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Summary
Background Stress responses within the β cell have been linked with both increased β cell death and accelerated
immune activation in type 1 diabetes (T1D). At present, information on the timing and scope of these responses as
well as disease-related changes in islet β cell protein expression during T1D development is lacking.

Methods Data independent acquisition-mass spectrometry was performed on islets collected longitudinally from
NOD mice and NOD-SCID mice rendered diabetic through T cell adoptive transfer.

Findings In islets collected from female NOD mice at 10, 12, and 14 weeks of age, we found a time-restricted
upregulation of proteins involved in stress mitigation and maintenance of β cell function, followed by loss of
expression of protective proteins that heralded diabetes onset. EIF2 signalling and the unfolded protein response,
mTOR signalling, mitochondrial function, and oxidative phosphorylation were commonly modulated pathways in
both NOD mice and NOD-SCID mice rendered acutely diabetic by T cell adoptive transfer. Protein disulphide
isomerase A1 (PDIA1) was upregulated in NOD islets and pancreatic sections from human organ donors with
autoantibody positivity or T1D. Moreover, PDIA1 plasma levels were increased in pre-diabetic NOD mice and in
the serum of children with recent-onset T1D compared to non-diabetic controls.

Interpretation We identified a core set of modulated pathways across distinct mouse models of T1D and identified
PDIA1 as a potential human biomarker of β cell stress in T1D.
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Research in context

Evidence before this study
Type 1 diabetes (T1D) develops over a time frame of many
years and as a result of a complex and bidirectional
interaction between the pancreatic β cell and the immune
system. Findings from ex vivo models of T1D and pancreatic
sections from human organ donors with diabetes have linked
changes in β cell mass and function with activation of a
variety of stress pathways, many of which are thought to
accelerate β cell death and increase β cell immunogenicity.
However, the majority of existing studies have examined
tissues at a single time-point, resulting in a limited view of
disease pathogenesis that lacks resolution on the timing and
scope of β cell responses during disease evolution. In addition,
few findings have been translated between mouse and
human tissues and into potential biomarker assays.

Added value of this study
To characterize changes in the islet proteome during T1D
development, islets from NOD mice and NOD-SCID mice
rendered acutely diabetic through T cell adoptive transfer
were isolated and analysed using data independent
acquisition-mass spectrometry (DIA-MS). In islets collected
longitudinally from the chronic progressive NOD mouse
model, there was a time-restricted upregulation of proteins
involved in the maintenance of β cell function and stress
mitigation, followed by loss of expression of several
protective proteins preceding diabetes development. At
diabetes onset, proteomics analysis identified a common set

of modulated pathways in both NOD and NOD-SCID islets.
Pathways implicated across the two models included EIF2
signalling and the unfolded protein response, mTOR
signalling, mitochondrial dysfunction, and oxidative
phosphorylation. To translate our findings into humans, we
focused on protein disulphide isomerase A1 (PDIA1), which is
a highly abundant ER localized and secreted thiol
oxidoreductase that plays a role in insulin secretion, proinsulin
processing, and protection against β cell ER stress. In
immunofluorescence experiments, we verified a biphasic
pattern of expression of PDIA1 during T1D progression in
NOD islets, and we found increased PDIA1 expression in
human islets treated ex vivo with cytokines and in islets from
pancreas tissue collected from human organ donors with
autoantibody positivity and with T1D. Moreover, plasma
levels of PDIA1 were elevated in pre-diabetic NOD mice and in
the serum of children with recent-onset T1D compared to age
and sex-matched non-diabetic controls.

Implications of all the available evidence
Our study highlights the value of applying unbiased
proteomics approaches in preclinical models to identify key β
cell pathways involved in the temporal evolution of T1D.
Utilizing this strategy, we identified a common set of
modulated pathways across several distinct mouse models of
T1D and identified PDIA1 as a potential T1D associated
biomarker in humans.
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Introduction
Type 1 diabetes (T1D) results from immune-mediated
destruction of the insulin-producing β cells and mani-
fests clinically after there is a threshold reduction in β
cell mass and function. Data from clinical cohorts of
autoantibody positive individuals suggest there are
several predictable metabolic checkpoints during T1D
progression. In early stage disease and following the
development of autoantibodies, there is measurable loss
of early C-peptide responses and decreased C-peptide
secretion during oral glucose tolerance testing (OGTT)
that can be detected up to six years prior to clinical
diagnosis.1,2 This is followed by a second phase of rela-
tively stable OGTT C-peptide measurements.1,2 Meta-
bolic deterioration accelerates one year to six months
prior to the clinical diagnosis of T1D and is character-
ized by a marked decline in β cell glucose sensitivity
coupled with decreased insulin sensitivity and rising
blood glucose levels.1–3 In parallel, histologic studies
performed on pancreatic sections from organ donors
with autoantibody positivity and with T1D demonstrate
variable reductions in β cell mass before and at diabetes
onset.4–6 Findings from ex vivo disease models and
pancreatic sections from human organ donors with
diabetes have linked changes in β cell mass and function
with activation of a variety of cell intrinsic stress path-
ways, such as endoplasmic reticulum (ER) and mito-
chondrial dysfunction, HLA Class I overexpression, and
changes in alternative splicing patterns, all of which
have been implicated in β cell death and increased β cell
immunogenicity.7–14

At present, a major limiting factor in the treatment
or prevention of T1D is a lack of knowledge regarding
the timing and nature of β cell dysfunction prior to the
onset of clinical disease.15 Addressing this knowledge
gap is important, as recent clinical studies suggest this
accelerated disease state during the peri-diagnostic
period likely represents a key window for effective
therapeutic intervention.15 Longitudinal imaging of the β
cell compartment and sampling of the pancreas in living
individuals is not clinically feasible. Studies performed
using isolated islets or pancreatic sections from organ
donors with diabetes provide critical information about
disease pathogenesis; however, they enable only a single
www.thelancet.com Vol 87 January, 2023
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snapshot view of disease pathogenesis. Improved tem-
poral resolution of the molecular programs modulated
within the β cell during T1D development could inform
therapeutic and biomarker strategies in humans.16–18

Therefore, there is a critical need to interrogate T1D
progression in alternative model systems that lend
themselves to longitudinal studies.

The non-obese diabetic (NOD) mouse has been
widely used to study T1D pathogenesis for over three
decades.19–21 Islets from female NOD mice show evi-
dence of immune cell infiltration as early as four weeks
of age,22 and a majority of female NOD mice develop
diabetes. In contrast, a majority of male NOD mice
remain diabetes-free.19,23 Consistent with patterns
observed in humans, β cell function and mass decline in
female NOD mice during the pre-diabetes phase. In
cross-sectional analyses, subsets of overlapping stress
pathways have been identified in β cells from NOD mice
and in human islets from organ donors with dia-
betes.20,24,25 Therefore, longitudinal analysis of pancreatic
islets of female NOD mice during the progression to
T1D may allow for identification of stress pathways that
are activated prior to β cell destruction, thus enabling
the identification of clinical biomarkers and the devel-
opment of potential therapeutics.

To gain insight into the time course of molecular
changes in the β cell during T1D progression, we
used a data independent acquisition-mass spectrom-
etry (DIA-MS) based approach to monitor longitudinal
changes in the islet proteome during early and late
disease progression in NOD mice. To illustrate the
utility of this approach in prioritizing β cell proteins
as T1D biomarkers, we focused on protein disulphide
isomerase A1 (PDIA1) as an example of a secreted
protein that was differentially expressed in NOD islets
during diabetes progression. We demonstrated
increased islet expression of PDIA1 in NOD mouse
islets during the evolution of T1D and in pancreatic
sections from human organ donors with autoantibody
positivity or with T1D. In addition, we developed a
high sensitivity electrochemiluminescence assay to
measure circulating PDIA1 levels. Using this assay,
we demonstrated increased plasma PDIA1 levels in
pre-diabetic NOD mice and in the serum of children
with recent-onset T1D compared to age- and sex-
matched paediatric controls.
Methods
Animals and experimental procedures
Female NOD/ShiLTJ (NOD), NOD-BDC2.5, and NOD-
SCID mice were purchased from Jackson Laboratory.
Female outbred CD1 mice were purchased from
Charles River Laboratories. Only female NOD mice
were utilized for this study, as spontaneous T1D devel-
opment occurs almost exclusively in female mice
(∼80–85% diabetes incidence in our vivarium), making
www.thelancet.com Vol 87 January, 2023
it very difficult to study diabetes pathogenesis in male
NOD mice (∼10% diabetes incidence).26,27 Mouse
studies were conducted in accordance with the ARRIVE
(Animal Research: Reporting of In Vivo Experiments)
guidelines.28 Mice were allowed to acclimate for at least
two weeks upon arrival prior to the initiation of experi-
ments. Blood glucose was monitored weekly in all the
mouse models and diabetes was defined as a blood
glucose >250 mg/dL for two consecutive measurements.
Blood glucose and body weight were recorded on the day
of islet isolation for each age group of mice used for
downstream analysis (Supplementary Figure S1).
Pancreatic islets were isolated or the pancreas was har-
vested at the indicated time points using methods
described previously.29,30

Mouse islets were handpicked, washed twice with
PBS, and stored as pellets at −80 ◦C until use. Blood for
plasma analysis was obtained at the time of euthanasia
via cardiac puncture, transferred to a Becton Dickinson
Vacutainer K2EDTA tube (Cat# 365974), and centri-
fuged at 5000 rpm for 10 min at 4 ◦C. The separated
plasma samples were aliquoted into 1.5 mL cryotubes
and stored at −80 ◦C until use.

Single-cell splenocyte suspensions were prepared for
adoptive transfer experiments from 12-week-old male
NOD-BDC2.5 mice, as previously described.31 CD4+ T
cells were purified by negative selection (Cat# 558131,
BD Biosciences), activated in 6-well plates (5 × 106 cells/
well), coated with anti-CD3 and anti-CD28 antibody
(1 mg/mL each), and expanded for 72 h in T-75 flasks
(5 × 106 cells/flask) in complete RPMI 1640 medium
(1% penicillin/streptomycin and 10% FBS) containing
100 U/mL IL-2. Cells were subsequently collected,
washed twice with Hanks’ balanced salt solution
(HBSS), and diluted to 5 × 106 cells/mL in HBSS.32

Recipient 8-week-old immunodeficient male NOD-
SCID mice received 1 × 106 T cells via intraperitoneal
injection, and blood glucose was measured daily for 21
days. Age-matched NOD-SCID mice that received HBSS
alone were used as controls. The onset of diabetes was
defined as two consecutive blood glucose readings of
≥250 mg/dL.
Immunofluorescence staining and quantification
Immunofluorescence (IF) was performed to investigate
key findings from the MS analysis. Briefly, formalin-
fixed paraffin-embedded (FFPE) pancreatic tissues
from an independent cohort of pre-diabetic age-matched
NOD mice, obtained at 7, 9, 11, 13 weeks of age and
mice that developed diabetes, were sectioned at a
thickness of 5 μm and deparaffinized. The sections were
hydrated twice with fresh Xylene for 5 min and a series
of decreasing ethanol concentrations (100–70%). Anti-
gen retrieval was performed using citrate buffer and
stained using antibodies against PDIA1 (Cell Signaling,
Cat# 3501S, RRID:AB_2156433), PRDX3 (Abcam, Cat#
3

nif-antibody:AB_2156433
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ab73349, RRID:AB_1860862), 14-3-3 β/YWHAB
(Sigma, Cat# HPA011212, RRID:AB_1844334), insulin
(Dako, Cat# IR002, RRID:AB_2800361), glucagon
(Abcam, Cat# ab10988, RRID:AB_297642), CHOP
(ThermoFisher Scientific, Cat# MA1-250, RRID:AB_
2292611), and BIP (Cell Signaling Technology, Cat#
3177S, RRID:AB_2119845). Similarly, human pancre-
atic tissue sections from non-diabetic cadaveric organ
donors, organ donors with autoantibody positivity but
no diabetes, and organ donors with T1D (Supplemental
Table S5) were received from the Network of Pancreatic
Organ Donors (nPOD) Biorepository and stained for
PDIA1, insulin, and glucagon using the above-
mentioned primary antibodies. Secondary antibodies
included Alexa 488-labeled goat anti-guinea pig, Alexa
568-labeled donkey anti-rabbit, and Alexa 647-labeled
donkey anti-mouse antibodies. Nuclei were stained
with DAPI. Images were acquired using an LSM800
confocal microscope (Zeiss, Germany) and quantified
using Image-J software (NIH) as described previously.30

From each mouse (4–7 mice/group), 3–7 islets were
randomly selected for imaging, and for human pancre-
atic sections, 5–10 islets from every donor were
randomly selected for imaging. Normalized total islet
cell fluorescence intensity was calculated independently
by two individuals working in a blinded fashion.
Collection of human serum samples
Fasting serum was obtained from children with recent-
onset T1D and age- and sex-matched non-diabetic
healthy controls (Supplemental Table S1). Written
informed consent or parental consent and child assent
were obtained from all participants.33 Children with T1D
had been newly diagnosed within 48 h of blood collec-
tion and were hospitalized at the Riley Hospital for
Children. Control paediatric subjects were from outpa-
tient clinic, did not take any chronic prescription med-
ications, and were free of any chronic or acute illness
within two weeks preceding sampling.
Measurement of serum and plasma PDIA1
Thirty μL of two-fold diluted mouse plasma samples or
thirty μL of four-fold diluted human serum samples
were assayed. A four-fold serially diluted rPDIA1 pro-
tein with a starting concentration of 2500 ng/mL was
used to generate a standard curve. Since the human and
mouse PDIA1 protein share 93.725% sequence homol-
ogy, human rPDIA1 protein was used as the standard to
measure human and mouse samples. To quantitate
circulating levels of PDIA1 in human serum and mouse
plasma samples, standard one spot MSD plates were
incubated with 5 μg/mL of capture antibody (Sigma,
Cat# HPA018884, RRID:AB_1854896) overnight at
4 ◦C, and the same procedures described above under
“Assay development” were followed. Following sample
incubation, plates were washed as described above and
incubated with mouse PDIA1 detection antibody
(Thermo Fisher Scientific, Cat# MA3-019, RRID:AB_
2163120) for 1 h in an orbital shaker at RT. The plates
were then washed and incubated with an MSD mouse
Sulfo-Tag for 1 h at RT in a shaker. Finally, the plates
were read using 150 μL of read-buffer in a Quick Plex
SQ 120 plate reader (MSD), and the data were analysed
as described above.

Details of mass spectrometry sample processing and
analysis, human islet culture and immunoblot, and
assay development to measure plasma and serum
PDIA1 is provided in the Supplementary Materials and
Methods and Supplemental Table S3.

Ethics
Mice were maintained at the Indiana University School
of Medicine Laboratory Animal Resource Center under
protocols that were approved by the Indiana University
Institutional Animal Care and Use Committee (protocol
number: 20104 MD/R/HZ/E/AR). Fasting serum was
obtained from children with recent-onset T1D and age-
and sex-matched non-diabetic healthy controls under
protocols approved by the Indiana University Institu-
tional Review Board (protocol number: 1411938757).
Written informed consent or parental consent and child
assent were obtained from all participants.33
Statistics
For sample size determination, we used https://clincalc.
com/stats/samplesize.aspx software. At study outset, we
collected islet samples from a total of 79 mice for DIA-
MS analysis. Using the stringent quality control criteria
described in the Supplemental Methods, a total of 18
samples were excluded following mass spectrometry
analysis. Despite these exclusions, the sample size for
each group was at or above 3 mice/group, which pro-
vided 80% power to detect differences between groups
assuming a type I error α of 0.05, based on the estab-
lished disease incidence of 80–85% in our NOD colony.
Protein abundance changes in islet proteomics in
different sample groups were analysed using principal
component analysis (PCA). Differences in protein
abundance between two groups was determined using
Student’s t-tests; differences between two or more
groups were tested using one-way ANOVA. A P ≤ 0.05
was considered significant. Differentially expressed
proteins were visualized using heatmaps (https://
software.broadinstitute.org/morpheus/) with unsuper-
vised hierarchical clustering analysis. The median
normalized up- and down-regulated pathways were
filtered using 1.5 fold change on log2 transformed data
and functional enrichment of protein sets with differ-
ential expression was performed using Ingenuity
Pathway Analysis. Fishers exact test was used to
examine the significance of enrichment using
www.thelancet.com Vol 87 January, 2023
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Bonferroni-corrected P < 0.05. For analysis of PDIA1 in
human cohorts, we used the mean ± S.D. of PDIA1
fluorescent intensities (n = 4 mice/group) to calculate
sample size requirements. Based on these calculations,
a sample size of 10 per group provided 80% power with
a type I error α of 0.05. Data other than mass spec-
trometry were analysed using GraphPad Prism version
9. Data are presented as mean ± S.E.M or mean ± S.D.
Role of funders
The funding sources for this project played no role in
the study design, data collection, analysis, interpreta-
tion, writing, or editing of the manuscript.
Results
Analysis of temporal changes in the NOD proteome
during disease progression
To characterize temporal changes in islet protein
expression during diabetes progression, pancreatic islets
were isolated from age-matched CD1 and NOD mice at
10, 12, and 14 weeks of age and at the time of diabetes
onset (mean ± S.D. age of diabetes development was
17 ± 3.3 weeks) and analysed using DIA proteomics
(Fig. 1). Supplementary Figure S1 shows the blood
glucose and body weight data for mice on the day of islet
isolation. An average of 1160 proteins and 897 over-
lapping proteins were quantified in NOD and CD1
mouse islets (Supplementary Figure S3). Since CD1
mice are not diabetes-prone and exhibit tightly regulated
blood glucose levels, we used sex- and age-matched CD1
mice to normalize protein abundance in NOD islets. To
identify differentially expressed proteins at each time
point, results were analysed using median normaliza-
tion, a filtering criterion of a 1.5-fold change in protein
abundance, and P ≤ 0.05. As shown in Supplementary
Figure S4 (a and b) biological replicates across each
experimental group clustered together, indicating the
reproducibility of our proteomics approach. Panels c–e
in Supplementary Figure S4 illustrate patterns of
differentially expressed proteins and hierarchical clus-
tering between the experimental groups. The complete
list of differentially expressed proteins between experi-
mental groups is included in Supplemental Table S3.
We identified 411 up-regulated and 502 down-regulated
proteins in islets from 10 week old NOD mice; 364/
524 at week 12 and 530/220 at week 14. A total of 344
up-regulated and 584 down-regulated proteins were
identified in islets from NOD mice at the time of dia-
betes development. Similar results (434/275) were
observed in islets from NOD-SCID-BDC2.5 mice
rendered acutely diabetic. Finally, a total of 428 up- and
474 down-regulated proteins were identified in islets
from the diabetes-resistant NOD mice.

In principal component analysis (PCA), NODmice at
different pre-diabetic ages (10, 12, and 14 weeks)
www.thelancet.com Vol 87 January, 2023
clustered primarily as one group, whereas diabetic mice
were distinctly clustered (Fig. 2a). The top 30 differen-
tially expressed (DE) proteins from individual mice are
shown in Fig. 2b. Unsupervised hierarchical clustering
analysis of these DE proteins revealed a time-dependent
loss of insulin and islet amyloid polypeptide (IAPP)
expression (Fig. 2c). In addition, we observed a time-
restricted upregulation of several proteins implicated
in stress mediation and the maintenance of normal β
cell function during the prediabetic phase (Fig. 2c).
Proteins exhibiting this pattern of expression included
actin-related protein 2/3 complex 2 (ARPC2), which
regulates actin cytoskeleton-mediated transport of
secretory vesicles,34–36 collagen 1A1 (COL1A1), and
collagen 1A2 (COL1A2), which are extracellular matrix
proteins,37,38 and the metallothioneins MT1 and MT2,
which suppress immune responses.39,40 A similar
pattern was observed for peroxiredoxin 3 (PRDX3), a
protein that regulates mitochondrial function, and 14-3-
3β, which plays a role in metabolic processes, including
mTOR signalling, amino acid metabolism, and mito-
chondrial function.41,42 Protein disulphide isomerase A1
(PDIA1) was upregulated similarly during weeks 12–14.
Notably, PDIA1 is a thiol reductase that plays a critical
role in proinsulin folding and the regulation of ER
function.43 Overall, this pattern of upregulation was
observed through the 14-week timepoint followed by
declining expression of several of proteins with poten-
tially protective roles that heralded diabetes develop-
ment (Fig. 2c).

Fig. 3a shows the top 10 upregulated pathways, while
Fig. 3b shows the top 10 downregulated pathways in
longitudinal analysis of islets from NOD mice using
Ingenuity Pathway Analysis. During diabetes progres-
sion, pathways related to Cdc42, integrin signalling,
actin, epithelial adherens, and mTOR signalling were
upregulated (Fig. 3a). EIF2 signalling, which is involved
in global mRNA translation initiation and is a target
during the unfolded protein response and ER stress,44,45

was markedly upregulated at weeks 12 and 14 and in
diabetic mice (Fig. 3a). Changes in mitochondrial
function were represented in both up-and down-regu-
lated pathways, while significantly downregulated path-
ways encompassed several metabolic pathways,
including the TCA cycle, oxidative phosphorylation,
fatty acid oxidation, and glutathione redox reactions.
Sirtuin signalling and phagosome maturation were also
downregulated (Fig. 3b and Supplementary Figures S5
and S6).
Comparison of spontaneous and induced models of
T1D
To identify commonalities and differences in the islet
proteome between the chronic, spontaneous NOD
model and an aggressive, acute model of immune-
mediated β cell destruction, we compared proteomics
5
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Fig. 1: Schematic representation of study design and experimental workflow (created using BioRender.com).
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results from islets isolated from diabetic NOD mice and
islets isolated at the time of diabetes development from
NOD-SCID mice that had undergone adoptive transfer
of CD4+ T-cells from NOD.BDC2.5 mice. Mice in the
latter group develop significant hyperglycaemia around
7 days following adoptive transfer (Supplementary
Figure S1). Despite a significantly different time-
course of diabetes development compared to the
chronic NOD model, ∼65% of identified proteins were
common to both models (Fig. 4a). In addition, a com-
parison of functional canonical pathways suggested that
similar pathways were activated in both models. Key
overlapping pathways included modulation of EIF2
signalling and the unfolded protein response, mito-
chondrial dysfunction, oxidative phosphorylation, and
mTOR signalling (Fig. 4b). These results suggest that
irrespective of the type of inflammation (acute or
chronic), similar patterns of β cell stress are activated,
underscoring the importance of this core set of path-
ways in T1D pathogenesis.
Proteome comparison of NOD mice that developed
diabetes and that remained diabetes-free
We reasoned that comparing diabetic NOD mice and
NOD mice that remained diabetes-free through
extended follow-up might highlight protective pathways
within the β cell during immune activation. Proteomic
analysis was performed on islets from 46 to 48 week old
NOD mice who remained diabetes-free, and results
were compared to islets collected from NOD mice at the
time of diabetes development. To account for differ-
ences that may be driven by age, data from each NOD
group was normalized to their respective CD1 age-
matched controls. Compared to NOD mice that devel-
oped diabetes, NOD mice that remained diabetes free
had markedly fewer proteins that were differently
expressed relative to their age-matched CD1 controls
(Supplementary Figure S4a). Principal component
analysis indicated a clear separation between the
diabetes-resistant group and diabetic NOD mice
(Fig. 5a); data from individual biological replicates
shown in Fig. 5b. Next, unsupervised hierarchical clus-
tering analysis was performed using the Euclidian dis-
tance and average linkage method (Fig. 5c). Data from
this analysis revealed upregulation of several unique
proteins previously linked with the mitigation of β cell
stress. Among the top proteins upregulated in diabetes
resistant mice and down-regulated in diabetic mice were
IAPP and antioxidant-1 (ATOX1), a copper chaperone
shown to be protective against hydrogen peroxide and
superoxide mediated-oxidative stress.46 Other key pro-
teins showing this pattern of expression were protea-
some subunit beta 10 (PSB10), which is involved in the
maintenance of protein homeostasis,47 coactosin like
protein (COTL1), an F-actin-binding protein that plays a
role in cellular growth,48 and S100A4, which functions
as an intracellular cytosolic calcium sensor.49,50
www.thelancet.com Vol 87 January, 2023
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Fig. 2: Proteomic analysis of pancreatic islets in NOD and CD1 mice over time. (a) Principal component analysis (PCA) of all quantified islet
proteins from NOD and CD1 mice at 10, 12, and 14 weeks of age and during diabetes onset. (b) Heatmap showing expression patterns of the
top 30 differentially expressed proteins from each individual biological replicate at 10, 12, and 14 weeks of age and at diabetes onset. (c)
Unsupervised hierarchical clustering analysis of the top 30 differentially expressed proteins in NOD mice compared to age- and sex-matched CD1
mice from 10, 12, and 14 weeks of age, and during diabetes onset (n = 3–12 animals/per group).
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In Fig. 5d, pathway enrichment analysis shows the
top ten significantly upregulated pathways in diabetes-
resistant NOD mice compared to NOD mice that
developed diabetes. In diabetes-resistant NOD mice,
there was notable modulation of pathways involved in
maintaining cellular homeostasis, tissue repair, tissue
clearance (i.e., phagocytosis in macrophages and
monocytes), and aryl hydrocarbon receptor signalling,
which is linked with mitigation of insulitis in NOD
www.thelancet.com Vol 87 January, 2023
mice.51 Consistent with this, we observed down-
regulation of pathways related to mitochondrial
dysfunction, phagosome maturation, oxidative phos-
phorylation, and the unfolded protein response in islets
of diabetes-resistant NOD mice (Fig. 5e). Interestingly,
actin cytoskeleton signalling, and epithelial adherens
junction signalling were identified among both the up-
and down-regulated pathways, with distinct proteins
implicated within the up-and down-regulated categories.
7
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Analysis of identified protein targets by
immunofluorescence and immunoblot
To verify key findings from the proteomic analysis,
immunofluorescence staining of pancreatic tissue sec-
tions was performed using a separate cohort of NOD
mice aged 9–13 weeks and at diabetes onset. Three
protein targets, PDIA1, 14-3-3β, and PRDX3, were
selected for validation experiments based on top hits
from the analysis shown in Fig. 2b and their known
roles in maintaining β cell function.42,43,52,53 Similar to the
proteomics data, the staining intensity of islet PDIA1
(Fig. 6a) and 14-3-3β (Fig. 6b) increased from 9 to 13
weeks in NOD mice, followed by a significant loss of
target protein expression at T1D onset. Changes in the
staining intensity of PRDX3 did not change significantly
during the prediabetic timepoints; however, PRDX3
expression was significantly decreased at T1D onset in
NOD mice (Fig. 6c).

To test the relevance our findings in human T1D,
pancreatic tissue sections were obtained from non-
diabetic organ donors, organ donors with autoantibody
positivity (AAb+), and organ donors with established
T1D. Immunofluorescence analysis of PDIA1, insulin,
and glucagon was performed and revealed a significant
increase in PDIA1 expression in pancreatic islets of
individuals with AAb+ and with T1D compared to non-
diabetic control donors (Fig. 7a and b).

PDIA1 is an ER resident protein with an estab-
lished role in proinsulin maturation.43 Therefore, to
understand whether there was an association between
ER stress and PDIA1 under conditions of β cell stress,
we took an in vitro approach by treating human islets
with or without pro-inflammatory cytokines (IL-
1β + IFNγ) or high glucose (22.5 mM) for 1 h and
24 h. Under both chronic stress conditions (i.e. 24 h
treatment), we observed a parallel upregulation of
PDIA1 and IRE1α (Fig. 7c and d). BIP expression was
increased but not to a significant extent. In line with
this data, immunofluorescence analysis of NOD
pancreatic tissue sections showed a significant upre-
gulation of CHOP at week 11 (Supplementary
Figure S7a and b). However, there was no difference
in BIP expression between different age groups of
NOD mice.
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Analysis of circulating PDIA1 as a T1D associated
biomarker
In addition to its intracellular role as a thiol reduc-
tase,43,54,55 PDIA1 is a secreted protein.43 To determine
whether the islet-specific upregulation of PDIA1 iden-
tified in the proteomics and immunofluorescence ana-
lyses was linked with changes in circulating PDIA1
levels, we developed a high-sensitivity electro-
chemiluminescence assay using Meso Scale Discovery
technology. PDIA1 was measured using serially diluted
(1:4) recombinant PDIA1, and this analysis showed that
PDIA1 could be detected in the range of 0.152 ng/mL to
2500 ng/mL (Fig. 8a). Using plasma collected from the
same mice used in the longitudinal proteomics analysis
shown in Fig. 2, we found that the plasma levels of
PDIA1 were significantly increased in pre-diabetic NOD
mice compared to CD1 mice at 10 and 14 weeks of age
(Fig. 8b–d). However, PDIA1 levels were not different
between NOD mice at the time of diabetes onset and
age-matched CD1 mice (Fig. 8e). In addition, PDIA1
levels were below the detectable range in plasma from
diabetic NOD-SCID mice that had undergone T-cell
adoptive transfer.

Next, we applied this assay to serum samples
collected from children within 48 h of the clinical onset
of T1D (n = 14; average age (mean ± SD) = 11.57
± 4.05 yrs; 8 male; 6 female) and in serum collected
from non-diabetic paediatric controls (n = 10; average
age = 12.1 ± 4.20; 6 male; 4 female) (Supplemental
Table S1). Serum levels of PDIA1 were significantly
www.thelancet.com Vol 87 January, 2023
higher in paediatric subjects with recent-onset T1D
compared to controls, suggesting PDIA1 may have
utility as a clinical, human T1D biomarker (Fig. 8f).
Discussion
In this study, we identified temporal changes in islet β
cell protein expression during the evolution of T1D
using three distinct mouse models of T1D and high-
throughput DIA proteomics. Additionally, we illus-
trated the utility of an unbiased approach to prioritize β
cell proteins as T1D biomarkers in humans, identifying
PDIA1 as one example of a secreted protein that was
differentially expressed in NOD islets during diabetes
progression and in human islets from organ donors
with autoantibody positivity and diabetes. Finally, using
a high-sensitivity electrochemiluminescence assay to
measure circulating PDIA1 levels, we demonstrated
increased plasma PDIA1 levels in pre-diabetic NOD
mice and in the serum of children with recent-onset
T1D compared to age- and sex-matched paediatric
controls.

Proteomics analysis of the three mouse models
revealed several notable themes. In the dataset obtained
from the longitudinal NOD cohort, we observed an early
but time-restricted increase in the expression of several
proteins linked with secretory function, proinsulin
folding, and stress mitigation, including proteins
involved in ER and oxidative stress signalling. Interest-
ingly, we observed week-14 as a potential inflection
9
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Fig. 5: Proteomics analysis of diabetes-resistant NOD mice and NOD mice that developed diabetes. (a) Principal component analysis (PCA)
of the islet proteome in NOD mice that remained diabetes-free through 46–48 weeks of age (Res) and NOD mice at the time of diabetes
development (Dev). (b) Heatmap showing top differentially expressed islet proteins in diabetes-resistant mice and mice at the time of diabetes
onset and (c) median normalized hierarchical clustering of differentially expressed proteins. Shown are up-regulated (d) and down-regulated (e)
pathways (y-axis) and the corresponding number of proteins (x-axis) differentially expressed in islets from diabetes-resistant mice (n = 4–8
mice/per group).

Articles

10
point, where loss of expression of these protective pro-
teins heralded T1D onset. Consistent with this obser-
vation, canonical pathway analysis of differentially
expressed proteins from weeks 10, 12, and 14 and dia-
betes onset identified upregulation of pathways associ-
ated with defective insulin synthesis and several β cell
stress pathways, including mitochondrial dysfunction,
ER stress, and UPR activation. We observed a down-
regulation of signalling pathways that were crucial for
the mitigation of ongoing cellular stress, including
glutathione redox signalling, which is known to coun-
teract the effects of reactive oxygen species,56,57 and
phagosome maturation, which is involved in the
clearing of cellular debris.58,59

This biphasic pattern is reminiscent of metabolic
data from natural history cohorts of autoantibody-
positive individuals who progress to T1D, where
there are compensatory changes in the architecture
of insulin secretion that largely maintain glycemia until
∼12 months prior to disease onset, followed by loss of
insulin secretion and rapid worsening of glycaemic
control 12-6 months prior to diabetes diagnosis.2 Our
findings are also consistent with cross-sectional studies
that have analysed gene and protein expression patterns
in pancreatic sections from human donors with
diabetes60–63 and in previous studies in mouse models of
diabetes, where a prominent role for ER and mito-
chondrial dysfunction has been identified.8,12,64,65 We
found these pathways are activated early in the disease
process, and there is continued overlap between several
of these key activated stress pathways in the NOD
mouse model and in the acute, inducible model of T1D
at the time of diabetes onset. The similarities between
the proteomic analysis of these two models highlight
the importance of this core set of pathways in T1D
pathogenesis.

To verify findings from the proteomics analysis, we
performed immunofluorescence experiments, focusing
www.thelancet.com Vol 87 January, 2023
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Fig. 6: Immunofluorescence-based verification of protein targets in NOD mice. (a–c) Pancreas sections from 9, 11, and 13 week old NOD
mice and NOD mice that developed diabetes were immunostained for PDIA1 (a), 14-3-3β (b), and PRDX3 (c) (red), and co-stained with insulin
(green) and glucagon (white). Scale bar = 10 μm. The bar graphs show the quantitation of fluorescence intensity for each protein target
calculated using the corrected total islet cell fluorescence (n = 4–7 mice/age-group; 3–7 islets/mice were used for quantification; all the values
were presented as mean ± SEM; (one-way ANOVA), *P < 0.05, **P < 0.001).
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on three targets identified in the longitudinal NOD
cohort, 14-3-3β, PRDX3, and PDIA1. Members of the
14-3-3 protein family have been implicated in various
metabolic signalling pathways and have been linked
with protection against apoptosis in pancreatic β cells.42

PRDX3 prevents mitochondrial dysfunction, and its
overexpression has been shown to be protective against
oxidative stress induced by insulin resistance and
hyperglycaemia.52,66 PDIA1 is a highly abundant ER
localized thiol oxidoreductase that has been implicated
in glucose-stimulated insulin secretion, proinsulin pro-
cessing, and protection against ER stress.43 In agree-
ment with previous reports, we observed a positive
correlation between the expression of ER stress markers
and PDIA1 in human islets treated with proin-
flammatory cytokines or high glucose. Moreover, we
observed increased PDIA1 levels in pancreatic sections
from human organ donors with autoantibody positivity
and with diabetes.

Of note, PDIA1 is a secreted protein. In other cell
types, PDIA1 release is increased in the setting of injury
and stress.67,68 Extracellular PDIA1 has been linked with
the regulation of thrombus formation during vascular
inflammation,69,70 but a complete understanding of the
extracellular role of this protein is lacking. Interestingly,
anti-PDIA1 antibodies have been identified in in-
dividuals with recent-onset T1D,71 suggesting that β cell-
www.thelancet.com Vol 87 January, 2023
derived PDIA1 serves as a T1D autoantigen. Therefore,
we hypothesized that increased β cell expression of
PDIA1 may be reflected in the circulation and that
measurement of PDIA1 may have utility as a T1D
biomarker. To test this possibility, we developed a high
sensitivity electrochemiluminescence assay to measure
serum and plasma levels of PDIA1. Using this assay, we
documented an increase in plasma PDIA1 in pre-
diabetic NOD mice and in serum of children with
recent-onset T1D.

Our study has several limitations that should be
acknowledged. First, there are significant differences
between mouse models and human T1D,72–74 under-
scoring the need to cross-validate findings from mice in
human samples. We verified key findings by using hu-
man islets and pancreatic sections from human organ
donors. Given the progressive nature of islet destruction
in our mouse models, we were constrained by the
amount of starting material in our proteomics analysis,
which was reflected in the fact that 18 islet samples
failed to reach our stringent QC standards. This limi-
tation, combined with a lack of a defined proteomic li-
brary for murine islet cells, limited the total number of
proteins we confidently identified. However, we over-
came this constraint by using a library-free DIA-Umpire
search and a strategy involving downstream validation
of our candidate marker. Finally, a limitation of all
11
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Fig. 7: Islet PDIA1 expression is increased in human pancreatic tissue sections from organ donors with autoantibody positivity and with
T1D. (a) Human pancreatic tissue sections from non-diabetic human organ donors, organ donors who were autoantibody positive (AAb+) but
without a diagnosis of T1D, and organ donors with established T1D were immunostained for PDIA1 (red) and co-stained for insulin (green),
glucagon (white), and DAPI (blue). Scale bar = 10 μm. (b) The bar graphs show the quantitation of fluorescence intensity for each protein target
calculated using the corrected total islet cell fluorescence (n = 5–7 donors/per group; 5–10 islets/donor). (c) Western blot analysis of human islets
(n = 7 donors) treated with or without pro-inflammatory cytokines (IL-1β + IFNg) or high glucose (22.5 mM) for 1 h or 24 h, (d) Protein
expression was normalized to Revert™700 total protein staining and is presented as fold expression compared to untreated controls, all the
values are presented as mean ± SEM (one-way-ANOVA); *P < 0.05, **P < 0.001.
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proteomics studies employing intact islets is that the
data represent a heterogenous group of endocrine and
immune cells. Therefore, findings may not only reflect
changes in the β cell proteome.

Our study documented increased serum levels of
PDIA1 in a small cohort of paediatric subjects with
recent-onset T1D. While biomarkers with the ability to
non-invasively monitor β cell stress are lacking in T1D,
it is important to note that ours is a small cross-sectional
study and validation in larger cohorts should be per-
formed. It will be essential to test PDIA1 levels in
samples collected from clinical cohorts followed longi-
tudinally during T1D progression. Such an analysis will
provide necessary insight into whether PDIA1 can pre-
dict T1D risk. Our analysis of human pancreatic
sections indicated that PDIA1 levels are increased in the
pancreatic islets in at-risk individuals who are autoan-
tibody positive. Whether PDIA1 is purely a marker of β
cell stress or may reflect β cell mass changes is not clear
from our data and should be tested in follow-up studies.
It is noteworthy that PDIA1 levels were higher in
children with new onset T1D, whereas plasma eleva-
tions in PDIA1 were most different at the pre-diabetic
timepoints in NOD mice. This data is consistent with
more recent findings showing that there is substantial β
cell mass remaining in humans at T1D onset,75,76

whereas in both of the mouse models studied here, β
cells are nearly completely destroyed by the time of
diabetes onset.26,77

Notwithstanding these limitations, our study
highlights the value of unbiased proteomics ap-
proaches for identifying β cell pathways involved in
the temporal evolution of T1D. Utilizing this strat-
egy, we identified a common set of modulated and
disease-related pathways across several distinct
mouse models of T1D. Finally, we identified
increased PDIA1 expression as a marker of early β
cell stress in T1D, and our data indicates that
measurement of serum or plasma PDIA1 may serve
as a clinically useful biomarker that merits additional
follow-up testing in populations at risk of developing
T1D.
www.thelancet.com Vol 87 January, 2023
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