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Upon revisiting the Hamiltonian structure of classical
wavefunctions in Koopman–von Neumann theory,
this paper addresses the long-standing problem
of formulating a dynamical theory of classical–
quantum coupling. The proposed model not only
describes the influence of a classical system onto
a quantum one, but also the reverse effect—
the quantum backreaction. These interactions are
described by a new Hamiltonian wave equation
overcoming shortcomings of currently employed
models. For example, the density matrix of the
quantum subsystem is always positive definite. While
the Liouville density of the classical subsystem is
generally allowed to be unsigned, its sign is shown
to be preserved in time for a specific infinite family
of hybrid classical–quantum systems. The proposed
description is illustrated and compared with previous
theories using the exactly solvable model of a
degenerate two-level quantum system coupled to a
classical harmonic oscillator.

1. Introduction
Classical–quantum coupling has been an open problem
since the rise of quantum mechanics. Bohr’s concept of
uncontrollable disturbance [1] affecting both classical and
quantum systems during the measurement process has
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attracted much attention over the decades, and it would be unfeasible to provide here the
enormous list of works in this field. The effect of the uncontrollable disturbance on the quantum
system is often known under the name of ‘decoherence’ [2] and it manifests in terms of
non-unitary dynamics and purity non-preservation [3]. Recently, the dynamics of a classical
measuring device interacting with a quantum system has become a subject of experimental
investigations (e.g. [4]). Over the last four decades, the apparent impossibility of a fully
deterministic Hamiltonian description of classical–quantum coupling has been overcome by
modelling decoherence in terms of Markov stochastic processes. Then, the quantum Lindblad
equation [5,6] has emerged as the most general type of a Markovian master equation describing
the evolution of a positive-definite and unit-trace quantum density matrix. Lindblad’s theory,
however, does not comprise the dynamics of the classical subsystem, which is simply treated as a
thermodynamical bath.

In many physical contexts (e.g. in quantum chemistry and laser cooling), the systems
under consideration are to be modelled as hybrid evolution to capture the coupling between
electronic degrees of freedom and heavy nuclei. Then, it becomes essential to capture the
‘quantum backreaction’—the quantum feedback force on the evolution of the classical system
(i.e. the nuclei). To this purpose, in 1981 Aleksandrov [7] and Gerasimenko [8] independently
proposed the following quantum–classical Liouville equation for an operator-valued density on
phase-space D̂(q, p, t):

∂D̂
∂t

= −ih̄−1[Ĥ, D̂] + 1
2

({Ĥ, D̂} − {D̂, Ĥ}) , (1.1)

where Ĥ(q, p) is the operator-valued Hamiltonian function and we have used the standard
notation for commutators [ , ] and canonical Poisson brackets { , }. The work by Aleksandrov and
Gerasimenko has been highly influential and its Wigner-transformed variant is currently used
for modelling purposes [9]. Shortly after its appearance, the Aleksandrov–Gerasimenko (AG)
equation (1.1) was rediscovered in [10], where it was derived from first principles in terms of
invariance properties under canonical and unitary transformations. However, although equation
(1.1) conserves the total energy h = Tr

∫
ĤD̂ d3q d3p, the quantum density matrix

∫ D̂ d3q d3p is
not positive definite. More importantly, the AG equation lacks a Hamiltonian structure and
this is due to the fact that the binary operation on the right-hand side of (1.1) does not
satisfy the Jacobi identity, and thus it is not a type of Poisson bracket [11–13]. In this case, the
absence of a Hamiltonian structure leads to time-irreversible dynamics [14], thereby indicating a
possible entropy production, which should normally be formulated as an H-theorem. However,
entropy-preserving dynamics requires the formulation of time-reversible models possessing a
Hamiltonian structure, which is indeed available in the case of isolated classical and quantum
systems. Then, a Hamiltonian model of quantum–classical hybrid dynamics becomes necessary
to model recurrent evolution such as Rabi oscillations. Despite several efforts [15–23], Lie-
algebraic arguments [11,13] tend to exclude the existence of a closed equation for D̂ possessing a
Hamiltonian structure (i.e. comprising the Jacobi identity).

Another stream of research on classical–quantum coupling goes back to Sudarshan’s
measurement theory [24] of 1976. Therein, Sudarshan proposed to couple classical and quantum
dynamics by exploiting the Koopman–von Neumann (KvN) formulation of classical dynamics
in terms of classical wavefunctions [25,26]. Rediscovered in several instances [27,28], this
reformulation of classical mechanics has been attracting increasing attention [29–34] (Wilczek F
2015, unpublished data). See also [35] for a broad review of general applications of Koopman
operators. In the KvN construction, the classical Liouville density ρ(q, p, t) is expressed as ρ =
|Ψ |2, where Ψ (q, p, t) is a wavefunction obeying the KvN equation

ih̄
∂Ψ

∂t
= {ih̄H,Ψ } =: L̂HΨ . (1.2)

Here, we have introduced the Hermitian Liouvillian operator L̂ H· = ih̄{H, ·}. A direct verification
shows that the prescription ρ = |Ψ |2 returns the classical Liouville equation ∂tρ = {H, ρ}. Upon
working in the Heisenberg picture, Sudarshan extended equation (1.2) to include the interaction
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with quantum degrees of freedom by invoking special superselection rules to enforce physical
consistency [24]. Although extremely inspiring, this approach has received some criticism over
the years [36–39], mainly because the role of the superselection rules remains somewhat unclear.
Still, one of the advantages of Sudarshan’s proposal is that Koopman wavefunctions possess a
simple canonical Hamiltonian structure formally equivalent to that underlying Schrödinger’s
equation. Indeed, this feature provides a great simplification over the AG approach, which
instead is based on density operators and Wigner functions both carrying highly non-canonical
Lie–Poisson brackets [40].

While several hybrid theories appearing in the literature may offer good approximations of
classical–quantum coupling, a Hamiltonian theory is still lacking, and this poses specific problems
concerning consistent transformation properties. This paper addresses the problem by following
up on Sudarshan’s idea of exploiting classical wavefunctions. Upon combining this approach
with Hamiltonian methods, we shall show that KvN theory can be easily extended in such a way
that its Hamiltonian functional coincides with the physical energy. In the second part of the paper,
we shall infer a Hamiltonian theory for classical–quantum coupling by using the extended KvN
representation within the context of geometric quantization. The proposed classical–quantum
wave equation is illustrated on the exactly solvable model of a degenerate two-level quantum
system quadratically coupled to a one-dimensional classical harmonic oscillator.

2. Koopman wavefunctions
We begin by looking at the Hamiltonian structure of the KvN equation (1.2). This structure is
particularly transparent when looking at its variational formulation

δ

∫ t2

t1

∫ (
h̄ Re(iΨ ∗∂tΨ ) − Ψ ∗L̂HΨ

)
d6z dt = 0, (2.1)

which leads to a few observations.
First, the Hamiltonian functional for the KvN equation (1.2) is written as h(Ψ ) =∫
Ψ ∗L̂ HΨ d6z = h̄

∫
H Im{Ψ ∗,Ψ } d6z, where we have denoted z = (q, p). Then, we observe that

the Hamiltonian functional for the KvN equation does not coincide with the total physical energy,
which instead would read

∫
H|Ψ |2 d6z (according to the prescription ρ = |Ψ |2).

The second observation is that the quantity Im{Ψ ∗,Ψ } satisfies the classical Liouville equation
and thus, in principle, we could set ρ = Im{Ψ ∗,Ψ }. Borrowing a terminology from fluid
dynamics [41], this expression is often known as a Clebsch representation [42–44] in the context
of geometric mechanics [45,46]. However, here we are left with the insurmountable problem that∫

Im{Ψ ∗,Ψ } d6z = 0.
The third observation is more fundamental: we remark that the KvN Lagrangian (the integrand

in (2.1)) is not covariant with respect to local phase transformations Ψ (z) �→ eiϕ(z)Ψ (z). However,
this particular problem can be overcome by using the minimal coupling method in gauge theory.
Let us introduce the multiplicative operator Ẑ = z and its canonical conjugate Λ̂ = −ih̄∇, and let
us rewrite the Liouvillian as L̂H = XH(Ẑ) · Λ̂. Here, XH = J∇H is the classical Hamiltonian vector
field and

J =
(

0 1
−1 0

)
,

so that [Ẑi, �̂j] = ih̄δij. Then, if (Φ, A) are the components of a U(1)-gauge potential, a gauge-
covariant Liouvillian is constructed by the replacement

ih̄∂t −→ ih̄∂t −Φ and ih̄∇ −→ ih̄∇ + A. (2.2)

Then, the covariant Liouvillian takes the form

L̂H :=Φ(Ẑ) + XH(Ẑ) · (Λ̂ − A(Ẑ)). (2.3)

Now, the choice of gauge potential is usually prescribed in prequantization theory [47–49] as
follows:

Φ(z) = H(z) and A(z) · dz = p · dq. (2.4)
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Here, the differential form A(z) · dz is known as the symplectic potential, so that the standard
symplectic form is obtained as ω= −dA, or equivalently ∇A − (∇A)T = −J. Under the
replacement (2.2), the variational principle (2.1) yields the modified KvN equation

ih̄
∂Ψ

∂t
= {ih̄H,Ψ } −

(
p · ∂H

∂p
− H

)
Ψ . (2.5)

First formulated in 1972 by Kostant [50], this equation has appeared in a few works [10,31,51,52],
where it was noted that the expression ρ = |Ψ |2 again satisfies the classical Liouville equation. In
addition, we emphasize that the phase term in equation (2.5) is readily seen to coincide with the
Lagrangian

L = p · ∂pH − H,

thereby reminding us of the important relationship between phases and Lagrangians going back
to Feynman’s thesis [53]. The relationship between the Lagrangian and the classical phase is made
explicit by replacing the polar form Ψ = √

D eiS/h̄ in (2.5), thereby obtaining

∂D
∂t

+ {D, H} = 0 and
∂S
∂t

+ {S, H} = L .

Then, we recognize that, while KvN theory is totally equivalent to the classical Liouville equation,
equation (2.5) also carries information about the classical phase. The crucial role of both classical
and quantum phases was also exploited in connection to the Hamilton–Jacobi theory [54,55],
although in that context the wavefunction is defined only on the position space.

As a further remark, we notice that different gauge fixings are possible as alternatives to (2.4).
For example, the harmonic oscillator gauge

A · dz = 1
2 Jz · dz = 1

2
(
p · dq − q · dp

)
(2.6)

used in [47,52] is convenient for homogeneous quadratic Hamiltonians as in this case the
corresponding phase termΦ − X H · A = H − z · ∇H/2 vanishes identically. Moreover, since p · dq
is also known as the ‘Liouville one-form’, we shall refer to the gauge in (2.4) as the Liouville gauge.
Both gauges will be used in this paper, depending on convenience.

First appearing in van Hove’s prequantization theory [49], the covariant Liouvillian L̂H is
known as a prequantum operator [56], and satisfies the Lie algebra relation [L̂H, L̂K] = ih̄L̂{H,K}. In
addition, we have a one-to-one correspondence between the Hamiltonian H and the Hermitian
operator L̂H (unlike the correspondence H �→ L̂ H, which is many-to-one). In the Heisenberg
picture (here denoted by the superscript H), one defines L̂ H

A(t) := U(t)†L̂AU(t), where U(t) =
exp(−iL̂Ht/h̄) is the classical propagator for a given Hamiltonian H. Then, this yields dL̂ H

A/dt =
ih̄−1[L̂H, L̂ H

A] as well as L̂ H
H = L̂H. By construction, one has the general property L̂ H

A = L̂A H , where
AH(t) = exp(îL Ht/h̄)A and the Liouvillian L̂ H is given as in (1.2). See appendix A for further
explanations. Therefore, the Heisenberg equation for L̂ H

A implies the usual dynamics dAH/dt =
{AH, H} for classical observables.

Partly inspired by Kirillov [57], here we shall call (2.5) the Koopman–van Hove (KvH) equation
and address the reader also to [31,52] for more discussions on how prequantization relates to
KvN theory. Let us now examine the Hamiltonian structure of the modified KvN equation (2.5).
The variational principle δ

∫ t2
t1

∫
(h̄Re(iΨ ∗∂tΨ ) − Ψ ∗L̂HΨ ) d6z dt = 0 determines the Hamiltonian

functional

h =
∫
Ψ ∗L̂HΨ d6z =

∫
H
(|Ψ |2 + divJ )d6z, (2.7)

with
J =Ψ ∗ Ẑ+Ψ and Ẑ± := J(±Λ̂ − A).

We note in passing that the operators Ẑ± satisfy the commutation relations [Ẑ i±, Ẑ j
±] = ∓ih̄Jij and

[Ẑ i±, Ẑ j
∓] = 0, which were used in [29,58] (by adopting the harmonic oscillator gauge (2.6)) to

rewrite quantum theory in terms of wavefunctions on phase-space. From equation (2.7), we see
that the quantity |Ψ |2 + divJ emerges as an alternative Clebsch representation for the Liouville
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density [59]. More specifically, this quantity is a momentum map [45,46,60,61] for the group of
strict contact transformations generated by the operator ih̄−1L̂H [49], where

L̂H = H − ∇H · Ẑ+. (2.8)

While some of this material is illustrated in appendix A, we shall leave a more thorough
discussion of these aspects for future work. Here, we emphasize that the momentum map
property enforces the quantity |Ψ |2 + divJ to satisfy the classical Liouville equation, as it can
be verified by a direct and lengthy calculation.

At this point, given the expression of the total energy (2.7), we insist that this must be equal to
the total physical energy

∫
Hρ d6z, and thus we are led to the identification

ρ = |Ψ |2 + div
(
Ψ ∗Ẑ+Ψ

)
= |Ψ |2 − div(JA |Ψ |2) + h̄Im{Ψ ∗,Ψ }. (2.9)

Although we observe that this expression for the Liouville density is not positive definite, its
sign is preserved in time since the Liouville equation is a characteristic equation. Remarkably, we
notice that the term divJ does not contribute to the total probability, so that

∫
ρ d6z = ∫ |Ψ |2 d6z =

1. On the other hand, the same divergence term does contribute to expectation values, so that, for
example, 〈z〉 = ∫

zρ d6z = ∫
Ψ ∗Ẑ−Ψ d6z. As shown in [29], by adopting the harmonic oscillator

gauge (2.6), this last relation returns the usual Ehrenfest equations for the expectation dynamics
of canonical observables.

Lastly, we remark that the entire discussion can be repeated by replacing classical
wavefunctions with (possibly unsigned) density-like operators mimicking von Neumann’s
density matrix [10]. Then, equation (2.5) is recovered upon setting D̂(z, z′, t) =Ψ (z, t)Ψ ∗(z′, t) in the
evolution equation ih̄∂tD̂ = [L̂H, D̂]. In the following sections, we shall further extend the present
gauge-covariant KvH construction to include the coupling to quantum degrees of freedom.

3. Hybrid classical–quantum dynamics
The formulation of hybrid classical–quantum dynamics is usually based on fully quantum
treatments, in which some kind of factorization ansatz is invoked on the wave function. This
ansatz is then followed by a classical limit on the factor that is meant to model the classical
particle.

Here, we propose a different perspective: we shall start with the KvH construction for
two classical particles and we shall perform a formal quantization procedure on one of them.
This can be achieved in different ways, depending on the particular quantization procedure.
For example, Gerasimenko proposed a similar approach in the context of Weyl quantization
[8], while the KvH equation (2.5) was formulated by Kostant [50] in the context of geometric
quantization [56,62]. Here, however, we shall adopt a simpler approach, which consists in a partial
canonical quantization on the 2-particle Hamiltonian. We consider the KvH equation (2.5) for a
wavefunction Ψ (z, ζ ) representing two particles with coordinates z = (q, p) and ζ = (x, μ), and fix
a Hamiltonian H(z, ζ ). Then, we apply canonical quantization only to the coordinates (x, μ), so
that one replaces x → x̂ (quantum position operator) and μ → p̂ := −ih̄∂x (quantum momentum
operator) in the 2-particle Hamiltonian H, which thus becomes an operator-valued function
Ĥ(z, x̂, p̂) and the coordinate μ has been eliminated. The hybrid Hamiltonian is then replaced in
(2.8) to obtain the hybrid Liouvillian L̂Ĥ = Ĥ − ∇Ĥ · Ẑ+, with Ẑ+ = −J(ih̄∇z + A(z)). Eventually,
one is left with the following classical–quantum wave equation for the hybrid wavefunction (here,
denoted by Υ (z, x)):

ih̄∂tΥ = ĤΥ − ∇Ĥ · Ẑ+Υ =: L̂ĤΥ . (3.1)
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For example, performing the partial quantization on the 2-particle Hamiltonian H(z, ζ ) = p2/2M +
μ2/2m + V(q, x) yields the hybrid classical–quantum Hamiltonian

Ĥ = − h̄2

2m
�x + 1

2M
p2 + V(q, x). (3.2)

Equations with a similar structure to (3.1) were shown to occur in the Hamiltonian dynamics
of quantum expectation values [63,64]. Equations similar to (3.1) were also obtained in [10] upon
discarding the phase terms in the KvH equation (2.5), that is, by considering the standard KvN
equation (1.2). In that paper the authors rejected their equations because of interpretative issues
and the absence of a conserved positive energy. Here, we point out that, since L̂Ĥ is Hermitian,
(3.1) is actually a Hamiltonian equation possessing a variational principle of the type

δ

∫ t2

t1

Re
〈
Υ
∣∣(ih̄∂t − L̂Ĥ

)
Υ
〉
dt = 0, (3.3)

thereby preserving the energy invariant

h = 〈Υ |L̂ĤΥ 〉 = Tr
∫
Υ †(z) L̂ĤΥ (z) d6z. (3.4)

Here, the dagger symbol denotes the adjoint in the quantum coordinates and similarly for the
trace, so that 〈Υ1|Υ2〉 = Tr

∫
Υ †

1 (z)Υ2(z) d6z.
Now we construct a generalized density operator D̂ so that the total energy (3.4) reads

h = Tr
∫

ĤD̂ d6z. Actually, the latter relation is obtained by a direct manipulation of the expression
(3.4), upon defining

D̂(z) =Υ (z)Υ †(z) + div
(
Υ (z) Ẑ−Υ †(z)

)
=Υ (z)Υ †(z) − div

(
JAΥ (z)Υ †(z)

)+ ih̄{Υ (z),Υ †(z)}. (3.5)

This quantity plays the role of the AG generalized density in (1.1) and it belongs to the dual of
the tensor product space of phase-space functions and Hermitian operators on the quantum state
space. Since the latter tensor space is not a Lie algebra (notice [L̂F̂, L̂Ĝ] �= L̂K̂ for some K̂(z)), D̂ does
not carry a standard momentum map structure, and thus it cannot possess a closed Hamiltonian
equation, in agreement with [11,13].

In addition, we remark that D̂ is generally not positive definite and, unlike the purely classical
case, its sign is not preserved in time. This feature (also occurring in the AG equation (1.1)) was
justified in [10] by analogies with Wigner quasi-probability densities. In the present context, the
quantum density matrix and the classical Liouville density read

ρ̂ =
∫

D̂(z) d6z =
∫
Υ (z)Υ †(z) d6z (3.6)

and
ρ(z) = Tr D̂(z) = Tr

[
Υ (z)Υ †(z) + div

(
Υ (z) Ẑ−Υ †(z)

)]
. (3.7)

Then, while the quantum density matrix is positive definite by construction (unlike the AG theory
[7,8]), the classical Liouville density is allowed to become negative in the general case of classical–
quantum interaction.

A further consequence of equation (3.1) is obtained by simply applying Ehrenfest’s theorem;
indeed, the latter yields the following expectation value equation for quantum–classical
observables Â(z):

ih̄
d〈Â〉

dt
= 〈
Υ
∣∣[L̂Â, L̂Ĥ

]
Υ
〉
, (3.8)

where we have defined 〈Â〉 = Tr
∫

ÂD̂ d6z = 〈Υ |L̂ÂΥ 〉. Then, the usual conservation laws are
recovered in the case [L̂Â, L̂Ĥ] = 0. For example, upon denoting p̂ = −ih̄∇x, the case Â = p + p̂
recovers momentum conservation whenever the generic Hamiltonian (3.2) involves a translation-
invariant potential V(q − x̂). (Here, x̂ denotes the quantum position operator.) Indeed, the



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180879

...........................................................

conservation of total momentum [L̂p+p̂, L̂Ĥ] = 0 follows from the relations [L̂p, L̂Ĥ] = ih̄L̂{p,V} and
[L̂p̂, L̂Ĥ] = L̂[̂p,V], since we have ih̄{p, V} + [̂p, V] = 0. We remark that the expectation dynamics
(3.8) differs from the corresponding result obtained from the AG equation (1.1).

We conclude by presenting the dynamics of D̂. As we pointed out, D̂ does not possess a closed
Hamiltonian equation: this means that its evolution can only be expressed in terms of Υ . In the
case of a finite-dimensional quantum state space, a lengthy computation shows that (in index
notation)

∂tD̂αβ = −ih̄−1[Ĥ, D̂]
αβ

+ {
Ĥ, D̂}

αβ
− {D̂, Ĥ

}
αβ

+ {
JAΥΥ †, ∇Ĥ

}
αβ

− {∇Ĥ, JAΥΥ †}
αβ

+ ih̄−1div
[
JA · ∇Ĥ, JAΥΥ †]

αβ
+ [

JA · ∇Ĥ, {Υ ,Υ †}]
αβ

+ div
({

Ĥαγ , JAΥ ∗
β

}
Υγ − {

JAΥα , Ĥγβ

}
Υ ∗
γ

)
+ Υγ

{
JA · ∇Ĥαγ ,Υ ∗

β

}− {
Υα , JA · ∇Ĥγβ

}
Υ ∗
γ

− ih̄{Υγ , {Ĥαγ ,Υ ∗
β }} + ih̄{{Υα , Ĥγβ},Υ ∗

γ }, (3.9)

where all quantities are evaluated at z. Despite the striking similarity between the first line
above and the AG equation (1.1), the remaining terms in the D̂-equation show that the classical–
quantum interaction may be more involved than one might have expected. Nevertheless, the
intricate nature of classical–quantum coupling becomes hidden by the formal simplicity of the
following equations for the quantum and classical densities:

ih̄∂tρ̂ =
∫

[Ĥ, D̂] d6z and ∂tρ = Tr{Ĥ, D̂}, (3.10)

which coincide formally with the corresponding result obtained by using the AG equation (1.1).
We notice, however, that the AG theory is fundamentally different from the classical–quantum
model formulated here. As we already mentioned, the AG equation is not Hamiltonian and it does
not generally preserve the positivity of the quantum density matrix ρ̂ = ∫ D̂(z) d6z. In addition,
the classical–quantum wave equation (3.1) represents a significant simplification over the AG
equation, since the solutions of (3.1) are defined on a lower dimensional space than the solutions
of the AG equation.

4. Discussion
In this section, we discuss some of the consequences and implications of the classical–quantum
wave equation (3.1). The first observation is about quantum decoherence, which naturally arises
from the first in (3.10) in terms of purity non-preservation. Also, we observe that classical
dynamics can be different from what we are used to in the absence of classical–quantum
interaction. On the one hand, the last equation in (3.10) does not generally allow for point particle
solutions. Since the latter are known to be classical pure states [23,65], we conclude that classical–
quantum correlations induce a loss of classical purity that mimics quantum decoherence effects.
This will be illustrated below on an exactly solvable example.

On the other hand, as we pointed out, the positivity of ρ may not be generally preserved
in time [10]. Indeed, while the sign of ρ will be shown to be preserved for certain classes of
hybrid Hamiltonians Ĥ (see §5), it is not possible to draw a similar conclusion in the general case.
Although the emergence of a sign-indefinite ρ may seem surprising at first, an analogue of this
situation can be readily found in the standard case of a harmonic oscillator interacting (by a linear
or quadratic coupling) with a nonlinear quantum system. Let us consider the full quantum case
in the Wigner representation: the Wigner–Moyal equation for W(z, ζ ) reads

∂tW = {{H, W}}z + {{H, W}}ζ ,
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where {{ , }} denotes the Moyal bracket in the set of coordinates given by the subscript. Here,
H(z, ζ ) retains arbitrary nonlinear dependence on ζ , while it is quadratic in z so that {{H, W}}z =
{H, W}z. We emphasize that, in the absence of the nonlinear quantum system, we have ∇ζ H = 0
and the oscillator undergoes classical evolution (while its quantum features are encoded in
the initial condition). This means that the coupled system can be considered as equivalent
to a hybrid classical–quantum system. Then, projecting out the quantum coordinates yields
an equation for �(z) = ∫

W(z, ζ ) d6ζ , that is, ∂t�= ∫ {H, W} d6ζ . This is exactly the analogue of
our second equation in (3.10). Also in this case, despite the classical structure of the oscillator
subsystem, its density � may develop negative values in time (even if � > 0 initially) because
W is not generally positive. Then, as already pointed out by Feynman [66], the possibility of
non-positive classical distributions in compound systems does not come as a surprise. Further
discussions on the meaning of negative probabilities and their applications can be found,
for example, in [66,67].

In addition, we wish to emphasize that, unlike Sudarshan’s model [24], the present
construction consistently recovers the mean-field model for the classical and quantum densities.
This is readily verified by replacing the mean-field factorization ansatz Υ (z, x) =Ψ (z)ψ(x) in the
variational principle (3.3). Indeed, this operation returns

ih̄∂tΨ = 〈ψ |Ĥψ〉Ψ − ∇〈ψ |Ĥψ〉 · Ẑ+Ψ (4.1)

and

ih̄∂tψ =
(∫

Ψ ∗L̂ĤΨ d6z
)
ψ , (4.2)

so that the equations for the quantum density ρ̂ =ψψ† and the classical distribution ρ (as given
in (2.9)) return the mean-field equations in the form

∂tρ = {Tr(ρ̂Ĥ), ρ} and ih̄∂tρ̂ =
[ ∫

ρĤ d6z , ρ̂
]

. (4.3)

We emphasize that here the mean-field model emerges as an exact closure obtained from the
variational structure (3.3) of the classical–quantum wave equation (3.1). The same does not hold
for the AG equation (1.1), which indeed lacks a variational formulation. As shown in [8], replacing
the mean-field factorization ansatz D̂(z, t) = ρ̂(t) ρ(z, t) in (1.1) yields an unclosed system, which
then requires the extra closure condition of vanishing classical–quantum correlations.

Before concluding this section, it may be relevant to highlight that the whole construction
presented here can also be reformulated in terms of a density-like operator. Indeed, one can
simply replace the classical–quantum wave equation (3.1) by its correspondent for a positive-
definite density-like operator Θ̂ , that is,

ih̄∂tΘ̂ = [L̂Ĥ, Θ̂
]
,

which we shall call the classical–quantum von Neumann equation. Given the level of difficulty of
such an extension of the theory, in this paper we choose to leave this direction open for future
work.

5. An exactly solvable system
Many studies use a linear classical–quantum interaction potential preventing quantum
backreaction beyond mean-field effects. Indeed, in these cases, the force exerted on the
classical degrees of freedom by the quantum subsystem does not depend on classical–quantum
correlations. For example, in the case of the Jaynes–Cummings model, the expectation value
dynamics for the classical momentum depends only on the spin expectation 〈σ̂ 〉 (already
occurring in the mean-field model), but not on mixed quantum–classical expectations, e.g.
〈qσ̂ 〉. For the latter term to appear in the equation of the classical momentum expectation,
a quadratic coupling between the classical and quantum subsystems is needed. Hence, to
demonstrate the emergence of the quantum backreaction, we consider the exactly solvable case
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of a degenerate two-level quantum system quadratically coupled to a one-dimensional classical
harmonic oscillator. The Hamiltonian of such a system reads

Ĥ = H0 + q2

2
α · σ̂ and H0 = p2

2m
+ mω2 q2

2
, (5.1)

where m and ω denote, respectively, the mass and frequency of the harmonic oscillator, σ̂j are the
Pauli matrices (j = 1, 2, 3) representing the two-level quantum system and the vector α comprises
the classical–quantum coupling constants αj. Since this example involves a harmonic oscillator,
here we shall adopt the convenient gauge (2.6). In this case, the hybrid equation of motion
(3.1) reads

∂Υ

∂t
=
[

q
(

mω2 + α · σ̂
) ∂

∂p
− p

m
∂

∂q

]
Υ , (5.2)

where Υ = (Υ1(q, p, t),Υ2(q, p, t))T ∈ C
2. The equations for each component are decoupled after

introducing the wavefunction Υ̃ = ÛΥ , where the unitary matrix Û is defined by Û(α · σ̂ )Û† =
λσ̂3. In the last equation, we have used the fact that the matrix α · σ̂ is traceless, thus its
eigenvalues must be of equal magnitude but with the opposite sign. Then, solving each linear
characteristic equation for each component Υ̃k leads to the following exact solution of (5.2),
expressed in terms of the initial condition Υ0 =Υ |t=0:

Υ = Û†
(

y1(ω+)
y2(ω−)

)
, (5.3)

where ω± =
√
ω2 ± λ/m and yl(ω±) denotes the component of the vector

y(ω±) = ÛΥ0

(
q = q cos(ω±t) − p sin(ω±t)

mω±
, p = p cos(ω±t) + mω±q sin(ω±t)

)
. (5.4)

Figure 1 depicts the classical–quantum evolution for such a system with the initial condition

Υ0 =
√
ω

2π
1 − (1 + βH0) e−βH0

βH2
0

(
1
0

)
and D̂0 = ωβ

2π
e−βH0

(
1 0
0 0

)
, (5.5)

corresponding to the uncorrelated quantum–classical state, where the quantum state (3.6) is
the ground (i.e. ‘up’) state and the classical Liouville density (3.7) is the Boltzmann state
ρ ∝ e−βH0 with an inverse thermodynamic temperature β and H0 as given in (5.1). The long-
tailed wavefunction Ψ given by the square root in (5.5) and corresponding to the classical
Boltzmann state can be easily obtained upon recalling (2.9) and by solving the differential
equation |Ψ |2 + div(Ψ ∗Ẑ+Ψ ) =ωβe−βH0/2π . The latter is taken into a linear first-order ODE for
|Ψ |2 by setting a zero phase and then changing to polar coordinates. We remark that the initial
condition (5.5) represents a stationary state for the uncoupled classical–quantum system, that is,
α = 0. See proposition 22.6 in [56] for the characterization of the stationary states of the KvH
equation for the harmonic oscillator.

Figure 1 uses atomic units (a.u.), where the electron mass, the electron charge and h̄ are all set to
unity.1 As can be seen, the quantum–classical correlations rapidly develop, yielding non-Gaussian
classical Liouville densities (3.7) (due to the quantum backreaction) and non-pure quantum

1All the source codes used to arrive at the results (including plotting) of this section can be found at
https://github.com/dibondar/QCHybrid.

https://github.com/dibondar/QCHybrid
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Figure 1. Hybrid evolution of a degenerate two-level quantum system quadratically coupled to a one-dimensional classical
harmonic oscillator. The system Hamiltonian is given in (5.1). The depicted dynamics has the exact solution (5.3) with ω=
m= 1 (a.u),α = (0.95, 0, 0) (a.u.), and the factorized initial condition (5.5) withβ = 105 (a.u.). The classical Liouville density
(3.7) for this system is depicted at different times t = 0, 2.4, 5.7, 8.8 (a.u.) in the top panels (a), (b), (c) and (d), respectively.
Red corresponds to positive values of the classical density Tr D̂, whereas white marks vanishingly small values. (e) depicts the
trajectory traced by the Bloch vector n= Tr (̂σ ρ̂) for the quantum density matrix (3.6) during the evolution. The progression
of time is represented by a colour gradation from dark blue to bright yellow along the curve. Since the trajectory lies on the yz
plane, only the yz projection is plotted. The dashed black line denotes the surface of the Bloch sphere. (f ) displays the purity
Tr (ρ̂ 2)= |n|2 of the quantum density matrix (3.6) as a function of time. In (e) and (f ), the captioned black dots mark time at
which figures (a)–(d) are plotted. The colour encoding of time is the same in both (e) and (f ). (Online version in colour.)

states (3.6). In other words, the classical system induces quantum decoherence (figure 1f ). It is
noteworthy that the classical density is non-negative for all times in the considered example; we
shall expand this particular point at the end of this section.
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Figure 2. Hybrid evolution (5.6) governed by the AG equation (1.1) with the Hamiltonian given in (5.1) and the initial condition
D̂0 in (5.5). The parameters used are the same as in figure 1. (a) depicts the trajectory traced by the Bloch vector for the quantum
density matrix ρ̂ = ∫ D̂ dpdq during the evolution. Similarly to figure 1, the progression of time is represented by a color
gradation from dark blue to bright yellow. Again, the trajectory lies on the yz plane. However, we emphasize the very different
time scale from the evolution displayed in figure 1. (b) displays the purity Tr (ρ̂ 2) as a function of time. The color encoding of
time is the same in both (a) and (b). The classical Liouville density Tr D̂ is identical to figure 1a–d. (Online version in colour.)

It is instructive to compare these findings with the predictions of the AG theory (1.1). The exact
solution of the AG equation (1.1) for the Hamiltonian (5.1) reads in terms of the initial condition
D̂0 = D̂|t=0 as

D̂ = Û†

(
d11(ω+) eiϕd12(ω)

e−iϕd21(ω) d22(ω−)

)
Û, (5.6)

where dkl(ω±) denote the components of the matrix

d̂(ω±) = ÛD̂0

(
q = q cos(ω±t) − p sin(ω±t)

mω±
, p = p cos(ω±t) + mω±q sin(ω±t)

)
Û† (5.7)

and

ϕ = λ

2mh̄ω3

(
p2 − (mωq)2

2m
sin(2ωt) − ω

[
2H0t + pq (cos(2ωt) − 1)

])
. (5.8)

The exact solutions (5.3) and (5.6) lead to qualitatively different dynamics. In particular, the
phase ϕ breaks the time-reversible symmetry in AG hybrid dynamics. Furthermore, the term
2H0t in (5.8) yields a non-periodic evolution, which is responsible for the purity relaxation
at large time scales, as shown in figure 2. The density matrix of the quantum subsystem
monotonically approaches an infinite-temperature state. This dynamics is reminiscent of the
relaxation predicted by the Lindblad equation modelling a dephasing channel. Indeed, in the
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case of the Lindblad equation, the entropy-driven relaxation process at macroscopic time scales
(such as those in figure 2) is predicted by an H-theorem [68]. However, the lack of any features
at microscopic time scales prevents the AG equation from capturing transient behaviour. This
should be contrasted with the predictions of the new model depicted in figure 1, where recurrent
quasi-periodic dynamics, akin to the Rabi oscillations, is observed with no long-time trend—
a direct consequence of the model having the Hamiltonian structure. Despite these substantial
differences, we emphasize that both the solutions (5.3) and (5.6) lead to the same classical Liouville
density as shown in figure 1a–d. Another similarity between the two theories is that they both
produce negative eigenvalues of the hybrid density D̂. This fact was numerically verified for the
considered example.

The parameters chosen in figures 1 and 2 are such that β � 2/(h̄ω). This means that
the initial condition (5.5) identifies a cold classical state, whose phase-space distribution in
figure 1a violates the Heisenberg uncertainty principle. Therefore, figures 1 and 2 display truly
hybrid dynamics, rendering quantum–classical correlations that cannot be modeled by the
Pauli equation. However, if we set β = 2/(h̄ω), the initial classical Liouville density ρ coincides
with the Wigner function (π h̄)−1 ∫ ψ†(q + s)ψ(q − s) e2ips/h̄ ds for the Pauli spinor wavefunction
ψ(q) ∝ e−mωq2/(2h̄)(1, 0)T. For such an initial condition, the classical density dynamics arising from
equations of motion (1.1) and (5.2) coincides with the evolution of the Wigner function associated
with the Pauli equation with Hamiltonian p̂2/(2m) + mω2q̂2/2 + α · σ̂ q̂2/2, where [q̂, p̂] = ih̄.

We conclude this section by showing that any hybrid Hamiltonian of the type Ĥ(q, p) =
H0(q, p) + V(q)α · σ̂ yields a hybrid wave equation (3.1) that preserves the sign of the classical
Liouville density. By following the diagonalization procedure above, this class of hybrid
Hamiltonians can be equivalently written as Ĥ = H0 + λσ̂3V, thereby producing two uncoupled
KvH equations ih̄∂tΥ̃± = L̂H± Υ̃± of classical type (here, H± = H0 ± λV). From the arguments in
§2, it follows that both these KvH equations preserve the sign of the quantity ρ± = |Υ̃±|2 +
div(Υ̃ ∗±Ẑ+Υ̃±). As a result, the sign of the classical density ρ = ρ+ + ρ− of the hybrid system is
also preserved in time. This result holds promise for other possible classes of hybrid Hamiltonians
yielding positivity of the classical distribution; such a study is the subject of ongoing work [69].

6. Conclusion
Upon combining KvN classical mechanics with van Hove’s prequantization theory, we have
provided the new representation (2.9) of the Liouville density in terms of Koopman–van Hove
classical wavefunctions. Then, given the KvH equation (2.5) for two particles, a quantization
procedure was applied to one of them, thereby leading to the classical–quantum wave equation
(3.1) for the hybrid wavefunction Υ (z, x). This construction leads naturally to the identification of
a sign-indefinite operator-valued density (3.5) encoding classical–quantum correlations. In turn,
the latter can be discarded by invoking the factorization ansatz Υ (z, x) =Ψ (z)ψ(x), recovering the
celebrated mean-field model (4.3).

Equations (3.1), (3.5)–(3.7) constitute a long sought Hamiltonian model for classical–quantum
hybrid evolution. As shown, the density matrix of the quantum subsystem is always positive,
while the Liouville density of the classical subsystem may, in general, become negative in the
general case. The proposed hybrid description has been illustrated and compared with the AG
theory (1.1) by using the exactly solvable model of a degenerate two-level quantum system
quadratically coupled to a one-dimensional classical harmonic oscillator. In this case, the quantum
backreaction leads to positive-definite, yet non-Gaussian classical distributions. The discussion
of which classes of hybrid systems preserve the sign of the classical distribution is left for future
work [69]. Other questions currently under study [69] involve the algebraic structure of the hybrid
correspondence Ĥ → L̂Ĥ and the associated dual map yielding the hybrid density D̂.

As a further direction, we plan to develop effective numerical schemes for the classical–
quantum wave equation (3.1) to be able to assess its physical consequences in experimentally
relevant scenarios, such as those involving the Jaynes–Cummings model. In addition, the
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identification of hybrid classical–quantum thermal equilibria is an interesting question whose
answer may open new perspectives in the statistical mechanics of hybrid classical quantum
systems [70]. Indeed, once a Hamiltonian model is established, the immediate next question
involves its extension to time-irreversible processes governed by an H-theorem. We remark that
time irreversibility and energy dissipation are substantially different phenomena which may
or may not coexist. Examples are given by the quantum Lindblad equation and the classical
Botzmann equation, respectively. The addition of thermodynamic effects to Hamiltonian theories
is a challenging question requiring methods from statistical mechanics. We leave this important
direction for future work.

Data accessibility. This article does not contain any additional data.
Competing interests. We declare we have no competing interests.
Funding. D.I.B. is supported by the Air Force Office of Scientific Research Young Investigator Research
Program (grant no. FA9550-16-1-0254). F.G.B was partially supported by grant no. ANR-14-CE23-0002-01. C.T.
acknowledges financial support from the Leverhulme Trust Research Project (grant no. 2014-112), and from
the London Mathematical Society (grant no. 31633; Applied Geometric Mechanics Network). This material
is partially based upon work supported by the NSF (grant no. DMS-1440140) while C.T. was in residence
at MSRI during the autumn 2018 semester. In addition, both D.I.B. and C.T. acknowledge support from the
Alexander von Humboldt Foundation (Humboldt Research Fellowship for Experienced Researchers) as well
as from the German Federal Ministry for Education and Research.
Acknowledgements. We thank all six referees for their careful reading of the manuscript and for their keen
remarks that contributed to improving the exposition of our results. We are grateful to Darryl D. Holm for his
valuable comments during the writing of this work. Special thanks go to Paul Skerritt for his keen insight into
the identification of specific initial conditions for the classical wavefunction. Also, the authors are indebted to
Dorje Brody, Joshua Burby, Maurice de Gosson, Hans-Thomas Elze, Viktor Gerasimenko, Raymond Kapral,
Robert Littlejohn, Robert MacKay, Omar Maj, Giuseppe Marmo, Todd Martinez, Philip Morrison, Jonathan
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Appendix A. KvH momentummap
In this section, we show explicitly that relation (2.9) identifies a momentum map for the
infinitesimal action given by the operator L̂H. In geometric mechanics [45,46], momentum maps
[60,61] represent a generalization of Noether’s theorem to canonical group actions that are not
necessarily a symmetry of the system under consideration. In this context, the Noether charge is
generalized to a momentum map that evolves under the coadjoint representation associated with
the Lie group acting on the considered mechanical system.

Without entering further details, we define the momentum map on symplectic vector spaces
as follows. Let (V,Ω) be a vector space with constant symplectic form Ω and let the latter be
preserved by a G-group representation on V. Then, the momentum map J : V �→ g∗ taking values
in the dual space g∗ of the Lie algebra g of G is defined as

2〈J(v), ξ〉 :=Ω(ξV(v), v),

where ξ ∈ g, ξV denotes the infinitesimal action on V, and 〈·, ·〉 is the real-valued duality pairing
for g. The momentum map J(v) is generally called a Clebsch representation.

In our case, V is the space of classical wavefunctions, the Lie algebra is the space g = C∞(R6)
of phase-space functions (endowed with the canonical bracket and the standard L2-pairing) and
the infinitesimal generator ξV(v) reads −ih̄−1L̂HΨ . Then, upon using the Schrödinger (canonical)
symplectic form Ω(Ψ1,Ψ2) = 2h̄Im

∫
Ψ ∗

1 (z)Ψ2(z) d6z, the definition of the momentum map reads

∫
HJ(Ψ ) d6z =

∫
Ψ ∗L̂HΨ d6z.
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Therefore, we compute∫
Ψ ∗L̂HΨ d6z =

∫
Ψ ∗
[
{ih̄H,Ψ } +

(
H − A · J∇H

)
Ψ
]

d6z

=
∫ [

|Ψ |2 − div
(
JA|Ψ |2)+ ih̄{Ψ ,Ψ ∗}

]
H d6z.

Now, we observe that ih̄{Ψ ,Ψ ∗} = −ih̄div(Ψ ∗J∇Ψ ) = div(Ψ ∗JΛ̂Ψ ) so that the momentum map
reads

J(Ψ ) = |Ψ |2 + div
[
Ψ ∗J

(
Λ̂ − A)Ψ ],

thereby recovering relation (2.9) as a Clebsch representation. By proceeding analogously, we
notice that |Ψ |2 is also a Clebsch representation generated by local phase transformations with
infinitesimal action ξV(v) given as −ih̄−1φΨ (where φ(z) is a real phase-space function).

Notice that, since −ih̄−1L̂H is skew-Hermitian, the correspondence H �→ −ih̄−1L̂H provides
a Lie algebra homomorphism between phase-space functions endowed with the canonical
Poisson bracket and skew-Hermitian operators on classical wavefunctions. Then, the map
−ih̄Ψ (z)Ψ ∗(z′) �→ J(Ψ ) emerges as the dual of this Lie algebra homomorphism, thereby ensuring
infinitesimal equivariance of J(Ψ ) and the consequent Poisson mapping property [45,46]. Thus,
this guarantees that the momentum map J(Ψ ) obeys the classical Liouville equation. Again,
without entering further details, here we only mention that the operator −ih̄−1L̂H emerges as
the infinitesimal generator of a Lie group representation first discussed in van Hove’s thesis [49],
which is at the heart of classical mechanics. Under the name of ‘strict contact transformations’, this
Lie group is a central extension of standard canonical transformations. This and related points will
be discussed in more detail in future work.

An important consequence of the fact that the operator −ih̄−1L̂H generates strict contact
transformations (as opposed to −ih̄−1L̂ H, which generates canonical transformations) is the
equivariance property resulting as a general property of infinitesimal generators associated
with group actions. As discussed in §2, in the Heisenberg picture we have L̂ H

A = L̂A H , where
L̂ H

A(t) := exp(iL̂Ht/h̄)L̂A exp(−iL̂Ht/h̄) and AH(t) = exp(îL Ht/h̄)A. Indeed, this is a consequence of
the general formula (Adg ξ )V =Φ∗

g−1ξV for a left representation Φ of a Lie group G on a vector
space V. In the specific case under consideration, the adjoint action Adg ξ coincides with the
pushforward A ◦ η−1 of the function ξ = A by the canonical transformation η−1 = exp(−X Ht)
generated by ih̄−1L̂ H, so that Adη A = A ◦ η−1. Therefore, we write A ◦ η−1 = exp(îL Ht/h̄)A.

Appendix B. Hybrid dynamics
In this appendix, we provide calculational details of the discussion concerning classical–quantum
hybrids. Here A is an arbitrary potential with dA = −ω or, equivalently, ∇A − (∇A)T = −J.
First, we shall show that definition (3.5) leads to rewriting the total energy (3.4) as

h = Tr
∫
Υ †(z) L̂ĤΥ (z) d6z = Tr

∫
ĤD̂ d6z,

with D given in (3.5). Indeed, we verify this as follows:

Tr
∫
Υ †

[
Ĥ − ∇Ĥ · J

(
Λ̂ − A)]Υ d6z = Tr

∫ [
ΥΥ †Ĥ − div(JAΥΥ †)Ĥ + ih̄Υ †{Ĥ,Υ }

]
d6z

= Tr
∫ [

ΥΥ †Ĥ − div(JAΥΥ †)Ĥ − Ĥdiv(Υ JΛ̂Υ †)
]
d6z

= Tr
∫ [

ΥΥ † + div(Υ Ẑ−Υ †)
]
Ĥ d6z,

where all quantities are evaluated at z and we used

ih̄Tr
∫
Υ †{Ĥ,Υ } d6z = ih̄Tr

∫
Ĥ{Υ ,Υ †} d6z = Tr

∫
Ĥdiv(Υ (ih̄J∇)Υ †) d6z.
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In conclusion, we recover definition (3.5).
Now we want to prove the D̂-equation (3.9). For this purpose, we shall use the adjoint of

equation (3.1), that is,

−ih̄∂tΥ
†(z) =Υ †(z)Ĥ(z) − ( Ẑ−Υ †(z)) · ∇Ĥ(z),

which arises from the relation (Ẑ+Υ (z))† = Ẑ−Υ †(z). At this point, we restrict ourselves to finite
dimensions and, upon taking the time derivative of definition (3.5), one obtains

∂tD̂ = d
dt

(
ΥΥ † − div

(
JAΥΥ †

)
+ ih̄{Υ ,Υ †}

)
= −ih̄−1(Ĥ + JA · ∇Ĥ

)
ΥΥ † + {Ĥ,Υ }Υ †

+ ih̄−1ΥΥ †(Ĥ + JA · ∇Ĥ
)− Υ {Υ †, Ĥ}

− div
(

JA
(
−ih̄−1(Ĥ + JA · ∇Ĥ

)
ΥΥ † + {Ĥ,Υ }Υ †

))
− div

(
JA

(
ih̄−1ΥΥ †(Ĥ + JA · ∇Ĥ

)− Υ {Υ †, Ĥ}
))

+ ih̄
{(

−ih̄−1(Ĥ + JA · ∇Ĥ
)
Υ + {Ĥ,Υ }

)
,Υ †

}
+ ih̄

{
Υ ,
(

ih̄−1Υ †(Ĥ + JA · ∇Ĥ
)− {Υ †, Ĥ}

)}
.

We recall that in the present notation all quantities are evaluated at z, e.g. ΥΥ † stands for
Υ (z)Υ †(z). We expand the divergence div[Ĥ + ∇Ĥ · JA,ΥΥ †JA] in the fourth and fifth lines
and we use the Leibniz product rule and the Jacobi identity in the last two lines. Then, a few
cancellations yield

∂tD̂αβ = −ih̄−1[Ĥ,ΥΥ † − div
(
JAΥΥ †)]

αβ
+ {

Ĥ,ΥΥ †}
αβ

− {
ΥΥ †, Ĥ

}
αβ

+ div
({

JAΥΥ †, Ĥ
}− {

Ĥ, JAΥΥ †}+ ih̄−1[JA · ∇Ĥ, JAΥΥ †])
αβ

+ div
({

Ĥαγ , JAΥ ∗
β

}
Υγ − {

JAΥα , Ĥγβ

}
Υ ∗
γ

)
+ Υγ

{
JA · ∇Ĥαγ ,Υ ∗

β

}− {
Υα , JA · ∇Ĥγβ

}
Υ ∗
γ

+ [
Ĥ + JA · ∇Ĥ , {Υ ,Υ †}]

αβ
+ {Ĥ, ih̄{Υ ,Υ †}}αβ − {ih̄{Υ ,Υ †}, Ĥ}αβ

− ih̄{Υγ , {Ĥαγ ,Υ ∗
β }} + ih̄{{Υα , Ĥγβ},Υ ∗

γ }.

Then, expanding the first two divergences in the second line yields equation (3.9).
At this stage, we can verify relations (3.10) explicitly. We begin by proving the first in (3.10),

that is, by computing
∫
∂tD̂ d6z. This is easily done by using the relation∫

{JA · ∇Ĥαγ ,Υ ∗
β }Υγ d6z −

∫
{Υα , JA · ∇Ĥγβ}Υ ∗

γ d6z = −
∫ [

JA · ∇Ĥ, {Υ ,Υ †}]
αβ

d6z,

which indeed yields the first in (3.10). Analogously, the second in (3.10) is recovered by computing
Tr∂tD̂. The trace of the terms on the right-hand side of (3.9) are obtained as follows:

Tr
[{

Ĥ, D̂}− {D̂, Ĥ
}]= 2Tr

{
Ĥ, D̂},

Tr
[{

JAΥΥ †, ∇Ĥ
}− {∇Ĥ, JAΥΥ †}]= −2Tr

{∇Ĥ, JAΥΥ †}, (B 1)

div
({

Ĥαγ , JAΥ ∗
α

}
Υγ − {

JAΥα , Ĥγα

}
Υ ∗
γ

)= div
[
Tr
{
Ĥ, JAΥΥ †}+ Tr

({
Ĥ, JA}ΥΥ †)], (B 2)

Υγ {JA · ∇Ĥαγ ,Υ ∗
α } − {Υα , JA · ∇Ĥγα}Υ ∗

γ = Tr{JA · ∇Ĥ,ΥΥ †} (B 3)

as well as

− ih̄{Υγ , {Ĥαγ ,Υ ∗
α }} + ih̄{{Υα , Ĥγα},Υ ∗

γ } = −ih̄Tr
{
Ĥ,
{
Υ ,Υ †}}. (B 4)
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The trace of the other terms vanishes. After several computations, one obtains that the sum of
(B 1)–(B 4) gives

Tr
({

Ĥ, JA} · ∇(ΥΥ †))+ Tr
(∇Ĥ · {JA,ΥΥ †})− Tr

{
Ĥ, ih̄

{
Υ ,Υ †}− div

(
JAΥΥ †)}.

Hence the second equation in (3.10) follows if the following identity holds:

Tr
({

Ĥ, JA} · ∇(ΥΥ †))+ Tr
(∇Ĥ · {JA,ΥΥ †})= −Tr

{
Ĥ,ΥΥ †},

for all Ĥ and Υ . This identity is equivalent to J(∇A − (∇A)T)J = J, which follows since
∇A − (∇A)T = −J and J2 = −1.
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