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Abstract: Dermoscopic images allow the detailed examination of subsurface characteristics of the skin,
which led to creating several substantial databases of diverse skin lesions. However, the dermoscope
is not an easily accessible tool in some regions. A less expensive alternative could be acquiring
medium resolution clinical macroscopic images of skin lesions. However, the limited volume of
macroscopic images available, especially mobile-acquired, hinders developing a clinical mobile-based
deep learning approach. In this work, we present a technique to efficiently utilize the sizable number
of dermoscopic images to improve the segmentation capacity of macroscopic skin lesion images.
A Cycle-Consistent Adversarial Network is used to translate the image between the two distinct
domains created by the different image acquisition devices. A visual inspection was performed
on several databases for qualitative evaluation of the results, based on the disappearance and
appearance of intrinsic dermoscopic and macroscopic features. Moreover, the Fréchet Inception
Distance was used as a quantitative metric. The quantitative segmentation results are demonstrated
on the available macroscopic segmentation databases, SMARTSKINS and Dermofit Image Library,
yielding test set thresholded Jaccard Index of 85.13% and 74.30%. These results establish a new
state-of-the-art performance in the SMARTSKINS database.

Keywords: convolutional neural network; CycleGAN; data augmentation; dermoscopic images;
domain transfer; macroscopic images; skin lesion segmentation

1. Introduction

Skin cancer is one of the most prevalent malignancy worldwide and has a reported
yearly growing incidence with no signs of plateauing. In 2018, almost three-hundred
thousand malignant melanoma (MM) were diagnosed worldwide and over a million non-
melanoma skin cancers (NMSC) [1]. However, this number excludes basal cell carcinoma,
the most frequent skin cancer, since most go unreported [2]. The majority of NMSC and
MM are highly curable if diagnosed in the early stages. The estimated 5-year survival rate
for MM drops from over 98% to 23% if detected when the metastases are distant from the
origin point [1]. Moreover, the effective diagnosis is compromised by the almost identical
clinical presentation of benign and malignant skin lesions. Therefore, timely and accurate
diagnosis is a paramount measure in controlling this pre-eminent global public health
problem.

The growing usage of smartphones added to the robustness of deep learning models
makes a mobile-based deep learning approach a well-suited possibility for the automatic
cutaneous cancer triage [3,4]. Notwithstanding, the limited volume of mobile acquired
images, such as macroscopic or close-up images, proves to be an obstacle in the devel-
opment of a robust model specific to the macroscopic image type. Dermoscopy is the
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standard procedure for skin cancer preliminary diagnosis, it allows the visualization of
inner layers of the skin which are not visible to the naked eye. This visualization method
added to the procedural algorithms, allowed an expert diagnostic accuracy of 75% to
84% [5–7], which compelled the generation of several sizeable databases of this type of
images. Yet, the direct inference between the two domains, macroscopic and dermoscopic,
is not advisable and may even prove to be a detriment for the robustness of the model [8,9].
These image acquisition formats generate images with very different characteristics and
challenges [10] and even for the clinical diagnosis, there are rules and methods specific for
each domain [11].

This work aims to evaluate the possibility of designing a deep learning algorithm for
the precise segmentation of lesion in macroscopic images capable to fully operate in the
mobile environment. To assemble such a model, we explore the capitalization of the sizable
dermoscopic databases by using a Cycle-Consistent Adversarial Network (CycleGAN) [12]
for the translation between the two domains, macroscopic and dermoscopic.

2. Related Work

One of the fundamental challenges of the medical imaging computer vision analysis
is to achieve satisfactory results with limited labelled datasets. Even in the era of Big
data, there are still some challenges for which the amount of available data is still severely
lacking. This is the case for the macroscopic segmentation challenge.

The lack of macroscopic images may be the reason for the few efforts into devel-
oping segmentation algorithms [10,13–18]. Examples of segmentation techniques used
are—thresholding [14,16,17], unsupervised dictionary learning methods [13] and support
vector machines [15]. Rosado et al. [16] used an adaptive thresholding technique with
strong pre and post-processing techniques. The usage of deep learning methods has also
been reported [10,18]. In Fernandes et al. [18], a convolution neural network (CNN),
with gossip blocks, combined with a backpropagation technique was used to improve the
segmentation masks by maximizing the expected quality. In the previous work [10] several
architectural modifications of two widely used segmentation CNNs, U-Net and DeepLab,
were tested to infer the best macroscopic segmentation CNNs. Here, two methodologies
were tested to attempt to mitigate the small size of the macroscopic databases: heavy classi-
cal augmentation and transfer learning. The highest reported segmentation performance
obtained, in a macroscopic database, was in Reference [10] with an 82.64% Jaccard index.

One of the techniques used to lessen the small datasets is data augmentation through
basic image manipulation such as flipping, rotating and addition of noise [10,18]. However,
with very small datasets extensive classical data augmentation may promote overfitting [19].
Another strategy used for data augmentation is the creation of artificial instances through
generative adversarial networks. This type of framework samples from simple distributions
and learn to transform it into the complex high dimensional distributions. For this purpose,
two networks are used: one generating network which creates real-looking images, and a
discriminator network which tries to distinguish between the real and fake images. Several
techniques have been attempted for the skin lesion generation [20–23] however most are
used for data augmentation applied to classification task, or to generate skin lesions from
random noise without little to no prior knowledge of the complexity of the lesion.

More recently, Gu et al. [9] used a CycleGAN to perform cross-domain skin diseases
classification between different disease databases. The CycleGAN algorithm performs
image-to-image translation without the need for paired training samples, where the re-
ferred work proved the suitability of this approach to reduce the domain shift between
different datasets. Thus, in this paper, we propose the CycleGAN to transform the der-
matoscopic images into macroscopic. This transformation would allow the use of the vast
amount of available dermatological images to increase the robustness of approaches in the
macroscopic domain, while maintaining structural information of the lesions and some of
their characteristics.
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3. Materials and Methods
3.1. Databases

The growing interest in computer-aided diagnosis systems for automated detection
and classification of skin lesions led to the creation of several databases. Most of these
have been used by researchers to develop algorithms for automated segmentation of lesion
borders.

3.1.1. Segmentation Databases

Macroscopic Segmentation Databases Although many databases provide matching
binary segmentation masks of cutaneous lesions only the Dermofit image Library [24]
and the SMARTSKINS database [25] are of the macroscopic domain. The Dermofit dig-
ital image database consists of 1300 high-quality colour skin lesions images taken with
standard cameras–with matching binary segmentation masks and class labels, the lesions
belong to 10 different diseases with 819 benign and 481 carcinogenic images, annotated by
individual disease classes. The SMARTSKINS database was obtained at the Skin Clinic
of the Portuguese Institute of Oncology of Porto [25]. This database was acquired with
mobile devices and it comprises several subsets captured in different years. One of the
subset consists of 80 melanocytic lesions together with the corresponding segmentation
masks, as well as medical annotations regarding ABCD score and overall risk.

Dermoscopic Segmentation Databases In terms of dermoscopic databases, we used
the three publicly available International Skin Imaging Collaboration (ISIC) challenges
datasets (2016 [26], 2017 [27] and 2018 [28,29]) , as well as the PH2 database [30] . The ISIC
database is a collection of multiple databases used in a recurrent challenge, which aims to
improve melanoma detection in dermoscopic images. The ISIC Challenge is broken into 3
tasks—lesion segmentation, lesion attribute detection and disease classification. The PH2
database was obtained at the Dermatology Service of Hospital Pedro Hispano. Each case
contains a dermoscopic image, the segmentation of the lesion provided by a doctor, as well
as clinical and histological diagnosis and the assessment of several dermoscopic criteria.

The splitting process performed on these databases is summarized in Table 1, which
is the same used in Reference [10]. Essentially, the Dermofit and PH2 databases suffer an
80/20 split, between the train and test subsets, and the SMARTSKINS a 50/50 split due to
its relative small size. For the three ISIC challenges, the images were merged and the ISIC
2017 test instances were reserved for the test subset. Figure 1 shows illustrative examples
of the macroscopic and dermoscopic segmentation databases in pairs A and B.

Table 1. Overview of available segmentation macroscopic and dermoscopic databases and separation
into train/validation and test subsets.

Set Database No. Images
(Type) No. Train/Val. No. Test

set M Dermofit 1300 (MD) 1036 264
SMARTSKINS 80 (MP) 39 41

set D ISIC 2594 (De) 1994 600
PH2 200 (De) 160 40

set M—set of macroscopic images; set D—set of dermoscopic images; No-Number of images, De-Dermoscopic
images, MD-Macroscopic images acquired with a digital camera, MP-Macroscopic images acquired with a
mobile phone.
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Figure 1. Illustrative examples of macroscopic (row above) and dermoscopic (below) skin lesions. (A) above: SMARTSKINS
(Set M); below: ISIC (set D); (B) above: Dermofit (Set M); below: PH2 (set D); (C) EDRA ; (D) SMARTSKINS 2014/2015.

3.1.2. Macroscopic and Dermoscopic Databases

The particular characteristic of these databases is that for each skin lesion it has both
macroscopic and dermoscopic image. Two databases were found that enter this category—
the EDRA database [31] and a subset of the SMARTSKINS database [25]. Figure 1 shows
illustrative examples of the two aforementioned databases in pairs C and D, each column
has above the macroscopic images and below the dermoscopic counterpart. The EDRA
database comprises over 1000 cases of skin lesions. Each clinical case is properly anno-
tated with the clinical data, histopathological results, diagnosis, level of difficulty and the
macroscopic and dermoscopic image of the lesion. The subset SMARTSKINS database
(SMARTSKINS 2014/2015) was acquired with two smartphones and classified by the
overall risk of the lesions. This subset contained over 170 cases of lesions, each of them had
one dermoscopic image and two macroscopic.

These databases were used to form the macroscopic and dermoscopic dataset. The di-
vision of these databases, into train and test subsets, was performed in a stratified manner
in accordance with the classification. Subsequently, it was added to the train subset the
ISIC macroscopic images [32] and the training and validation subsets of Set D and Set M.
The final configuration of the dermoscopic and macroscopic datasets can be seen in Table 2.

Table 2. Formation of dermoscopic and macroscopic datasets and separation into train and test
subsets.

Database Train Test
MD\MP De MD\MP De

EDRA 802 802 209 209
SMARTSKINS
2014/2015 295 148 56 28

PH2 (Set D) - 160 - 40
ISIC (Set D) - 1994 - 600
Dermofit (Set M) 1036 - - -
SMARTSKINS
(Set M) 39 - - -

ISIC Archive 104 - - -

Total 2158 3057 242 869

De-Dermoscopic images, MD-Macroscopic images acquired with a digital camera, MP-Macroscopic images
acquired with a mobile phone.

3.2. Methodology
3.2.1. Generation of Macroscopic Images

CycleGAN was introduced in 2017 by Zhu et al. [12], this framework is a technique
used for the adversarial “unsupervised” training of image translation between two different
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domains. The most notable capacity is the ability to transform within two domains without
using paired data. This lack of pixel-to-pixel correspondence happens in the macroscopic
and dermoscopic images, even if images correspond to the same lesion as each acquisition
implies different illumination, resolution and distance to the lesion. The framework consists
of two mapping functions G : X− > Y and F : Y− > X in conjunction with the respective
adversarial discriminators, Dx and Dy, that distinguishes x from F(y) and y from G(x),
respectively. These duos are trained with an adversarial loss (LGAN) in association with a
cycle consistency loss (Lcyc).

In this work, the objective function used in the computation of the LGAN was a
combination of the sigmoid cross-entropy between the generated images and an array
of ones, and the L1 loss interpolated from the generated image and the target image.
Nevertheless, the LGAN alone is not enough to produce images of quality, since it imposes
the generated output to be in the desired domain, but does not promote the recognizability
between the source and target domain. To enable this mode of learning, Zhu et al. [12]
proposed Lcyc. This mechanism, which can be seen in Figure 2, relies on the expectation
that if an image is converted to another domain and back again it will be comparable to
the original image. This generates two cycle-consistency losses: the forward cycle and the
backward cycle.

Figure 2. CycleGAN framework and training strategy. Blue—Forward cycle-consistency loss; Red —
Backwards cycle-consistency loss.

The full loss is a weighted sum of the adversarial loss of both mapping functions
(LGAN(F, DX, Y, X)) and LGAN(G, DY, X, Y)) and the cycle consistent loss (Lcyc(G, F)),
where the Lcyc(G, F) was favoured by a λ = 10 as shown in (1).

L(G, F, DX , DY) = LGAN(F, DX , Y, X) + LGAN(G, DY, X, Y) + λLcyc(G, F). (1)

Generator Architecture The architecture adopted is based on the approach described
by Johnson et al. [33] in 2016, which was used for neural style transfer and superresolution.
This network can be divided into three sections: the encoder, the transformer and the de-
coder. The encoder is comprised of three sets of padding and convolutional layers followed
by instance normalization and the ReLU activation function. The first convolutional layer
has a 7× 7 kernel and stride 1, and the last two have 3× 3 kernels and stride 2. Afterwards,
more representative features are produced with the transformer, which encompasses a
series of twelve residual blocks of 3 × 3 kernels and stride 1, instead of the nine residual
blocks used in the Johnson et al. [33]. Lastly, the feature maps are expanded by the decoder,
which is comprised of two transposed convolutions, with 3 × 3 filters and stride 2, and one
output convolutional layer with 7 × 7 kernels and stride 1. This last layer has the typical
tanh activation function to produce the final image in RGB.

Discriminator Architecture For the discriminator, the PatchGAN [34] was used.
This CNN looks at a “patch” of the input image and ascertains the probability of be-
ing real. This fully connected network is comprised of five convolutional layers with 4 × 4
kernels and stride 2. Each layer is followed by an instance normalization and the Leaky
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ReLU activation function. The output layer uses a sigmoid function to perform the binary
classification between real and fake images.

Implemention Details The implementation of the CycleGAN was made with Ten-
sorflow API r1.15 in Python 3.7.3 on an NVIDIA Tesla V100 PCIe 32GB GPU. As training
protocol, the one proposed on the original paper [12] was followed. In short, we employ a
learning rate of 0.0002 with the weights initialized from a Gaussian distribution ranging
from 0 to 0.02. The stopping criteria took into consideration the stabilization of the loss
values of the generators, as well as the immutability of the TransMacro and TransDermo
images, which were visually analysed during training. In the limiting case in which none
of the criteria were satisfied, the CycleGAN model had the final criteria of 1000 epochs.
The dataset used in the training and testing of this network is described in Table 2.

3.2.2. Segmentation Network

The segmentation network employed was the optimized encoder-decoder network
selected in Reference [10], which used a modified DeepLabV3+ [35]. Initially, the encoder
was replaced by a MobileNetV2 [36] reduced with a width multiplier, which allows the
manipulation of the input width of a layer, of α = 0.35. Additionally, the last convolutional
layer was adjusted to a 1 × 1 convolutional layer with a sigmoid activation function, which
is more appropriate for a binary segmentation.

Before the training procedure, the images were scaled and resized to 512 × 512 pixels.
The following classic data augmentation procedure was applied: the images were randomly
flipped vertically and horizontally, randomly transposed, randomly modify brightness,
saturation, contrast and hue, and randomly add Gaussian noise. To optimize the network,
we followed the procedure from the previous work [10]: the stochastic optimization of the
model was performed with the soft Dice Loss (1 − Dice), with a batch size of 4, a 90/10
partition for the training/validation subsets and the Adam optimizer associated with a
cyclic learning rate [37].

3.2.3. Evaluation

Although the evaluation the generated images is still an active frontier of research [38],
they may be analysed by visual inspection, metrics of similarity and the impact of using
them in segmentation can also be calculated.

CycleGAN evaluation metrics The visual inspection was based on domain-specific
knowledge of intrinsic dermoscopic features, such as pigmented networks and diffused
pigmentation, the appearance of macroscopic artefacts, for instance, the surface glare and
reflections, and, lastly, the generation of the outward aspect of depth and the modification
of the background skin tonality.

To quantitatively evaluate the similarity between the generated and the real images,
the Fréchet Inception Distance (FID) [39] was used. This metric measures the distance
between the features spaces of specific CNN layer, typically the last pooling layer of
InceptionV3 [40], for the real and real and generated images. Since it is based on a distance
metric, a lower FID score means that the two analysed distributions are similar. FID is
considered a discriminative, robust metric, and evidence shows that it is consistent with
human judgement [39,41].

Segmentation evaluation metrics For the evaluation of the segmentation results,
the six metrics used in the ISIC challenge of 2018 [28] were adopted, namely: threshold
Jaccard coefficient (TJA), Jaccard coefficient (JA), dice coefficient (DI), accuracy (AC), sensi-
tivity (SE) and specificity (SP). The TJA is a metric created specifically for the skin lesion
segmentation, which introduces the measure of incorrectness. If the value of JA, on each
image, is below 65% threshold then JA is considered 0.
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4. Results and Discussion
4.1. Evaluation of the Generated Images
4.1.1. Visual Inspection

A visual assessment was performed to evaluate the outputs’ realism, by identifying
the loss or preservation of some dermoscopic structures. The datasets that had both
dermoscopic and macroscopic for the same skin lesion were used, namely the EDRA
and SMARTSKINS 2014/2015. The same analysis was carried out with images from the
ISIC and PH2 test subsets; these images were not used during the training phase of the
CycleGAN.

EDRA Figure 3a shows the results obtained from the trained CycleGAN in the test
subset of the EDRA dataset—It is possible to compare the macroscopic image to the dermo-
scopic image translated into the macroscopic domain (TransMacro) and the macroscopic
image translated into the dermoscopic domain (TransDermo). In the case of the dermo-
scopic to macroscopic translation, we can observe that the model was able to generate
plausible macroscopic images from dermoscopic images. In particular, several successful
transformations unique to the macroscopic domain were obtained, such as: (i) The genera-
tion of depth in the TransMacro images, that is, lesion images with nodular aspect from flat
dermoscopic images, shown in Figure 3a (row 1); (ii) The expected appearance of surface
glare and change of skin tonality due to the absence of polarized light in macroscopic
images, which can be seen in Figure 3a (rows 1, 2, and 3); and (iii) The loss of dermoscopic
characteristics such as specific pigmentations or diffuse borders, as illustrated in Figure 3a
(rows 1 and 2). It should be noted that failure cases occur when there is the presence of
gel or ruler markings and round black borders. These three characteristics never appear in
macroscopic images, so, understandably, the model could not learn how to address these
artefacts. Where there is gel in the lesion, the model only performed slight modifications to
the input, as shown in Figure 3a row 4.

(a) EDRA (b) SMARTSKINS 2014/2015

Figure 3. Examples of the translation between domains in EDRA (a) and SMARTSKINS 2014/2015 (b) tests subsets. For each
subfigure, from left to right: pair Dermo→TransMacro and pair Macro→TransDermo.
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However, the inverse transformation seems to lead to unsatisfactory results. One pos-
sible explanation is the incapacity of the model of extrapolating the greater details of
the dermoscopic images. Considering all the specific details normally obtained in the
dermoscopic image, the model was not able to capture sufficient features to solve this task.

SMARTSKINS 2014/2015 This dataset proved quite challenging for the model due to
the dark corners in all dermoscopic images. Figure 3b (row 1) shows this failure case, which
usually results in minimal to no changes in the TransMacro result. Since we suspected
that the cause of failure was the fact that macroscopic images never have these dark
borders, and consequently the generator does not learn how to deal with the characteristic,
the dark corners were removed, by cropping the image. This pre-processing step led to
a considerable improvement in the results. Figure 3b (row 2), shows the translation of
the same dermoscopic image, this time cropped. Here, the model was able to generate an
appearance of reflection and modify the skin tonality, which can be seen in Figure 3b (rows
2, 3, and 4). In this dataset, the generation of depth skin lesion can also be seen in Figure 3b
(row 4), however not as evidently as in the previous dataset.

In this dataset, an interesting result was obtained in the macroscopic to dermoscopic
translation. Figure 3b (row 4) shows the generation of a region with red colouration in
the left inferior area of the lesion of the TransDermo image. This colouration, which was
not present in the original macroscopic image, is also present in the original dermoscopic
image. Another transformation detected, in this image was the accentuation in the contrast
of the two brown tonalities of the lesion.

ISIC Figure 4 shows the results obtained from the trained CycleGAN in the ISIC test
subset. As expected, the best transformations occured in this subset, as the ISIC images
represented a large portion of the training dataset. For the most part, the conversions in
this dataset can be categorised into four main ones which are shown in Figure 4 in the
top row: (i) the appearance of surface glare and reflections; (ii) generation of depth; (iii)
loss of dermoscopic structures; and (iv) generation of squamous appearance. Regarding
the generation of surrounding skin with colourization and surface glared, typical of the
macroscopic domain (Figure 4, pair A, top row), this modification is usually accompanied
by the loss on any structure typical of the dermoscopic domain. This loss can be from
the diffuse borders, regression structure or pigmented networks (Figure 4, pairs A, B and
C, top row). Another frequent modification is the generation of squamous like plaque or
nodular appearance (Figure 4 pair D of the top row). The generation of an appearance of
depth in the image is also very prevalent (Figure 4, pairs A, B and C, top row).

Figure 4. Examples of successful (top row) and failure cases (bottom row) of translation from the dermoscopic domain to
the macroscopic domain in ISIC test subset. The letters A, B, C and D represent pairs of Dermo→TransMacro.

In the translation of dermoscopic to the macroscopic domain, there are several notice-
able limitations, as shown in Figure 4 (bottom row). The appearance of artefacts such as
black frames, dark corners, gel substances, intensive illuminations spots, ink marks and air
bubbles can lead to translations with no noticeable modifications (Figure 4, pairs A, B and
C, bottom row). Another main concern is the transformation to an uncharacteristic lesion
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which does not resemble any specific domain. Normally these translated images have a
reddish tone or complete loss of definition (Figure 4, pair D, bottom row).

PH2 Figure 5 shows the results obtained from the trained CycleGAN in the PH2 test
subset. In order to obtain reasonable results, it was necessary to crop the image to remove
the dark corners just as it was done in the SMARTSKINS 2014/2015 dataset. After this
pre-processing step, the most successful transformations were the change in the tonality
of the surrounding skin, the addition of reflections, the darkening of the lesion and some
elevation of the lesions. However, it should be noted that the results were not as satisfactory
as in the previous test subsets.

Figure 5. Examples of successful (column 1 and 2) and failure cases (column 3 and 4) of translation
from the dermoscopic domain to the macroscopic domain in the PH2 test subset. From Left to right:
pair Dermo→TransMacro, cropped pair Dermo→TransMacro.

4.1.2. Fréchet Inception Distance Results

The FID metric was used to ascertain the feasibility of using the CycleGAN to trans-
late between the macroscopic and dermoscopic domains. For this purpose, the distance
between three pairs of domains was analysed: (i) Macro/Dermo, between the macroscopic
and dermoscopic original images; (ii) Macro/TransMacro, between the original macro-
scopic image and the dermoscopic image translated into the macroscopic domain; (iii)
Dermo/TransDermo, between the original dermoscopic image and the macroscopic image
translated into the dermoscopic domain. Since the first pair, Macro/Dermo, compares
original images, it can be considered our reference value. If the FID value of the other pairs
is lower than the reference value, it means that the translation led to an approximation of
the translated images to the target domain, implying a transfer of characteristics between
domains.

This change can also be directly compared using the variation ratio (VR), VR =
ReferenceValue−Value

ReferenceValue , which will directly compare the change of similarity between the origi-
nal domains (reference value) and the translated domains. Table 3 presents the computed
FID scores, using the official implementation in TensorFlow [39], on the test subsets of
EDRA, SMARSTSKINS 2014/2015, PH2 (set D) and ISIC (set D). Since PH2 (set D) and ISIC
(set D) do not have a macroscopic image for each dermoscopic image, they were compared
with the macroscopic images of the train subset of Dermofit (set M) and SMARTSKINS
(set M).

Table 3. Fréchet Inception Distance (FID) and Variation Ratio (VR) results in the test subsets of EDRA, SMARTSKINS 2014/2015, PH2
and ISIC.

Domains EDRA SMARTSKINS
2014/2015 ISIC (Set D) PH2 (Set D)

Uncropped Cropped Cropped

FID VR FID VR FID VR FID VR FID VR
Macro/Dermo

(reference value) 167.9 331.7 294.2 180.9 292.9

Macro/TransMacro 160.2 0.05 285.1 0.15 177.5 0.40 123.7 0.31 285.7 0.02
Dermo/TransDermo 186.4−0.11 285.6 0.14 263.6 0.10 - -
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When analysing the FID results, it is possible to confirm several findings reached
in the visual inspection. In the EDRA test subset, the FID score of 160.2 between the
domains Macro/TransMacro is lower than the value 167.9 between the Macro/Dermo.
This shows that the translations of the dermoscopic images to macroscopic was successful
and implies that the images gain specific macroscopic characteristic. In contrast, the value
between Dermo/TransDermo is much higher, reaching 186.4. When comparing to the
reference value, it leads to a negative VR, which indicates that translating the macroscopic
images into dermoscopic made the domains more dissimilar. This further corroborates the
conclusion of the visual analysis that the macroscopic to dermoscopic translation was not
successful.

In the SMARTSKINS 2014/2015 test subset, the macroscopic images were compared
with the uncropped and cropped dermoscopic images, as in the visual analysis. Con-
sidering that the decay between the reference FID score with the cropped dermoscopic
(Macro/TransMacro) is much higher than decay between the reference value using the
uncropped dermoscopic images, it can be stated that this preprocessing step improves
the results. In fact, the VR of the Macro/TransMacro with cropped dermoscopic is the
highest among test subsets. When analysing the other translation (Dermo/TransDermo),
the absolute value of the FID score with the cropped dermoscopic (263.6) is lower than
with the uncropped dermoscopic (285.6). However, the VR is also lower, which means that
the preprocessing did not improve as much the results.

In the ISIC (Set D) test subset, the dermoscopic images were compared with the train
images of Set M. Upon translation, the absolute FID score is the lowest of the test subsets
(123.7), validating the assessment made in the visual inspection—the best results were
obtained in this dataset.

The PH2 test subset was also compared with the train images of Set M. Here, the FID
value obtained was the highest absolute value with the lowest percentage of variation,
which is consistent with the small changes observed in the visual inspection.

Lastly, the CycleGAN was used to translate the training/validation images from Set
D to the macroscopic domain. This led to the creation of the Set Marti f icial to augment
the macroscopic images. Table 4 shows the results of the FID between the segmentation
training datasets set M and Set D and the new generated Set Marti f icial . The FID score
between Set M/set Marti f icial (102.4) is much lower than the reference value between Set
M/Set D (181.1). This drop leads to the most significant change in the variation ratio
between the reference value and the Macro/TransMacro domains. Considering also the
low absolute value of the FID score (102.4), it is possible to conclude that the images of Set
Marti f icial obtain several key features of the macroscopic domain.

Table 4. Fréchet Inception Distance (FID) and Variation Ratio (VR) results between set M, set D and
set Marti f icial .

Domains Segmentation Sets FID VR

Macro/Dermo (reference value) Set M/Set D 181.1
Macro/TransMacro Set M/set Marti f icial 102.4 0.43

4.2. Segmentation Results

The final objective of translating the images to the macroscopic domain was improving
the model’s segmentation capacity for macroscopic images. Thus, the reduced Mobile
DeepLab model was trained with two different datasets, first with the merging of Set M
and Set D and, after, with the combined Set M and Set Marti f icial . The first dataset (Set
M + Set D) serves to check if the performance improvement is due to more samples or
the addition of the translated images. The datasets had a total of 3230 samples: being Set
D + Set M composed of 2/3 of dermoscopic images, while the Set M + Set Marti f icial is
composed of 2/3 of macroscopic images artificially generated with the CycleGAN.

Table 5 compares the methods described in the related work [10,16,18], which exploit



J. Imaging 2021, 7, 2 11 of 15

the SMARTSKINS database, with the two aforementioned models. The addition of the
translated macroscopic images, Set M + Set Marti f icial (Table 5, row 6), outperforms the other
methods by a considerable margin. This augmentation technique leads to an improvement
even when compared to the classical augmentation methods (Table 5, row 3), to the transfer
learning technique (Table 5, row 4) and to the addition of the original dermoscopic images
(Table 5, row 5). With an 85.13% TJA and 86.69% JA, our method, that includes the translated
macroscopic images, sets a new state-of-the-art performance in the SMARTSKINS database.

Table 5. Comparison between the proposed methods and related studies using the SMARTSKINS database. The best result,
for each of the metrics in the present table, is identified in boldface.

Method TJA JA DI AC SE SP

Adaptive Thresholding [16] - 81.58 - 97.38 - -
Gossip Network [18] - - 83.36 - - -
Reduce Mobile DeepLab (Macroscopic) [10] 78.51 82.64 90.14 98.96 95.40 99.15
Reduce Mobile DeepLab (Transfer Learning) [10] 78.04 82.21 89.89 98.90 96.05 99.09
Our Method (Set M + Set D) 78.27 82.58 90.22 98.88 98.39 98.89
Our Method (Set M + Set Marti f icial) 85.13 86.69 92.74 99.18 96.36 99.32

For the Dermofit database, there was only one record of the use of this database for
segmentation [10], which is compared with our methods in Table 6. In the Dermofit test
subset, the addition of artificial macroscopic images (Table 6, row 4) has similar results
to the model trained with Set M + Set D (Table 6, row 3). In fact, both models, while
outperforming the classical data augmentation (Table 6, row 1), seem to underperform
when compared with the transfer learning method (Table 6, row 2) used in Reference [10].
However, it is only possible to make a distinction with the TJA metric, which features a
1.16% decrease. This underperformance means that only four more images were below the
65% threshold in the model trained with the artificial macroscopic images (Table 6, row 4)
than with the transfer learning method (Table 6, row 2).

Table 6. Comparison between the proposed methods and related studies using the Dermofit Image Library database. The
best result, for each of the metrics in the present table, is identified in boldface.

Method TJA JA DI AC SE SP

Reduce Mobile DeepLab (Macroscopic) [10] 72.97 80.26 88.26 93.51 87.56 96.86
Reduce Mobile DeepLab (Transfer Learning) [10] 75.46 81.03 88.79 93.78 89.68 96.13
Our Method (Set M + Set D) 74.42 80.88 88.75 93.53 90.74 95.14
Our Method (Set M + Set Marti f icial) 74.30 80.90 88.62 93.54 88.91 95.84

The fundamental reason behind this discrepancy in the results between the two
databases can be the melanocytic bias present in most of the databases. Since the past re-
search focused on the distinction between melanocytic lesions [29], almost all databases are
heavily biased towards this type of lesions. Nowadays, there has been an attempt to solve
this issue, however, this is mainly in dermoscopic datasets [28,29]. Since SMARTSKINS
database has this biased distribution of lesions it leads to a significant improvement. How-
ever, Dermofit Image Library has a high non-melanocytic percentage of images. Due to
this disparity with all other available databases the improvement is not as substantial.

It is of note that in Dermofit questionable ground truth segmentation masks were
found as depicted in Figure 6. Both these labels appear to be the result of a segmentation
method which over-segmented the lesion due to the hair artefacts present in the images,
which is a common occurrence when the removal of the hairs is ineffective [42].
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Figure 6. Examples of questionable segmentation labels of the Dermofit Database.

Figure 7a,b show various examples of the predicted segmentation mask of the model
trained with the addition of the artificial images, Set M + Set Marti f icial , compared with
the ground truth label. The juxtaposition of the predicted segmentation mask with the
ground truth originated a plot which makes it possible to ascertain the viability of the
segmentation by colour code. Fundamentally, the yellow represents where both masks
overlap (true positives), the red the over-segmented areas (false positives) and the green
the under-segmented areas (false negatives). Over the entire test subset, the normalized
value of false positive pixels is of 0.12 for the Dermofit and 0.032 for the SMARTSKINS
dataset and the normalized value of false negatives is of 0.04 and 0.007, respectively.

(a) SMARTSKINS test subset. (b) Dermofit test subset.

Figure 7. Segmentation results of the Set M + Set Marti f icial from the tests subsets. In the comparison images: yellow —true
positives; red —false positives; green —false negatives; black—true negatives.

When analysing the results in detail when using the model that includes generated
macroscopic images from each of the test subsets, it is possible to observe that all seg-
mentation results are almost identical in shape to the ground truth when dealing with
melanocytic lesions with high contrast with the surrounding skin and no artefacts present
(Figure 7a,b row 1). This high performance is maintained with lesions with low contrast
and uneven pigmentation (Figure 7a,b row 2). Furthermore, if we observe Figure 7a,b row
3, it is possible to see that the model is able to correctly segment in the proximity of regions
with the red colouration, with hairs and superimposed artefacts. However, the model
seems to underperform when the lesion presents a dysplastic form, with the hair artefact,
and with heavily porous skin and low contrast (Figure 7a,b row 4).
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5. Conclusions

Nowadays, with skin cancer’s ever-growing incidence, developing a robust system
capable of assisting physicians in cancer screening is of paramount importance. The ubiq-
uitous spread of smartphones combined with deep learning models’ robustness makes
mobile teledermatology a possible tipping point for the early diagnosis of skin lesions.
However, this has been hindered by the small size of macroscopic datasets available.

In this paper, we tackle the challenge of improving the macroscopic skin lesion seg-
mentation performance by effectively taking advantage of the large dermoscopic datasets
available. Using a CycleGAN, it was possible to translate between the two domains and
generate natural-looking artificial macroscopic skin lesions. Furthermore, we demonstrate
the quality of the generated images quantitatively using the FID score. This analysis
confirmed most of the visual inspection conclusions and demonstrated the artificial macro-
scopic images’ fidelity.

Regarding the use of macroscopic artificial images to improve the segmentation
capacity, it was demonstrated the overall effectiveness of this method. In both available
databases, there was an improvement when comparing with classical data augmentation
method. As future work, we should consider to examine the segmentation masks of the
Dermofit Image Library, in order to correct them, however it should be noted that this
segmentation should be done preferable by experts.

Undeniably, the assessment of the images by an expert dermatologist would be
interesting to further evaluate the relevance of the generated medical data. However, this is
not critical since the final objective is to improve the segmentation model’s performance.

Further work is needed to overcome the melanocytic bias of the databases. This could
begin with the collection of new non-melanocytic macroscopic images. However, when tak-
ing into consideration the arduousness of collecting healthcare data, the applications of
differentiated augmentation techniques should be studied. This can include the analysis of
loss functions that represent more faithfully our design goals, such as condition-specific
losses or texture-focused losses as in Reference [22]. Other improvements can also be made
to the generator architecture of the CycleGAN framework since its goal is the translation of
style, and it has limited translation capacity in form transfiguration.
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