammalian vision.
C. elegans also perceive light using a G protein-dependent cGMP
pathway in the ASJ neuron (Fig. 3C).3,4,38 Investigation of the
analogy between these sensory systems in C. elegans and mammals
will lead to understanding the evolution of signaling cascades for
diverse sensory stimuli such as temperature and light.

Thermosensory Systems Outside of Amphid

Besides the temperature sensing neurons in the amphid, C.
elegans perceives temperature in other systems. A heatshock

transcription factor HSF-1 is known to be required for the
heat-shock induced gene expression.47 Recently, HSF-1 was
shown to be required for thermotaxis.26 The thermotaxis defect
exhibited by hsf-1 mutants was restored by expression of HSF-1
in muscles and intestine without expression in any neurons.
Additionally, HSF-1 in muscles and intestine regulates the
physiological response of the AFD neuron to temperature
through gene expression dynamics, which in part involves the
estrogen hormonal pathway.26 Given that HSF-1 responds to
a range of ambient cultivation temperatures,26 these results
indicate that worms also utilize the systemic temperature
perception mechanism through HSF-1, leading to the modulation
of the activity of the AFD thermosensory neuron (Fig. 2A). The
similar finding that non-neuronal cells modulate nervous
system to change behavior is also demonstrated in aerotaxis,
in which the animals move to a preferred ambient oxygen
concentration.48 The uv1 endocrine cells in the gonad were
shown to sense environmental oxygen concentrations through
a hypoxia-induced transcription factor (HIF-1) and may send
signals to the nervous system to modulate oxygen preference.
Given the importance of temperature and oxygen concentra-
tions, it is plausible that animals have evolved mechanisms in

Figure 3. A possible molecular mechanism of thermosensory signaling. (A) Thermal stimuli are sensed by unidentified receptors at the sensory ending
of AFD, then unidentified G protein activates guanylate cyclases GCY-8, GCY-18, and GCY-23, leading to change of cGMP concentration and regulating
the TAX-4/TAX-2 channel.31–33 TAX-6/Calcineurin, DGK-1/DAG kinase, TTX-4/Protein kinase C and CMK-1/CaMK I/IV act as regulators for the temperature
signaling.34–36 CRH-1/CREB and NHR-69/nuclear receptor also regulate the temperature signaling through transcription.26,37 (B) SRTX-1/G protein-coupled
receptor is reported to regulate the responding rate of AWC neuron to temperature change.24 ODR-3/G-a protein activates ODR-1/guanylate cyclases,
leading to change of cGMP concentration and regulating the TAX-4 and TAX-2 CNG channel, and EAT-16/RGS acts as negative regulator
for the temperature signaling.12 (C) A model for phototransduction cascade in the photoreceptor cell ASJ.38 LITE-1/G protein-coupled receptor may
act as photoreceptor, two G-a proteins GOA-1 and GPA-3 may be coupled to the guanylate cyclases, DAF-11 and ODR-1, and upregulated cGMP open
the TAX-4 and TAX-2 CNG channel.
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which to perceive such environmental information in multiple
tissues.

Another recent study also showed another type of temperature
sensitive neurons. The multidendritic neurons PVD and FLP that
envelope the whole animal body respond to noxious cold- and
heat-shock stimuli, respectively (Fig. 2A),25 indicating that these
neurons may be required for noxious temperature avoidance.25,49

At least, a TRP channel (TRPA-1) appeared to play a role for the
noxious cold reception.25 The temperature range for noxious
stimuli is quite different from the ambient temperature range for
thermotaxis, suggesting that C. elegans has independent thermo-
sensory mechanisms that discriminate noxious and ambient
temperature.

Information Processing
in the Thermotaxis Neural Circuit

The temperature information received by various thermosensory
systems may produce different behavioral and physiological
strategies through information processing in interneurons. Both
AFD and AWC neurons are connected to the postsynaptic AIY
interneuron that is responsible for thermophilic movement in
the neural circuit (Fig. 1B).11,12 Recent studies have unveiled
sophisticated information processing in these three neurons.
The study using animals mutant for the gene eat-4, encoding a
vesicular glutamate transporter (VGLUT), showed that EAT-4-
dependent glutamatergic transmission from AFD downregulated
the activity of the AIY neuron through a glutamate-gated chloride
channel GLC-3. This inhibition of AIY resulted in cryophilic
movements (Fig. 4A). In contrast, EAT-4-dependent glutamater-
gic transmission from AWC upregulated AIY, thereby inducing
thermophilic drive (Fig. 4A). Thus, the two glutamate transmis-
sions from AFD and AWC encoding opposite information flows
balance the activity of the single interneuron AIY, which may
consequently process behavioral output (Fig. 4A).45

Since calcium imaging showed that the AIY neuron did not
respond to temperature stimuli in AFD-ablated animals, there
should be excitatory signals from AFD to AIY besides the EAT-4-
mediated inhibitory signal (Fig. 4A).30,45 AFD-ablated animals
exhibited cryophilic or athermotactic phenotypes, whereas
animals that impair EAT-4-dependent transmission exhibited a
thermophilic phenotype. These behavioral differences support
the EAT-4-independent transmission between AFD and AIY.11,45

The use of a recently developed technique for optical mani-
pulation of neuronal activity50 has enabled the discovery of
the bidirectional neurotransmission of AFD neuron.46,51 An
analysis with simultaneous use of a light-driven cation channel
channelrhodopsin-2 (ChR2) and the electrophysiological tech-
nique demonstrated the tonic and graded excitatory synaptic
transmissions between AFD and AIY neurons.51 The signal from
AFD is scale downed in AIY, and pulse stimulation from AFD
neither facilitates nor depresses the AIY responses. This excitatory
transmission requires UNC-31, that regulates neuropeptides
release, suggesting that the excitatory synapse between AFD and
AIY is peptidergic (Fig. 4A). The other study used a light-driven
chloride channel, halorhodopsin (NpHR), to dissect the AFD to

AIY transmission.46 In this study, the activation of NpHR in AFD
caused the partial inactivation of the AFD neuron; the magnitude
of the response to calcium influx measured by yellow cameleon
3.60 was partially lowered, which was confirmed by the lowered

Figure 4. A model for neural regulation in the thermotaxis neural circuit.
(A) Functional connections of AFD, AWC and AIY. EAT-4-dependent
glutamatergic transmission from AFD inhibits AIY and promotes
cryophilic behavior, while EAT-4-dependent glutamatergic transmission
from AWC excites AIY and promotes thremophilic behavior.45 A study
of olfactory sensation showed that EAT-4-dependent glutamatergic
transmission from AWC inhibits AIY in presence of odor stimuli.44

Unknown receptors are colored with gray. (B) A model for neural
regulation of stimulatory and inhibitory neural signal controlling
opposite thermotactic behavior. “T” and “C” indicate thermophilic and
cryophilic driving signal, respectively. Cartoons of signal in AFD and AIY
responded to thermal stimulus are shown in rectangles. A strong AFD
response activates both stimulatory and inhibitory neurotransmissions to
AIY, inducing a relatively weak activation of AIY. A weak AFD response
causes relatively low activation of inhibitory neurotransmission, inducing
a strong activation of AIY, which generate a thermophilic drive. A lack of
sensory response eliminates AIY activation, whereby AIY-independent
pathway generates cryophilic movement. The width of arrow indicates
the strength of signal, and dotted arrows indicate weakness of signal.
The figures are modified from previous report.46

www.landesbioscience.com Worm 37



© 2012 Landes Bioscience.

Do not distribute.

voltage change measured by a membrane voltage indicator,
mermaid. This reduced response of AFD caused the hyperactiva-
tion of AIY, while the complete or nearly complete inactivation
of AFD caused the loss of or lowered AIY response (Fig. 4B).
Further, the partial inactivation of AFD did not enhance the
AIY activity in mutant animals lacking eat-4 in AFD. These
results suggest that partial inactivation of the AFD neuron reduces
the EAT-4-mediated glutamatergic inhibitory signal, thereby
leading to hyperactivation of the AIY neuron (Fig. 4B), while
the complete inactivation of AFD reduces both excitatory and
inhibitory signals, resulting in the loss of AIY response (Fig. 4B).
It is thus plausible that the different activity states of AFD
generate the diverse output that is balanced by two opposite
neurotransmissions.

In contrast to the conclusion that EAT-4-dependent glutama-
tergic transmission from AWC upregulates AIY,45 physiological
analysis using AWC hyper-activated mutants showed that acti-
vation of AWC inhibits the AIY neuron.12 Thus, it is possible
that AWC utilizes EAT-4-independent neurotransmission for
the inhibition of AIY (Fig. 4A). Additionally, AWC also perceives
odorants and transmits the odor information to AIY, indicating
that the nature of the information flow from AWC to AIY appears
to be much more complicated. Interestingly, the AWC neuron
inhibits the AIY neuron through the EAT-4-dependent activa-
tion of GLC-3, and exposures to odorants relieve this inhibition
(Fig. 4A).44 Given that temperature information flow from
AWC to AIY does not require GLC-3 but EAT-4-dependent
glutamatergic transmission, temperature and odor stimuli may
be discriminated not only at the level of the sensory neuron but
also at the level of the neurotransmissions to the postsynaptic
neuron.

In summary, despite the simple physical connections between
AFD, AWC and AIY neurons (Fig. 1B),52 recent studies showed
highly intricate information flow inside the circuit. More analyses
should be required to fully understand the information process-
ing in this thermotaxis circuit. In addition, the complex nature
of information flows is also observed in the case of chemotaxis
that partly shares neurons with thermotaxis.22,53 How different
sensory inputs are discriminated in the neural circuit will be an
important question in future studies.

AFD Thermosensation Affects
the Physiological Process

Environmental temperature affects many aspects of physiology of
organisms including life span. The recent study using C. elegans
showed that the ambient temperature sensed by AFD influenced
the lifespan.54,55 Inactivation of AFD either by a laser microbeam
or genetic mutations led to a significant reduction in lifespan
when animals were cultivated at 25°C, but did not affect lifespan
when cultivated at 15°C. These results suggest that the thermo-
sensation through AFD prevents worms from otherwise having
a much shorter lifespan at high temperatures. The control of life
span by AFD is independent of DAF-16/FOXO, a key trans-
criptional factor for aging, and instead is dependent on the activity
of a steroid hormone signaling. The high temperature sensed by

AFD promotes the transcription of daf-9 that encodes a cyto-
chrome P450 in body tissues such as the XXX neurosecretory
cells, the hypodermis, and the spermatheca. Steroid ligands pro-
duced by DAF-9 bind to and inhibit the nuclear hormone
receptor DAF-12. Inactivation of DAF-12 contributes to the anti-
aging effects at high temperature.54,55

Input of temperature is also important for developmental
choice. Inactivation of AIY interneurons, downstream of AFD
thermosensory neurons, largely affects dauer formation.56 The
sensation and the processing of environmental temperature by
AFD and AIY, respectively, might be more crucial for physiology
as well as development of worms than we have previously
expected.

Recent report showed that heat shock responses at 30°C and
34°C in somatic cells depend on the AFD-AIY thermosensory
system.57 When worms were treated under heat shock of 30°C
or 34°C, mRNA levels of hsp-70 were upregulated in wild type
animals. gcy-8 gene encodes one of three guanylate cyclases that
redundantly function for thermosensation in AFD, and ttx-3
gene encodes the LIM homeodomain protein essential for AIY
development.31,56 The upregulations of hsp-70 mRNA by heat
shock were largely reduced in gcy-8 and ttx-3 mutants, suggesting
that heat shock responses in somatic cells are mediated by the
AFD-AIY system.57 These observations are, however, totally
inconsistent with the other reports that no changes in mRNA
levels were observed both in the same and similar experimental
conditions.26,54

The Usefulness of Thermotaxis
for Characterizing New Neural Molecules

One of the advantages for behavioral studies in C. elegans is its
powerful genetics.58 Genetic analysis of thermotaxis behavior is
a particularly effective way to reveal new functions of molecules
because of the high detectability of subtle behavioral abnormali-
ties. Forward genetic screens, reverse genetic analysis and char-
acterization of mutants defective in thermotaxis have already
identified important functions of many molecules in neuronal
development, synaptic plasticity and sensory transduction
(Table 2).8

The recent study genetically identified a novel molecule that
functions in the nervous system. The maco-1/ttx-8 gene, encoding
a homolog of human macoilin, was originally isolated as
thermotaxis defective mutant and independently as suppressor
for social behavior defective mutants.59,60 MACO-1 is a highly
conserved novel protein with several transmembrane domains
in the N-terminus and coiled-coil domains in the C-terminus.
MACO-1 was broadly expressed in the nervous system and
localized to ER in neurons. The calcium response of neurons
for thermotaxis or social behavior, such as AFD, AIY and PQR,
was largely decreased in maco-1 mutants. Further, the presynaptic
structure in motor neurons of maco-1 mutants was partly
disorganized. These results suggest that MACO-1 is generally
required for neuronal excitability and synapse organization.59,60

FLJ10747, a predicted human homolog of MACO-1, rescued
the thermotaxis defects of maco-1 mutants,59 indicating that the

38 Worm Volume 1 Issue 1



© 2012 Landes Bioscience.

Do not distribute.

function of macoilin is evolutionary conserved between nema-
todes and humans. Thus, the functional identifications of
MACO-1 in C. elegans provided important clues for the analysis
of human macoilin. Further genetic screens and analyses using
several assay systems of thermotaxis will facilitate understanding of
such novel but evolutionary conserved neural molecules.

Concluding Remarks and Perspective

Analyses of thermotaxis in C. elegans have provided fruitful
information about the mechanisms of thermosensation and neural
computation from sensory perceptions to behavioral outputs.
Importantly, the temperature information is memorized in a
single thermosensory neuron, AFD. How does AFD store,
maintain and recall memory? Comprehensive and thorough

analyses of AFD will reveal the cellular logics of memory. Given
that CRH-1 and CMK-1, homologs of CREB and CaMKI/IV,
respectively, are involved in temperature coding in AFD, the
reasonable assumption is that the logics of memory found in AFD
will be conserved in human.

As demonstrated in this review, the temperature information
received by discrete sensory systems is transmitted to downstream
neurons in a complex manner even in C. elegans. To fully
understand the mechanisms for the complex and sophisticated
information flow, the recently developed techniques that enable
the imaging of neural activity or to manipulate activity of a single
neuron of freely moving animals61,62 will be useful. Combining
these technologies and more detailed behavioral analysis will
produce a systematic data set that links the activity of each neuron
and behavioral output, thus enabling mathematical analyses. The

Table 2. Genes required for thermotactic behavior

Gene Gene product Mutant phenotype Site of action (Neuron) Reference

tax-4 cGMP dependent channel (a subunit) athermotactic AFD and AWC

12, 32, 65tax-2 cGMP dependent channel (b subunit) athermotactic AFD and AWC

ttx-1 OTD/OTX homeodomain protein cryophilic AFD 64

ceh-14 LIM homeodomain protein athermotactic AFD 66

cmk-1 CaM kinase I/IV abnormal AFD 36

dac-1 SKI/SNO/DAC family cryophilic AFD 67

tax-6 Calcineurin A subunit thermophilic AFD 34

ttx-4 nPKC-epsilon/eta thermophilic AFD 35

dgk-3 diacylglycerol kinase abnormal temperature memory AFD 39

ncs-1 Neuronal calcium sensor abnormal isothermal tracking AIY 68

ttx-3 LIM homeodomain protein cryophilic AIY 56

ceh-10 homeodomain protein abnormal AIY 69

lin-11 LIM homeodomain protein thermophilic AIZ 70

unc-86 POU (transcriptional factor) thermophilic AIZ 11

ttx-7 Inositol monophosphatase athermotactic RIA 71

dgk-1 diacylglycerol kinase cryophilic unknown 35

odr-3 G protein a subunit slightly thermophilic AWC 12

eat-16 regulator of G protein signaling slightly cryophilic AWC 12

srtx-1 G protein coupled receptor abnormal isothermal tracking AWC 24

ttx-8 macoilin athermotactic
AFD, AIY, AIZ and
other neurons 59

crh-1 CREB protein abnormal (cryophilic and athermotactic) AFD 37

hsf-1 heat-shock transcription factor abnormal temperature memory whole body 26

nhr-69 estrogen receptor abnormal temperature memory AFD 26

eat-4 VGLUT homolog athermotactic AFD, AWC, RIA 45

glc-3 glutamate-gated chloride channel slightly thermophilic AIY 45

ins-1 insulin homolog defective in association between temperature and food neurons 72

age-1 PI-3-kinase homolog
partially defective in association between temperature

and food thermotactic interneurons 72

daf-16 forkhead-type transcriptional factor
partially defective in association between temperature

and food
unknown (thermotactic

interneurons) 72

hen-1 secretory protein defective in association between temperature and food unknown 73

gcy-28 receptor-like guanylate cyclase defective in association between temperature and food unknown 14
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future analyses of thermotaxis will continue to dissect the princi-
ples of neural operations conserved from nematode to human.
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