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Abstract: Infectious diseases caused by intestinal protozoan, such as Entamoeba histolytica (E. histolytica)
and Giardia lamblia (G. lamblia) are a worldwide public health issue. They affect more than 70 million
people every year. They colonize intestines causing primarily diarrhea; nevertheless, these infections
can lead to more serious complications. The treatment of choice, metronidazole, is in doubt due
to adverse effects and resistance. Therefore, there is a need for new compounds against these
parasites. In this work, a structure-based virtual screening of FDA-approved drugs was performed
to identify compounds with antiprotozoal activity. The glycolytic enzyme triosephosphate isomerase,
present in both E. histolytica and G. lamblia, was used as the drug target. The compounds with
the best average docking score on both structures were selected for the in vitro evaluation. Three
compounds, chlorhexidine, tolcapone, and imatinib, were capable of inhibit growth on G. lamblia
trophozoites (0.05–4.935 µg/mL), while folic acid showed activity against E. histolytica (0.186 µg/mL)
and G. lamblia (5.342 µg/mL).

Keywords: protozoa; FDA; virtual screening; drug repositioning; molecular docking

1. Introduction

Intestinal protozoa are eukaryotic unicellular organisms that cause several diseases
to humans and animals. Mainly, they affect developing regions; nevertheless, due to
globalization and the increase of human migration, some of these diseases are becoming a
health threat all over the world [1]. The parasites, Entamoeba histolytica (E. histolytica) and
Giardia lamblia (G. lamblia), are the major agents causing parasitosis affecting more than
70 million people every year [2,3]. E. histolytica causes amoebiasis, characterized by pyrexia,
abdominal cramping and dysentery symptoms. This parasite can migrate to other organs,
like liver, causing amebic liver abscess [4,5]. G. lamblia colonizes small intestine, causing
giardiasis disease, one of the most common causes of diarrhea in children and adults [6,7].
Other symptoms caused by G. lamblia infection are greasy stool, flatulence and bloating [8].
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Some reports indicate up to 10% of coinfection with both parasites in migrant populations
and returning travelers [9,10].

The main line of treatment against these parasites is metronidazole. It has been used
for over 60 years, but the increase of drug resistance leads to higher dose use in treatment,
and therefore more severe side effects [8]. Consequently, there is a need for new and safe
alternatives for amoebiasis and giardiasis treatment. One of the main strategies used in
the finding of active compounds is drug repositioning, which reduces cost and time in
drug [11,12]. The increment of free available biological data and advances in computational
techniques have led to several new ways of virtual screening, that, compared to in vitro
evaluation, have become a cheaper and faster alternative to screen drug libraries. Thus,
ligand-based and structure-based virtual drug repositioning are widely used today [13–17].

Structure-based methods involve structural information of enzymes and/or other
types of proteins used as drug targets. In the last decade, new drug targets have been
studied in the search of compounds against intestinal protozoa [18–23]. Among these drug
targets, triosephosphate isomerase (TIM), a glycolytic enzyme, has been as widely explored
on many species; nevertheless, studies on E. histolytica and G. lamblia lack depth [24–26].
Recently, new series of compounds have been reported to inhibit TIM from E. histolytica
(TIMEh) and TIM from G. lamblia (TIMGl) [27,28]. Therefore, in this work, known inhibitor
compounds were used to identify structural characteristics and main interactions involved
in the binding to TIMEh and TIMGl. Later, a virtual screen of library of 1466 FDA-approved
drugs was performed on this drug target to identify new antiprotozoal drugs with possible
broad-spectrum activity.

2. Results and Discussion
2.1. Docking-Based Virtual Screening on TIMEh and TIMGl

Before starting the screening virtual (SV) of the FDA library against TIMEh, the dock-
ing of a known inhibitor, compound D4, denominates 5,5′-[(4-nitrophenyl)methylene]bis-
6-hydroxy-2-mercapto-3-methyl-4(3H)-pyrimidinone)[27], was used both to validate the
docking protocol and to use this compound as a control compound. The docking score
obtained for D4 was -5.4 kcal/mol. The non-covalent interactions between TIMEh and D4
were calculated using PLIP. As Figure 1 shows, the main interactions were hydrophobic
with residues Trp75(B), Tyr81(B), Ile108(A) and Glu111(B). The residue Trp75(B) also had a
π-stacking interaction. This compound also formed two hydrogen bonds with Lys77(A)
and Gln115(B).
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Figure 1. 2D interaction diagram between compound D4, an inhibitor, and TIMEh on the interface.

Once the D4 inhibitor was studied, 1466 FDA drugs were docked against TIMEh.
The compounds were ranked based on their docking score, and the top ten are described
in Table S1. These ten compounds contain several aromatic rings (like D4); therefore,
hydrophobics and π-stacking interactions were expected (Table S2). Risperidone and
iloperidone are antipsychotic drugs with a similar structure composed of a benzoxazole
attached to a fluorine atom and a piperidine ring. On the other hand, folic acid, rilpivirine
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and pralatrexate, used as chemotherapy drugs, share a benzaldehyde and a glutamic
acid in their structures. Interesting, bisacodyl is a tricyclic compound like D4, which also
contains two methyl acetate that could form a hydrogen bond. According to the interaction
profiles calculated with PLIP (Table S2), the most common interactions between TIMEh and
these structures were π-stacking Trp75, a hydrogen bond with Gln115 and hydrophobic
interaction with Ile108.

In the case of TIMGl, the omeprazole drug has been previously reported as an ef-
fective inhibitor [28]. Hence, omeprazole was docked at the interface to identify the
possible interactions involved in its binding to TIMGl. The docking score for omeprazol
was −7.7 kcal/mol and its interactions are shown in Figure 2. In this diagram, several hy-
drogen bonds with Arg99(A), Arg99(B), Met103(B), Gln109(B) and Lys113(A) are indicated,
as well as some hydrophobic interactions with Tyr68(A), Leu69(A) and Gln109(B). A salt
bridge could be formed with Glu78 from each monomer. Also, Tyr68(B) interacts through
π-stacking with the benzimidazole moiety.
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For the 1466 FDA-approved drugs virtual screening on TIMGl, the top ten are outlined
in Table S3. These compounds are structurally diverse with the exception of sulfasalazine
and eltrombopag that share a benzoic acid and an aniline ring. Nevertheless, their interac-
tion profile showed some similar interactions (Table S4). The most common interactions
are the π-stacking interaction with Tyr68, and hydrogen bonding with Arg99, Gln109
andLys113, which are shared with the known inhibitor.

In general, binding energies on TIMGl were better than for TIMEh and there were
no compounds ranked within the top ten of both species. Therefore, docking scores of
each compound were merged and obtain the average docking score on both TIMEh and
TIMGl and thus identify compounds with potential broad effect. Compounds were re-
ranked based on this average score and presented in Table S5. There are some structural
characteristics to point out. Previously reported TIM inhibitors bound to the interface
by aromatic interactions [29]. Interestingly, re-ranked compounds have several aromatic
rings in their structure which could bind through π-stacking or π-cation interactions.
Among these compounds, chlorhexidine is the only one which structure contains halogen
atoms, and also has several H-bond donors, which are one of the main characteristics
in omeprazole binding to TIMGl. Pemetrexed and folic acid have a similar structure,
they contain a glutamic acid group attached to a benzoic acid. The difference is that
pemetrexed has pyrrole[2,3-d]pyrimidine, folic acid has pteridine ring; nevertheless, both
functional groups are suitable for aromatic interaction and hydrogen bonding. Pyrimidine
structure is also present in imatinib structure, along with a benzoic acid. On the other hand,
dolasetron have an indol group, similar to the pyrrolepyrimidine in folic acid. Tolcapone
and arbutamine have another interesting group, which is benzenediol. These structures



Int. J. Mol. Sci. 2021, 22, 5943 4 of 8

showed the common functional groups that could be explore in the early drug design steps
process to develop new TIM inhibitors.

2.2. In Vitro Activity

Due to the fact that TIM is an essential protein for parasite survival, inhibition of TIM
would inhibit cellular growth. On this basis, we considered that compounds selected from
the virtual screening would have an inhibitory effect on both E. histolytica and G. lamblia.
In order to explore a variety of chemical structures against intestinal protozoa, based on
the in silico results, chlorhexidine, tolcapone, imatinib and folic acid were selected for
their evaluation in vitro. Table 1 shows that these compounds were capable of inhibiting
G. lamblia growth and only folic acid has inhibitory activity against both parasites. Only
two of these compounds, chlorhexidine and imatinib, have previous report of activity
against G. lamblia [30]. Selected compounds have a better in vitro activity on G. lamblia;
only folic acid showed inhibitory activity on E. histolytica.

Table 1. Biological activity of four FDA drugs against trophozoites from E. histolytica and G. lamblia.

Compound. IC50 E. histolytica (µg/mL) IC50 G. lamblia (µg/mL)

Metronidazole 0.205 7.8
D4 8.306 ± 1.616 1 -

Omeprazol - 0.025 2

Chlorhexidine > 100 4.93 ± 0.005
Tolcapone > 100 0.05 ± 0.002
Imatinib > 100 3.46 ± 0.005
Folic acid 0.186 ± 0.003 5.34 ± 0.007

1 [26], 2 [28], Half-maximal inhibitory concentration (IC50).

Chlorhexidine is an antiseptic compound used to treat bacterial and fungal infection.
Its structure is composed of two chlorophenyl guanide groups linked by a hexamethylene
bridge. As Figure 3 shows, this structure has a higher number of interactions in TIMGl than
TIMEh, which explains the differences on docking score. The high number of hydrogen
bonds represent an interesting feature that is directly related to binding stability along with
the π-stacking interactions with Tyr68B (TIMGl).

Tolcapone is a benzophenone used in the treatment of Parkinson disease. This struc-
ture has a few interactions with TIMEh but several hydrogen bonds with TIMGl. These
interactions could explain why tolcapone was only active against G. lamblia.

In the case of imatinib, an anticancer drug, interactions are mainly by hydrogen bond-
ing and hydrophobic interactions despite the four rings in its structure which commonly
form π-stacking interactions with aromatic residues.

Interestingly, folic acid, a supplement, showed a high number and diverse types of
interactions in both TIMEh and TIMGl. This was the only evaluated compound that showed
inhibitory activity against E. histolytica and G. lamblia, there are some reports considering
the impact of folic acid in parasitic infections, but no conclusion is given about its use
as an antiprotozoal compound [31,32]. Its interaction diagram summarized its potential
binding mechanism in both protozoal TIM. It mainly interacts by hydrogen bonding. Also,
it forms a π-stacking interaction with Trp75B in TIMEh and by π-cation with Arg99 on
TIMGl. Nevertheless, specific inhibition studies on TIMEh and TIMGl along with more
robust computational analysis are needed to validate these findings.
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3. Materials and Methods
3.1. Docking-Based Virtual Screening

Crystal structures of TIM proteins of E. histolytica and G. lamblia (PDB IDs, TIMEh:
1M6J and TIMGl: 4BI7) were retrieved from Protein Data Bank (PDB, RCSB PDB: Home-
page accessed on 8 October 2020). Each structure was prepared with the dock prep tool
from USFC Chimera software (University of California, San Francisco, CA, USA) [33]. In
this step, all ions, water molecules and co-crystalized ligands were removed, and missing
side chains were added. TIM is a dimeric structure composed of a TIM-barrel structure in
each monomer with the catalytic site being inside this barrel. Due to the high similarity
of the catalytic site among all TIM structures, species-specific inactivation is focused on
the dimeric interface. Therefore, conformational search space for docking was defined
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as a 20 × 20 × 20 Å box centered in PDB 1M6J at x = 14.620, y = 27.866 and z = 14.108,
and in PDB 4BI7 at x = 5.710, y = −0.023 and z = −28.240. Later, a total of 2454 SDF
structures corresponding to FDA-approved drugs were retrieved from DrugBank (Drug-
Bank|Pharmaceutical Knowledge Base|API Integrations accessed on 8 October 2020) [34].
These structures, along with D4 and omeprazole (inhibitors used as control for TIMEh
and TIMGl, respectively), were split, minimized and converted to Mol2 format using open
babel [35]. Only those with a molecular weight between 100 and 900 Da were used in the
subsequent steps. A total of 1466 was successfully prepared for docking. The rest were
discarded due to its molecular weight, minimizing errors and non-supported atom types.
Additionally, AutoDockTools (ADT/AutoDockTools—AutoDock(scripps.edu) accessed
on 8 October 2020) [36] was used to specify Gasteiger partial charges and AutoDock atom
types to ligands and receptors. Then, docking was performed by Autodock vina (vina) [37]
and in-house python scripts to automate calculations (Figure S1). Finally, the non-covalent
interactions of the docked complexes were calculated with PLIP (protein–ligand interaction
profiler) [38].

3.2. In Vitro Activity

E. histolytica strain HM1-IMSS was grown in TYI-S-33 medium supplemented with
10% heat-inactivated bovine serum (Sigma Adrich, Toluca, Mexico). G. lamblia strain
IMSS:8909:1 trophozoites used in all experiments were cultivated axenically at 37 ◦C in
TYI-S-33 modified medium supplemented with 10% calf serum and bovine bile. In vitro
susceptibility tests were performed using E. histolytica (6 × 103) or G. lamblia (5 × 104)
trophozoites were incubated for 48 h at 37 ◦C in the presence of different concentrations
(2.5–200 µg/mL) of pure compounds in DMSO at 2%. After incubation, the trophozoites
were detached by chilling and 50 µL samples of each tube were subcultured in fresh
medium for another 24 h. The final number of parasites was determined in Neubauer.
Then, data were analyzed using probit analysis. The percentage of trophozoites surviving
was calculated by comparison with the growth in the control group. The plot of probit
against log concentration was made, the best straight line was determined by regression
analysis, and the IC50 values were calculated. The regression coefficient, its level of
significance (p < 0.05 indicates significant difference between groups), and correlation
coefficient were calculated and 95% confidence interval (CI) values determined. ADMET
characteristics of selected compounds are shown in Table S3 [34].

4. Conclusions

In this work, virtual screening based on molecular docking was used to identify
potential antiprotozoal compound among FDA-approved drugs that binds to the TIM from
E. histolytica and G. lamblia. Those with a lowest average docking score were selected for
in vitro evaluation. Four compounds, chlorhexidine, tolcapone, imatinib and folic acid,
were capable of inhibiting growth of trophozoite of G. lamblia with an IC50 below standard
treatment. Folic acid also showed activity against E. histolytica. Although these results
are promising, more studies are needed to understand the mechanism underlying the
inhibitory activity of these compounds.
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