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Abstract: Vision loss is among the characteristic symptoms of neuronal ceroid lipofuscinosis (NCL),
a fatal neurodegenerative lysosomal storage disorder. Here, we performed an in-depth analysis
of retinal degeneration at the molecular and cellular levels in mice lacking the lysosomal aspartyl
protease cathepsin D, an animal model of congenital CLN10 disease. We observed an early-onset
accumulation of storage material as indicated by elevated levels of saposin D and subunit C of the
mitochondrial ATP synthase. The accumulation of storage material was accompanied by reactive
astrogliosis and microgliosis, elevated expression of the autophagy marker sequestosome 1/p62
and a dysregulated expression of several lysosomal proteins. The number of cone photoreceptor
cells was reduced as early as at postnatal day 5. At the end stage of the disease, the outer nuclear
layer was almost atrophied, and all cones were lost. A significant loss of rod and cone bipolar cells,
amacrine cells and ganglion cells was found at advanced stages of the disease. Results demonstrate
that cathepsin D deficiency results in an early-onset and rapidly progressing retinal dystrophy that
involves all retinal cell types. Data of the present study will serve as a reference for studies aimed at
developing treatments for retinal degeneration in CLN10 disease.

Keywords: bipolar cells; ganglion cells; lysosomal storage disorder; neuronal ceroid lipofuscinosis;
photoreceptor cells; retinal degeneration; storage material

1. Introduction

Neuronal ceroid lipofuscinosis (NCL) comprises a group of mainly recessively in-
herited neurodegenerative lysosomal storage diseases usually starting in childhood [1–3].
While NCLs represent a genetically heterogeneous group of disorders, they are all charac-
terized by the intracellular accumulation of autofluorescent storage material as a result of
lysosomal dysfunction. The storage material, also termed ceroid, is composed of proteins,
lipids, dolichols and metals [4]. Depending on the specific NCL form, the subunit c of
mitochondrial ATP synthase (SCMAS) or sphingolipid activator proteins saposin A and D
are major protein components of the storage material [4,5].

Originally classified mainly by the age at disease onset and ultrastructural characteris-
tics of the storage material, NCLs are now grouped according to the affected gene [2,6,7].
To date, about 500 mutations (https://www.ucl.ac.uk/ncl-disease/mutation-and-patient-
database/mutation-and-patient-datasheets-human-ncl-genes; accessed on 21 March 2021)
in 13 different genes have been shown to cause different NCL forms (CLN1-8 and CLN10-
CLN14) [7,8]. The identification of patients presenting with a NCL-like pathology but
harboring no mutation in any of the currently known NCL-related genes suggests the
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presence of additional genetically distinct forms [9]. The majority of patients affected
by lysosomal storage disorders (LSDs), including NCLs, present with clinical symptoms
that are neuronal in origin, such as brain atrophy, seizures, cognitive deterioration and
retinopathy [10,11].

CLN10 disease is caused by mutations in the gene encoding the lysosomal enzyme
cathepsin D (CTSD), a ubiquitously expressed aspartyl protease [12,13]. To date, at least
12 different pathogenic mutations have been identified in the CTSD gene [14]. In addition
to the critical role of the enzyme in the degradation of autophagic material in lysosomes,
CTSD has been implicated in diverse other functions, including the activation and degra-
dation of hormones and growth factors, activation of enzyme precursors, processing of
brain antigens and regulation of apoptosis [15,16]. Loss-of-function mutations in the CTSD
gene cause congenital NCL, the most severe NCL variant with prenatal disease onset and
death within days or weeks after birth. Affected patients present with a severe phenotype,
including skull and brain deformation, microcephaly, seizures and respiratory insuffi-
ciency [14,17–19]. Patients harbouring mutations in the CTSD gene resulting in decreased
CTSD enzymatic activity, in comparison, present with an infantile or juvenile disease
onset and a milder and more slowly progressing phenotype [20–22]. At the cellular level,
pronounced neurodegeneration in CLN10 patients is accompanied by reactive astrogliosis,
reactive microgliosis and demyelination. The inspection of brain biopsies and extraneural
tissues, such as skin or muscle, revealed the presence of storage material displaying the
ultrastructure of granular osmiophilic deposits (GRODs) [17,18,20,21].

Naturally occurring and transgenic animal models carrying mutations in the Ctsd gene
display many phenotypic similarities to affected patients [23,24]. Similar to CLN10 patients,
the severity of the phenotype correlates with the level of residual enzyme activity [25–28].
Cathepsin D knockout (Ctsd ko) mice are born viable and initially develop normally [25].
However, mutant mice start to accumulate SCMAS- and saposin D-containing storage
material in different tissues early during development [29,30]. At 2 weeks of age, Ctsd
ko mice display a progressive regression of visceral organs. In the brain, pronounced
neurodegeneration becomes apparent during the third postnatal week and is accompanied
by seizures, ataxia and bradykinesia. Reactive astrogliosis and microgliosis and progressive
neuronal loss in different brain regions are accompanied by an accumulation of storage
material with the ultrastructure of GRODs and fingerprint profiles [25,31–33]. The rapidly
progressing phenotype of mutant mice ultimately results in premature death in the fourth
postnatal week [25]. Together, findings demonstrate that the Ctsd ko mouse recapitulates
many of the characteristic pathological features of congenital CLN10 disease.

Progressive visual impairment as a result of retinal degeneration is among the char-
acteristic clinical symptoms of most NCLs [13,34]. Ophthalmic examinations of CLN10
patients with an infantile or juvenile disease onset revealed the deterioration of the retinal
function and retinal structure with similarities to retinitis pigmentosa, as assessed by elec-
troretinogram recordings and fundus examinations, respectively [20–22,35]. A follow-up
examination of one of these patients revealed retinal atrophy at advanced stages of the
disease, demonstrating the progressive nature of retinal degeneration in CLN10 [20]. Reti-
nal degeneration is also among the pathological features of Ctsd ko mice [29,36]. Retinal
degeneration in the mutant starts around postnatal day (P) 12, resulting in almost complete
loss of photoreceptor cells at P25, shortly before the animal’s death [36]. Data on the
progression of the retinal dystrophy, the different retinal cell types affected by the cathepsin
D deficiency, and the molecular changes associated with the severe retinal pathology in this
animal model are, however, limited. We, therefore, performed an in-depth analysis of the
retinal phenotype of Ctsd ko mice, and quantified the thinning of different retinal layers,
the progressive loss of various retinal cell types and the dysregulation of various lysosomal
proteins. Results will serve as a reference for preclinical studies aimed at evaluating the
efficacy of therapeutic strategies for the treatment of retinal degeneration in CLN10 disease.
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2. Materials and Methods
2.1. Animals

Cathepsin D knockout (Ctsd ko) mice [25] on a C57BL/6J genetic background were
obtained from heterozygous breeding pairs. Heterozygous mice displayed no pathological
phenotype, in line with other studies [25,29]. We, therefore, used wild-type and heterozy-
gous littermates as controls. Mice were genotyped using polymerase chain reaction and
housed under standard conditions with ad libitum access to water and food in the animal
facility at the University Medical Center Hamburg-Eppendorf (Hamburg, Germany).

2.2. Immunohistochemistry

Ctsd ko mice have a life expectancy of only around 26 days [25]. In the present study,
we analysed retinas from 5-, 10-, 15-, 20-, 25-day-old Ctsd ko and age-matched wild-type
or heterozygous mice of both sexes. Eyes were enucleated and fixed overnight in 4%
paraformaldehyde (PA; Carl Roth GmbH, Karlsruhe, Germany) in phosphate buffered
saline (PBS; pH 7.4). After cryoprotection with an ascending series of sucrose, eyes were
frozen in Tissue-Tek (Sakura Finetek, Zouterwoude, The Netherlands) and serially sec-
tioned with a cryostat (LEICA CM 1950, Leica Biosystems Nussloch GmbH, Nussloch,
Germany) at a thickness of 25 µm, blocked in PBS (pH 7.4) containing 0.1% bovine serum
albumin (BSA) and 0.3% Triton X-100 (both from Sigma-Aldrich Corp., St. Louis, MO,
USA), incubated with primary antibodies (see Table 1) overnight, washed and incubated
with appropriate Cy3-conjugated secondary antibodies (all diluted 1:200; all from Jack-
son Immunoresearch Laboratories, West Grove, PA, USA; research resource identifiers
(RRIDs): donkey anti-rat Cy3: AB_2340666; donkey anti-rabbit Cy3: AB_2307443; donkey
anti-goat Cy3: AB_2307351; donkey anti-sheep Cy3: AB_2315778; donkey anti-mouse Cy3:
AB_2340813). Cone photoreceptor cells were labelled with biotinylated peanut agglutinin
(PNA; 1:5000; Vector Laboratories, Burlingame, CA, USA) and Cy3-conjugated streptavidin
(1:500; Jackson Immunoresearch Laboratories; RRID: AB_2337244). Preparations of retina
flatmounts and immunostainings of retinal ganglion cells with antibodies to brain-specific
homeobox/POU domain protein-3A (BRN-3A) were performed as described in [37,38].
Sections and flatmounts were stained with 4′, 6-diamidino-2-phenylindole (DAPI; Sigma-
Aldrich) before mounting. Specificity of primary antibodies was controlled in immunoblot
analyses of retina extracts and/or the localization and morphology of labelled cells. To
control the specificity of secondary antibodies, incubation of some retina sections with
primary antibodies was omitted in each experiment.

2.3. Retina Thickness Measurements and Cell Counting

Optical sections with a thickness of 0.24 µm were taken from entire central retina
sections using an AxioObserverZ.1 microscope equipped with an ApoTome.2 (Zeiss,
Oberkochen, Germany) and ZEN2.3 software. The thickness of the entire retina, the
outer retina (i.e., from the outer plexiform layer to the retinal pigment epithelium (RPE))
and the inner nuclear layer was measured at 18 equidistant positions between the nasal and
temporal retina periphery using Fiji Image J 1.51 s software (Rasband, W.S., U.S. National
Institutes of Health, Bethesda, MD, USA).
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Table 1. Primary antibodies.

Antigen Dilution Company/Reference Catalog Number RRID

brain-specific homeobox/POU
domain protein 3A (BRN-3A) 1:200 Santa Cruz Biotechnology Inc., Santa

Cruz, CA, USA Sc-31984 AB_2167511

calbindin 1:2000 Sigma-Aldrich, St. Louis, MO, USA C 9848 AB_476894

cathepsin D (CTSD) 1:2000 Santa Cruz Biotechnology, Inc. Sc-6486 AB_637896

cathepsin X/Z/P (CTSZ) 1:100 R&D Systems GmbH AF1033 AB_2088116

cluster of differentiation 68
(CD68) 1:1000 Bio Rad Laboratories, Kidlington,

UK MCA1957 AB_322219

arrestin 1:5000 Millipore, Temecula, CA, USA AB15282 AB_1163387

glial fibrillary acidic protein
(GFAP) 1:500 Dako Cytomation GmbH, Hamburg,

Germany Z0334 AB_10013382

ionized calcium-binding adapter
molecule 1 (IBA1) 1:500 Wako Chemicals GmbH, Neuss,

Germany 019-19741 AB_839504

lysosomal-associated membrane
protein 1 (LAMP1) 1:2000 Santa Cruz Biotechnology, Inc. Sc-19992 AB_2134495

lysosomal-associated membrane
protein 2 (LAMP2) 1:200 Developmental Studies Hybridoma

Bank, lowa City, IA, USA ABL93 AB_2134767

protein kinase C alpha (PKCα) 1:500 Santa Cruz Biotechnology, Inc. Sc-208 AB_2168668

recoverin 1:3000 Milllipore, Temecula, CA, USA AB5585 AB_2253622

saposin D 1:4000 Konrad Sandhoff, Bonn, Germany
[39] N/A N/A

secretagogin (SCGN) 1:2000 BioVendor Research and Diagnostic
Products RD184120100 AB_2034062

sequestosome 1/p62
(SQSTM1/p62) 1:1000 Enzo Life Sciences GmbH, Lörrach,

Germany BML-PW9860 AB_2196009

subunit c of mitochondrial ATP
synthase (SCMAS) 1:1000 Abcam, Cambridge, UK Ab181243 N/A

N/A, not available; RRID, research resource identifier.

Rows of photoreceptor cell nuclei were counted in both the temporal and nasal retina
close to the optic disc in sections stained with DAPI and antibodies to recoverin. BRN-3A-
positive ganglion cells and calbindin-positive horizontal cells with a clearly visible nucleus
were counted in entire retina sections, and their numbers per 1000 µm retina length were
calculated. The density of ganglion cells in retinal flatmounts was determined as described
in [37,38]. Numbers of arrestin-positive cone photoreceptor cells, protein kinase C alpha
(PKCα)-positive rod bipolar cells and secretagogin (SCGN)-positive cone bipolar cells with
a clearly visible nucleus were determined in three equidistant areas between the retina
periphery and the optic disc in both the temporal and nasal retina, each with a width of 250
µm. PNA-labelled cone inner segments in P10 and older retinas were counted in the same
areas, provided they were in direct contact with the outer nuclear layer to exclude obliquely
oriented inner and outer segments from neighbouring optical sections from the analysis.
In P5 retinas, all of the developing and very short PNA-positive inner and outer segments
were considered. The density of ionized calcium-binding adapter molecule 1 (IBA1)-
positive microglia cells was determined in the inner retina (i.e., from the inner nuclear layer
to the vitreal margin) and the outer retina. All thickness measurements and cell counting
were performed in a blinded manner on at least six animals of each genotype and age (i.e.,
10-, 15-, 20- and 25-day-old animals) unless stated otherwise. Statistical analyses of cell
numbers determined in retina sections were performed using the two-way ANOVA with
“age” and “genotype” as between-group factors followed by a Bonferroni post hoc test
using Prism 5.02 software (GraphPad Software, San Diego, CA, USA). Statistical analyses
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of ganglion cell numbers in retinal flatmounts and numbers of PNA-labelled cones in
P5 retina sections were performed with an unpaired Student’s t-test. Retinal thickness
measurements were analysed using a mixed three-way ANOVA with “genotype” and
“age” as between-group factors and “distance from the optic nerve head” as within-group
factor followed by a Bonferroni post hoc test for the interaction between “genotype” and
“age” using Statistica 7 software (StatSoft, Inc., Tulsa, OK, USA).

3. Results

Ctsd ko mice display an early-onset and rapidly progressing phenotype characterized
by lymphopenia, intestinal necrosis, loss of body weight, brain atrophy, motor impairment
and retinal degeneration, and die around P26 [25,29,36]. To obtain detailed information on
the progression of the retinal pathology, we analysed the retinal phenotype of this mouse
model of CLN10 disease at the molecular and cellular levels.

3.1. Progressive Thinning of Ctsd ko Retinas

The inspection of central retina sections stained with DAPI revealed an apparently
normal histology of the Ctsd ko retina at P5 and P10 (Figure 1Ab,Ac). A significant thinning
of the Ctsd ko retina became evident at P15 (Figure 1Ad), and was pronounced at P20
and P25 (Figure 1Ae,Af, respectively). At the latter ages, the outer nuclear layer was
almost completely atrophied when compared with age-matched control retinas (for a P25
control retina, see Figure 1Ag). We next determined the thickness of the entire retina, the
outer retina (i.e., from the outer plexiform layer to the RPE) and the inner nuclear layer
to quantify the progression of the retinal dystrophy in Ctsd ko mice, and to obtain hints
whether retinal cell types other than photoreceptor cells are affected in the mutant retina
(Figure 1B). There was a significant effect of the interaction among the “distance from optic
nerve head”, “genotype” and “age” for the thickness measurements of the entire retina
(F51, 680 = 2.04, p < 0.001) and the outer nuclear layer (F51, 680 = 3.65, p < 0.001), but not
the inner nuclear layer (F51, 680 = 0.94, p > 0.05). Interactions between “genotype and age”
were significant for all thickness measurements (entire retina: (F3, 40 = 58.02, p < 0.001);
outer nuclear layer: (F3, 40) = 94.17, p < 0.001); inner nuclear layer: (F3, 40 = 10.41, p < 0.001).
The Bonferroni post hoc test revealed no significant differences in the thickness of the
entire retina (Figure 1Ba), the outer nuclear layer (Figure 1Bb) or the inner nuclear layer
(Figure 1Bc) between 10-day-old mutant and age-matched wild-type mice. However, the
thickness of the entire retina, outer nuclear layer and inner nuclear layer was significantly
decreased when compared to age-matched wild-type mice at P15 (p < 0.001), P20 (p < 0.001)
and P25 (p < 0.001), as indicated by the Bonferroni post hoc test (Figure 1Ba–Bc).
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Figure 1. Progressive thinning of the Ctsd ko retina. (A) Retina sections from Ctsd ko mice at different ages (b–f) demonstrate
a rapidly progressing retinal dystrophy in the mutant. Retinas from 5- (a) and 25-day-old control mice (g) are shown for
comparison. (B) Quantitative analyses revealed no significant thinning of the entire retina (Ba), outer retina (Bb) or inner
nuclear layer (Bc) in 10-day-old Ctsd ko mice when compared with age-matched control mice. Significant thinning of
the entire retina (Ba), outer retina (Bb) and inner nuclear layer became apparent in 15-day-old Ctsd ko mice and further
progressed with increasing age of the mutants (i.e., P20 and P25). For reasons of clarity, only data for selected ages are
shown in (B). cn, control; gcl, ganglion cell layer; inl, inner nuclear layer; ko, knock-out; ONH, optic nerve head; onl, outer
nuclear layer; P, postnatal day. Scale bar: 50 µm.

3.2. Reactive Microgliosis and Astrogliosis

To investigate the impact of CTSD deficiency on microglia cells/macrophages, retina
sections were stained with anti-IBA1 and anti-cluster of differentiation 68 (CD68) antibodies.
In the inner retina of 5-day-old control retinas (Figure 2Aa), the density of IBA1-positive
cells was higher than in age-matched Ctsd ko retinas (Figure 2Ab). Quantitative analyses
showed that the density of IBA1-positive cells in control mice was also increased in the
inner retina, but not in the outer retina, at P10 (Figure 2B). At P15, we found a pronounced
increase in the number of IBA1-positive cells in the mutant, with 362.7± 21.8 (mean± SEM)
positive cells/mm2 in the outer retina and 380.6 ± 28.4 positive cells/mm2 in the inner
retina compared to 41.8± 2.5 and 98.2± 4.6 positive cells/mm2 in the outer and inner retina
of the control mice, respectively (Figure 2Ac,Ad,B; p < 0.001 for both comparisons; two-way
ANOVA). Similar numbers of IBA1-positive cells were found in the retinas of older Ctsd
ko mice with the only exception of the outer retina, where the density of IBA1-positive
cells decreased significantly between P20 and P25 (p < 0.001; Figure 2Ae,Af,B). CD68-
positive microglia/macrophages became detectable in the inner retina of 5-day-old mutants
(Figure 2Ah). In older mutants, CD68-positive cells were found throughout all retinal
layers, including the outer nuclear layer, and were also frequently found in the subretinal
space (for P15 and P25 Ctsd ko retinas, see Figure 2Aj,Al, respectively). CD68-positive cells
were essentially absent from control retinas at all ages analysed (Figure 2Ag,Ai,Ak).
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Figure 2. Reactive microgliosis and astrogliosis in Ctsd ko retinas. (A) At P5, IBA1-positive microglia cells were more
numerous in control retinas (Aa) than in mutant retinas (Ab), while at P15 and P25, the density of IBA1-positive cells was
markedly increased in mutant retinas (Ad and Af, respectively) when compared with age-matched control retinas (Ac,Ae,
respectively). CD68-positive cells were confined to the inner retina of mutant mice at P5 (Ah), and increased in number and
became additionally detectable in the outer nuclear layer and subretinal space of P15 (Aj) and P25 (Al). Control retinas
were almost devoid of CD68-positive cells at all ages analysed (Ag,Ai,Ak). Expression of GFAP in control (Am,Ao,Aq) and
P5 mutant retinas (An) was confined to retinal astrocytes. In P15 (Ap) and P25 (Ar) Ctsd ko retinas, expression levels of
GFAP were markedly elevated in retinal astrocytes, and Müller cells were strongly GFAP-immunoreactive. (B) The density
of IBA1-positive cells in the outer and inner retina of control (open bars) and Ctsd ko mice (filled bars) at different ages.
Each bar represents the mean value (±SEM) of 6 animals. n.s., not significant; **, p < 0.01; ***, p < 0.001, two-way ANOVA.
CD68, cluster of differentiation 68; cn, control; gcl, ganglion cell layer; GFAP, glial fibrillary acidic protein; IBA1, ionized
calcium-binding adapter molecule 1; inl, inner nuclear layer; ko, knock-out; onl, outer nuclear layer; P, postnatal day. Scale
bar: 100 µm.

The expression of glial fibrillary acidic protein (GFAP) in the control retinas was
confined to retinal astrocytes at all ages analysed (Figure 2Am,Ao,Aq). A similar expression
pattern of GFAP was observed in 5-day-old mutant retinas (Figure 2An). In P10 Ctsd ko
retinas, a few Müller cell processes were GFAP-positive, and GFAP expression in retinal
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astrocytes was elevated compared to the control retinas (Figure S1). In older Ctsd ko
mice, the expression levels of GFAP in retinal astrocytes were massively increased, and
Müller cells were strongly GFAP-immunoreactive (for 15- and 25-day-old retinas; see
Figure 2Ap,Ar, respectively).

3.3. Accumulation of Storage Material and Dysregulation of Lysosomal Proteins

To analyse the accumulation of storage material in Ctsd ko retinas, we performed
immunostainings with antibodies to SCMAS and saposin D (Figure 3). The levels of both
SCMAS (Figure 3b) and saposin D (Figure 3h) were elevated in Ctsd ko mice as early as at
P5 when compared with the age-matched control retinas (Figure 3a,g, respectively), and fur-
ther increased with the increasing age of the animals (Figure 3). SCMAS-immunoreactivity
gradually shifted from inner retinal layers at P5 (Figure 3b) towards the outer retina at P15
(Figure 3d) and P25 (Figure 3f). The accumulation of saposin D also started preferentially in
the inner retina and was particularly pronounced in the ganglion cell layer (Figure 3h). In
older mutants, high levels of saposin D immunoreactivity were also observed in outer reti-
nal layers (Figure 3j,l). Elevated levels of saposin D in mutant RPE cells were particularly
evident at P25 (Figure S2). Compared to Ctsd ko retinas, levels of SCMAS- and saposin
D-immunoreactivity in the control retinas were low at all ages analysed (Figure 3).
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Figure 3. Accumulation of SCMAS and saposin D in Ctsd ko retinas. Levels of SCMAS and saposin D were moderately
increased in P5 Ctsd ko retinas (b,h, respectively) when compared with age-matched control mice (a,g, respectively). A
marked increase in SCMAS- and saposin D-immunoreactivity was observed in 15- (d,j, respectively) and 25-day-old mutant
retinas (f,l, respectively) when compared to the corresponding control retinas (c,e,i,k). cn, control; gcl, ganglion cell layer;
inl, inner nuclear layer; ko, knock-out; onl, outer nuclear layer; P, postnatal day; SCMAS, subunit c of mitochondrial ATP
synthase. Scale bar: 100 µm.

Next, we analysed the expression of the lysosomal proteins, lysosomal-associated
membrane protein 1 (LAMP1) and lysosomal-associated membrane protein 2 (LAMP2;
Figure 4). Elevated levels of LAMP1 and LAMP2 in Ctsd ko mice were evident as early
as at P5 when compared with the control mice (compare Figure 4b with Figures 4a and
4h with Figure 4g, respectively). At this age, prominent LAMP1 and LAMP2 expression
was particularly evident in the inner retina. In older Ctsd ko retinas, increased expression
levels of both proteins were also apparent in outer retinal layers (for 15- and 25-day-old
Ctsd ko retinas; see Figure 4d,j and Figure 4f,l, respectively). In addition, there was a
pronounced increase in LAMP2 in P25 Ctsd ko RPE cells (Figure S2). The expression levels
of the lysosomal enzyme cathepsin X/Z/P (CTSZ) were also elevated in Ctsd ko retinas
at P5, particularly in the inner retina (compare Figure 4m,n). As the retinal pathology
advanced, levels of CTSZ further increased, and also became prominent in the outer retina
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(Figure 4p,r) and the RPE (Figure S2). Age-matched control retinas were almost devoid of
CTSZ immunoreactivity (Figure 4o,q).
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Figure 4. Dysregulation of lysosomal proteins in the Ctsd ko retina. LAMP1 (b), LAMP2 (h) and CTSZ (n) were moderately
upregulated mainly in the ganglion cell layer and inner plexiform layer of P5 Ctsd ko mice when compared with age-
matched control retinas (a,g,m, respectively). Expression levels of LAMP1, LAMP2 and CTSZ were further increased in P15
Ctsd ko retinas (d,j,p, respectively), and were prominent in all retinal layers of P25 mutant mice (f,l,r, respectively) when
compared with the corresponding control retinas (c,e,i,k,o,q). Note the presence of strongly CTSZ-immunoreactive cells in
mutant retinas at all ages analysed. cn, control; CTSZ, cathepsin X/Z/P; gcl, ganglion cell layer; inl, inner nuclear layer; ko,
knock-out; LAMP1, lysosomal-associated membrane protein 1; LAMP2, lysosomal-associated membrane protein 2; onl,
outer nuclear layer; P, postnatal day. Scale bar: 100 µm.

3.4. Expression of the Autophagy Marker SQSTM1/p62

In 5- and 10-day-old Ctsd ko retinas, sequestosome 1/p62 (SQSTM1/p62)-positive
punctae were mainly confined to the outer nuclear layer (Figure 5a,b). In older Ctsd
ko mice, in comparison, the expression of SQSTM1/p62 was mainly restricted to the
inner nuclear layer (Figure 5c–e), where immunoreactive punctae became progressively
more prominent with the increasing age of the animals. At P25, SQSTM1/p62 became
additionally detectable in the ganglion cell layer (Figure 5e). No SQSTM1/p62 expression
was found in the control retinas at any age analysed (for a P25 control retina, see Figure 5f).
Of note, double immunostainings with antibodies to SQSTM1/p62 and LAMP2 revealed
negligible co-localization of both proteins (Figure 5g–i), suggesting the localization of
SQSTM1/p62 in early autophagic vesicles which have not yet fused with lysosomes.
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Figure 5. Expression of SQSTM1/p62 in Ctsd ko retinas. SQSTM1/p62-immunoreactive punctae in P5 (a) and P10 Ctsd ko
retinas (b) were mainly restricted to the outer nuclear layer. In 15- (c), 20- (d) and 25- (e) day-old mutants, in comparison,
expression of the autophagy marker was mainly confined to the inner nuclear layer. SQSTM1/p62-positive punctae were
not detectable in retinas from control mice (for a P25 retina, see (f)). SQSTM1/p62 (g) and LAMP2 (h) showed hardly any
co-localization (white arrowheads in g–i) in P15 Ctsd ko retinas. cn, control; gcl, ganglion cell layer; inl, inner nuclear layer;
ko, knock-out; LAMP2, lysosomal-associated membrane protein 2; onl, outer nuclear layer; P, postnatal day; SQSTM1/p62,
sequestosome 1/p62. Scale bar in (f): 100 µm; in (i): 50 µm.

3.5. Progressive Loss of Multiple Retinal Cell Types

Morphometric analyses of Ctsd ko retinas revealed a pronounced and rapidly pro-
gressing thinning of all retinal layers (Figure 1), suggesting the degeneration of multiple
retinal cell types in the mutant retina. We, therefore, used a panel of cell type-specific
markers to identify the retinal cell types affected by the CTSD deficiency and determined
the time course of their degeneration.

3.5.1. Rod and Cone Photoreceptor Cells

In the mouse retina, cone photoreceptor cells comprise only about 3% of all photore-
ceptors, while the rest are rod photoreceptors [40]. To analyse whether cones and rods
are differentially affected in the mutant, we stained retina sections with antibodies to
cone-arrestin or with the lectin peanut agglutinin to specifically visualize cones. Remark-
ably, PNA staining revealed a significantly reduced number of cones in Ctsd ko retinas
already at P5, with 29.8 ± 3.5 (mean ± SEM) cones/250 µm retina length in mutant retinas
compared to 42.4 ± 3.4 cones/250 µm in age-matched control retinas (p < 0.05, Student’s
t-test; Figure S3). The determination of cone numbers in P5 retinas with anti-cone-arrestin
antibodies was impossible due to the weak expression of the antigen at this early age. How-
ever, immunostainings of 10-day-old Ctsd ko retinas with anti-cone-arrestin antibodies
confirmed a reduced density of cones (Figure 6Ab) when compared with age-matched
control retinas (Figure 6Aa). Quantitative analyses revealed that the number of cones
was reduced by more than 50% in the mutant at this age, with 9.0 ± 0.8 cones/250 µm
retina length in Ctsd ko retinas as compared to 19.1 ± 0.6 cones/250 µm in control retinas
(p < 0.001; two-way ANOVA; Figure 6Ba). Of note, Ctsd ko retinas were completely devoid
of arrestin-positive cones at P25 (Figure 6Ad,Ba). Analyses of PNA-labelled retinas at P10
and P15 (Figure S4A) confirmed the data obtained with anti-arrestin antibodies. At P10 and
P15, mutant retinas contained 8.4 ± 0.9 and 1.6 ± 0.4 PNA-labelled cones/250 µm retina
length, respectively, while control retinas contained 17.8 ± 0.6 and 16.1 ± 0.5 PNA-labelled
cones/250 µm, respectively (p < 0.001 for both comparisons; Figure S4B). In older retinas,
the lectin produced a pronounced background, which made the reliable quantification of
cones impossible.
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Figure 6. Degeneration of cone and rod photoreceptor cells. (A) The density of arrestin-positive cone photoreceptor cells
was markedly reduced in Ctsd ko retinas at P10 (Ab) when compared with age-matched control retinas (Aa). At P25, mutant
retinas were devoid of arrestin-positive cones (Ad; for a control retina, see Ac). (B) Quantitative analyses of mutant (filled
bars) and control retinas (open bars) confirmed a significantly reduced density of cones in 10-day-old Ctsd ko mouse retinas,
and a progressive loss of cones until P25 (Ba). The number of rows of photoreceptor nuclei was similar in Ctsd ko (filled
bars) and control retinas (open bars) at P10, but then decreased rapidly in the mutant retinas with increasing age of the
animals (Bb). Each bar represents the mean value (±SEM) of at least 6 animals. n.s., not significant; ***, p < 0.001, two-way
ANOVA. cn, control; gcl, ganglion cell layer; inl, inner nuclear layer; ko, knock-out; n.s., not significant; onl, outer nuclear
layer; P, postnatal day. Scale bar: 100 µm.

Pronounced thinning of the outer nuclear layer (Figure 1A) additionally indicated a
rapidly progressing loss of rod photoreceptors in the mutant. As rods comprise the vast
majority of photoreceptor cells in the mouse retina, we determined the number of rows of
photoreceptor nuclei at different ages to estimate the time course of rod degeneration. No
significant difference in the number of photoreceptor nuclei was apparent between P10
mutant (10.6 ± 0.2 (mean ± SEM) rows) and control retinas (10.6 ± 0.2 rows; Figure 6Bb).
However, in older mutants, the number of rows of photoreceptor nuclei decreased rapidly,
with only 1.2 ± 0.1 rows remaining in mutants at P25 compared to 11.3 ± 0.3 rows in
the age-matched control (p < 0.001, two-way ANOVA; Figure 6Bb). The morphological
organization of the RPE as assessed by light microscopy was indistinguishable between
the mutant and control mice until the terminal stage of the disease (Figure S2).

3.5.2. Rod and Cone Bipolar Cells

Significant thinning of the inner nuclear layer of mutant mice (Figure 1Bc) additionally
suggested the degeneration of retinal interneurons. We, therefore, determined the number
of PKCα-positive rod bipolar cells and SCGN-positive cone bipolar cells (Figure 7), and
calbindin-positive horizontal cells (Figure S5) in the mutant and control retinas at different
ages. At P10 and P15, we found similar numbers of rod and cone bipolar cells in the mutant
and control retinas (Figure 7). However, the density of both cell types was significantly
decreased in 20-day-old mutants, with 21.2 ± 0.6 (mean ± SEM) rod bipolar cells/250 µm
retina length and 29.4 ± 1.6 cone bipolar cells/250 µm in Ctsd ko retinas compared to
26.8 ± 0.8 rod bipolar cells/250 µm and 34.5 ± 0.4 cone bipolar cells/250 µm in control
retinas (p < 0.001 and p < 0.05, respectively, two-way ANOVA; Figure 7B). At P25, rod
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and cone bipolar cell numbers in mutant retinas accounted for only 33.5% and 14.1%,
respectively, of the rod and cone bipolar cell numbers observed in the age-matched control
retinas (Figure 7B). Different to bipolar cells, the number of calbindin-positive horizontal
cells was not significantly altered in mutant retinas at P20 (Figure S5). At this age, Ctsd ko
retinas contained 11.0 ± 0.8 (mean ± SEM) horizontal cells/mm retina length compared
to 12.0 ± 0.5 horizontal cells/mm in control retinas. However, at P25, the density of
horizontal cells was significantly reduced in the mutant (9.2 ± 0.4 horizontal cells/mm)
when compared with the control mice (12.8 ± 0.6 horizontal cells/mm; p < 0.001, two-way
ANOVA).
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mutant retinas contained similar numbers of ganglion cells (Figure 8Ae). However, start-
ing from P20, there was a significant loss of ganglion cells of ~12% in Ctsd ko retinas (37.6 
± 1.1 (mean ± SEM) RGCs/mm retina length) when compared with the control retinas (42.8 
± 1.8 RGCs/mm; p < 0.05, two-way ANOVA; Figure 8Ae). At P25, the density of ganglion 
cells in the mutant was decreased by ~20% (35.0 ± 1.1 RGCs/mm) when compared with 
the control (43.7 ± 2.2 RGCs/mm; p < 0.001; compare Figure 8Ac–e). These findings were 
in line with results obtained from analyses of BRN-3A-stained retinal flatmounts from 25-

Figure 7. Degeneration of rod and cone bipolar cells. (A) The density of PKCα-positive rod bipolar cells and SCGN-
positive cone bipolar cells in P10 Ctsd ko mice (Ab,Af, respectively) was similar to that in age-matched control mice
(Aa,Ae, respectively). A pronounced loss of rod and cone bipolar cells was evident in 25-day-old mutant retinas (Ad,Ah,
respectively) when compared with control retinas (Ac,Ag, respectively). (B) Quantitative analyses of mutant (filled bars)
and control retinas (open bars) revealed a significant loss of rod (Ba) and cone bipolar cells (Bb) starting from P20. Each bar
represents the mean value (±SEM) of 6 animals. n.s., not significant; *, p < 0.05; ***, p < 0.001, two-way ANOVA. cn, control;
gcl, ganglion cell layer; inl, inner nuclear layer; ko, knock-out; onl, outer nuclear layer; P, postnatal day; PKCα, protein
kinase C alpha; SCGN, secretagogin. Scale bar: 100 µm.

3.5.3. Retinal Ganglion Cells

Finally, we analysed the impact of CTSD deficiency on retinal ganglion cell (RGC)
survival using anti-BRN-3A antibodies. At P10 (Figure 8Aa,Ab) and P15, the control
and mutant retinas contained similar numbers of ganglion cells (Figure 8Ae). However,
starting from P20, there was a significant loss of ganglion cells of ~12% in Ctsd ko retinas
(37.6± 1.1 (mean± SEM) RGCs/mm retina length) when compared with the control retinas
(42.8 ± 1.8 RGCs/mm; p < 0.05, two-way ANOVA; Figure 8Ae). At P25, the density of
ganglion cells in the mutant was decreased by ~20% (35.0± 1.1 RGCs/mm) when compared
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with the control (43.7 ± 2.2 RGCs/mm; p < 0.001; compare Figure 8Ac–e). These findings
were in line with results obtained from analyses of BRN-3A-stained retinal flatmounts from
25-day-old animals, where we found 3165.1 ± 84.9 (mean ±SEM) RGCs/mm2 in Ctsd ko
retinas as compared to 4032.3 ± 88.6 RGCs/mm2 in control retinas, corresponding to a loss
of 21.5% ganglion cells in Ctsd ko mice (p < 0.001; Student’s t-test; Figure 8B).
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Figure 8. Degeneration of retinal ganglion cells. (A) Retina sections from Ctsd ko mice contained normal numbers of BRN-
3A-positive ganglion cells at P10 (Ab) but reduced ganglion cell numbers at P25 (Ad) when compared with age-matched
control retinas (Aa,Ac, respectively). Quantitative analyses of retina sections confirmed a significantly decreased RGC
density in Ctsd ko retinas (filled bars in Ae) starting from P20 when compared with age-matched control retinas (open bars in
Ae). n.s., not significant; *, p < 0.05; ***, p < 0.001, two-way ANOVA. (B) Analyses of retinal flatmounts from P25 Ctsd ko (Bb)
and control mice (Ba) confirmed a significant loss of ganglion cells in the mutant at this age (Bc). ***, p < 0.001, Student’s
t-test. Each bar in (A,B) represents the mean value (±SEM) of at least 6 animals. BRN-3A, brain-specific homeobox/POU
domain protein 3A; cn, control; gcl, ganglion cell layer; inl, inner nuclear layer; ko, knock-out; onl, outer nuclear layer; P,
postnatal day. Scale bars: 100 µm.

4. Discussion

CLN10 disease, the most severe NCL form, is caused by dysfunctions of the lysosomal
aspartyl protease CTSD [17,20]. Ctsd ko mice [25] faithfully recapitulate many of the
pathological features observed in CLN10 patients, including retinal degeneration [29,36].
In the present study, we performed a detailed analysis of the retinal dystrophy in Ctsd ko
mice to obtain insights into the pathological alterations associated with CTSD deficiency.
Specifically, we studied the molecular changes associated with retinal degeneration in this
mutant mouse, identified the cell types affected in the Ctsd ko retina and quantified their
degeneration during the course of the disease. A retinal pathology was already evident in
young postnatal Ctsd ko mice, as indicated by an accumulation of storage material and a
significant loss of cone photoreceptor cells. Reactive astrogliosis, reactive microgliosis and
degeneration of rod photoreceptor cells became evident slightly later, while a significant
loss of retinal interneurons and ganglion cells was observed at the end stage of the disease.

Neuroinflammation characterized by reactive microgliosis and reactive astrogliosis
closely accompanies or even precedes neurodegeneration in different NCLs, and has been
implicated in the progression of the neuropathology [41,42]. In the Ctsd ko retina, we
found a few CD68-positive microglia/macrophages as early as at P5, and elevated levels
of GFAP expression in retinal astrocytes and some Müller cells at P10. In older animals
and coincident with the massive loss of photoreceptor cells, the density of microglial cells
increased dramatically when compared with control mice, in line with a previous report [36].
Microglia had an amoeboid morphology indicative of an activated state. Of note, previous
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studies on the brain and retina of Ctsd ko mice have implicated activated microglia in the
progression of neurodegeneration through the production of neurotoxic levels of nitric
oxide. In support of this view, multiple intraperitoneal injections of nitric oxide inhibitors
were shown to result in the significant attenuation of neuron loss in the thalamus and
the inner retina of the mutant mouse [33,36,43]. A critical role of inflammatory immune
responses in the progression of retinal dystrophies in NCL has also been demonstrated in
mouse models of CLN1, CLN3 and CLN6 disease. Attenuation of the retinal pathology
in these animal models was observed upon treatment with various immunomodulatory
compounds, such as fingolimod, teriflunomide, minocyclin, curcumin or docosahexaenoic
acid, and in genetic models with a compromised immune system [44–48].

The accumulation of storage material is a hallmark of all NCL forms, and was among
the earliest pathological alterations observed in the developing Ctsd ko retina. The preva-
lence of two of the major components of lysosomal storage material, SCMAS and the sphin-
golipid activator proteins saposin A and D, differs between different NCL forms [5,13,34,49].
In the Ctsd ko retina, we detected elevated levels of SCMAS and saposin D as early as at P5.
At this age, the accumulation of both proteins was mainly confined to the inner retina, from
which they spread to the outer retina later during disease progression. The loss of retinal
neurons, in comparison, was first apparent in the outer nuclear layer, subsequently in the
inner nuclear layer and finally in the ganglion cell layer (see below). Thus, we observed
no strict spatio-temporal correlation between the accumulation of storage material and
neurodegeneration, similar to findings in the brain of a CLN6 sheep model [50,51]. Results
from preclinical therapy experiments also suggest that the accumulation of storage material
and neurodegeneration may not be causally linked. For instance, an AAV vector-mediated
gene transfer of CTSD to the brain of Ctsd ko mice resulted in an attenuation of the neuro-
logical deficits and a pronounced extension of the mutant’s lifespan, despite the presence
of high amounts of storage material in the brain [52]. Moreover, we recently showed that
intravitreally injected human recombinant pro-CTSD significantly reduced the amount of
storage material in the Ctsd ko retina without, however, attenuating retinal degeneration in
the treated animals [53].

Similar to our observations in the dystrophic retinas of CLN1, CLN6 and CLN7 mouse
models [54–56], we found an early and pronounced upregulation of lysosomal biogenesis
in Ctsd ko retinas, as indicated by the increased expression levels of LAMP1, LAMP2
and the lysosomal cysteine protease CTSX/P/Z. The elevated expression of lysosomal
proteins followed a spatiotemporal pattern closely resembling that of storage material
accumulation, suggesting a link to lysosomal stress and activation of the transcription factor
EB (TFEB) [57–59]. Impaired autophagy is a pathological hallmark of many lysosomal
storage disorders [60–62], including CLN10 disease [53,63]. Accordingly, we found a
striking accumulation of SQSTM1/p62, a receptor for autophagic cargo involved in the
degradation of ubiquitinated proteins via the autophagosome-lysosome pathway [64,65].
SQSTM1/p62-positive aggregates were already apparent at P5, indicating early autophagic
dysfunction in the mutant retina. In older animals, aggregates became detectable in a
pattern that was similar to, but slightly preceded, that of retinal cell death. The lack
of colocalization with LAMP2 suggested the impaired fusion of autophagosomes and
lysosomes [66].

Morphometric analyses revealed a progressive thinning of the Ctsd ko retina starting
at P15. Retina thinning was mainly the result of a rapidly progressing atrophy of the
outer nuclear layer, in agreement with another report [36]. However, the thinning of other
retinal layers was also observed. To identify the different cell types that are affected in
the mutant retina and to quantify the progression of their degeneration, we analysed the
retinal dystrophy at cellular level.

Of note, we found a significantly reduced density of cone photoreceptors in Ctsd ko
retinas as early as at P5, slightly before a pronounced reactive microgliosis or astrogliosis
became evident. In the mouse retina, cones are generated prenatally [67,68], suggesting
that cones in the Ctsd ko retina start to degenerate shortly after they are born. However,
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it is also possible that the reduced number of cones is the result of a developmental de-
fect. In older mutants, the loss of cones progressed rapidly, with no cones remaining at
P25. Cones constitute only 3% of the total photoreceptor population [40]. The majority of
photoreceptors are rods, which started to degenerate at P15. Similar to cones, the degenera-
tion of rods progressed rapidly resulting in the loss of 90% of rods at P25. Together, the
results demonstrate that the Ctsd ko mouse suffers from a cone-rod dystrophy. Early-onset
photoreceptor degeneration has also been observed in mouse models of other NCLs, such
as CLN4 [69], CLN5 [70], CLN6 [47,54,71], CLN7 [55] and CLN8 [72–74], indicating that
photoreceptors are particularly sensitive to lysosomal dysfunctions. The identification
of a few CLN3 and CLN7 patients presenting with visual impairment due to the loss of
photoreceptors but without other neurological symptoms characteristic for these disorders
is in line with this view [75–81]. Retinal pigment epithelial cells are essential for photore-
ceptor survival and function [82]. Disruption of the autophagy-lysosomal pathway and
dysfunction of these phagocytically active cells may thus provide an explanation for the
frequent involvement of photoreceptor cells in lysosomal storage disorders. While several
studies have demonstrated the morphological, molecular and/or functional defects of
RPE cells in different NCL forms, the precise impact of these pathological alterations on
photoreceptor cell survival in these conditions is unknown [70,83–87]. The most prominent
pathological alterations of Ctsd ko RPE cells found in the present study were significantly
elevated levels of LAMP2 and saposin D, while the morphological organization of the
retinal pigment epithelium, as assessed by light microscopy, was indistinguishable between
the mutant and control mice until the terminal stages of the disease.

Another prominent feature of the retinal pathology of Ctsd ko mice was a significant
thinning of the inner nuclear layer, although it was not as pronounced as that observed
for the outer nuclear layer. At the cellular level, the thinning of this layer was mainly
the result of a progressive degeneration of rod and cone bipolar cells. The loss of rod
and bipolar cells was moderate at P20 (~21% and ~15%, respectively), but pronounced
at P25 (~66% and ~86%, respectively). At the end stage of the disease, we additionally
observed a significantly reduced number of horizontal cells. The degeneration of retinal
interneurons has also been observed in animal models of other NCL forms. In fact, in
some NCL forms, the retinal pathology has been reported to start mainly in the inner
retina with the outer retina being only mildly affected. In a canine CLN2 model and
in murine CLN1 and CLN3 models, for example, the retinal phenotype is characterized
by a thinning of the inner nuclear layer and a relative preservation of the outer nuclear
layer, a significant neurodegeneration in the inner nuclear layer and/or reduced b/a
wave ratios in electroretinogram recordings [56,84,88–91]. Furthermore, results from a
recent study suggest that the loss of photoreceptor cells in the Cln6nclf mouse is caused
by defects in bipolar cells, which, however, start to degenerate only after a significant
number of photoreceptors is lost [92]. Finally, we found a moderate loss of about 12%
RGCs in the Ctsd ko retina at P20, which increased to ~20% at P25. The accumulation of
high amounts of storage material in these large projection neurons already at initial stages
of the disease, but the onset of RGC degeneration at relatively late stages of the retinal
pathology, has also been observed in animal models of other NCL forms [55,56,93,94]. The
loss of RGCs might be a direct consequence of lysosomal dysfunction in these neurons, or
might occur secondary to pathological alterations in visual target centres in the brain or
the myelinated optic nerve and tract [44,95,96]. Of interest in this context is that the lack of
CTSD resulted in reduced levels of proteolipid protein and myelin basic protein, impaired
lipid homeostasis, delayed the maturation of oligodendrocytes and disrupted central
nervous system myelination [97,98]. Together, data demonstrate a striking variability of
the retinal pathologies at the structural and functional levels between different NCL forms
and highlight the need for precise knowledge of the retinal pathology of each NCL form in
order to develop effective treatments.

Results from preclinical studies suggest that enzyme replacement strategies represent
promising treatment options for NCLs caused by the dysfunction of soluble lysosomal
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enzymes, such as palmitoyl-protein thioesterase 1 (PPT1) in CLN1 disease, tripeptidyl
peptidase 1 (TPP1) in CLN2 disease or CTSD in CLN10 disease [8,99–102]. Of note, the
significant attenuation of disease progression has also been observed in a recent clinical trial
on CLN2 patients treated biweekly with intracerebroventricular injections of recombinant
TPP1 [103]. Remarkable therapeutic outcomes have also been achieved in the Ctsd ko
mouse, despite the rapid disease progression using an adeno-associated virus (AAV) vector-
mediated gene transfer to the brain and/or the viscera [52,104]. Furthermore, we recently
showed that injections of recombinant human pro-CTSD (rhCTSD) resulted in the partial
correction of various pathological markers in the brain, the attenuation of the visceral
pathology and a prolonged life span of treated mice [53]. In addition, we also showed that
intravitreal injections of rhCTSD resulted in a partial correction of several pathological
markers and the attenuation of reactive microgliosis in the retina. However, the treatment
had no significant impact on the progression of retinal degeneration [53]. Results from the
present study will serve as a reference for ongoing work aimed at establishing treatments
for retinal degeneration in CLN10 disease using AAV- and cell-based enzyme replacement
strategies. Of interest in this context is that CLN10 patients carrying mutations in the CTSD
gene that impair, but not completely abolish, the enzymatic activity of CTSD present with
an infantile or juvenile disease onset and progressive retinal degeneration [20,21,35].

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
409/10/3/696/s1, Figure S1: Expression of GFAP in 10-day-old Ctsd ko retinas; Figure S2: The
retinal pigment epithelium of the degenerated Ctsd ko retina; Figure S3: Reduced number of cone
photoreceptor cells in 5 days old Ctsd ko mice; Figure S4: Degeneration of PNA-labelled cones;
Figure S5: Degeneration of horizontal cells.
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