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Factoring semi‑primes 
with (quantum) SAT‑solvers
Michele Mosca1,2,4,5,6 & Sebastian R. Verschoor1,3*

The computational difficulty of factoring large integers forms the basis of security for RSA public-key 
cryptography. The best-known factoring algorithms for classical computers run in sub-exponential 
time. The integer factorization problem can be reduced to the Boolean Satisfiability problem (SAT). 
While this reduction has proved to be useful for studying SAT solvers, large integers have not been 
factored via such a reduction. Shor’s quantum factoring algorithm factors integers in expected 
polynomial time. Large-scale fault-tolerant quantum computers capable of implementing Shor’s 
algorithm are not yet available, preventing relevant benchmarking experiments. Recently, several 
authors have attempted quantum factorizations via reductions to SAT or similar NP-hard problems. 
While this approach may shed light on algorithmic approaches for quantum solutions to NP-hard 
problems, in this paper we study and question its practicality. We find no evidence that this is a viable 
path toward factoring large numbers, even for scalable fault-tolerant quantum computers, as well as 
for various quantum annealing or other special purpose quantum hardware.

In this work we focus on the problem of factoring semi-primes with SAT-solvers. A semi-prime N is a composite 
of two primes p and q which are roughly of equal size. These particular composites are conjectured to be hard to 
factor, in the sense that no (classical) algorithm or heuristic is known to factor semi-primes using only polynomi-
ally many resources. This problem has great relevance for the RSA cryptosystem1, a widely-deployed public-key 
cryptosystem. The RSA cryptosystem is founded upon the difficulty of factoring integers: the existence of an 
efficient factoring algorithm would completely break its security.

Some authors have proposed an alternative approach they refer to as quantum factoring. In this paper, we 
explain why these approaches, while potentially helpful for studying quantum SAT-solving, are not likely a viable 
approach to integer factorization and, very importantly, are not a meaningful benchmark for people interested 
in quantum cryptanalysis of cryptosystems based on the integer factorization problem.

We attempt to generously extrapolate the kinds of speed-ups one might expect for a range of quantum solvers, 
and find no evidence that this is a viable path toward factoring large numbers, even for scalable fault-tolerant 
quantum computers, as well as for various quantum annealing or other special purpose quantum hardware.

Some researchers only implement quantum factoring for the purposes of benchmarking the experimental 
apparatus. There are several more relevant algorithms to implement for the purposes of benchmarking, such as 
work on randomized benchmarking2 or implementations of quantum error correction. Framing the experiments 
as implementations of quantum factoring can easily be misinterpreted as a meaningful benchmark toward large-
scale integer factorization, and we explain in this article why they are not.

For many years cryptographers have tracked and benchmarked progress in classical factorization and 
attempted extrapolations with an interest in estimating when RSA schemes with moduli of a given length may 
be broken using the number field sieve3,4. The extrapolations take into account estimates of computing power 
increase and algorithmic improvements.

This paper highlights why none of the current works in the literature on experimental implementations of 
quantum factoring serve the same purpose. In the absence of a breakthrough that demonstrates factoring can 
be meaningfully sped up without a fault-tolerant quantum computer, this sort of tracking of the size of numbers 
quantumly factored will only be meaningful after the implementation of several logical qubits.

One caveat and challenge with tracking and extrapolating is that once fault-tolerant quantum computers 
start factoring small numbers, a constant factor increase in available quantum resources brings a constant factor 
increase in the size of the number that can be factored (i.e. we go from being able to factor n-bit numbers to 
being able to factor (cn)-bit numbers for some c > 1 that depends on the factor of increase in time and memory) 
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because Shor’s algorithm runs in expected polynomial time. On the other hand, a constant factor increase in 
classical computing resources only implies being able to factor numbers that are a few bits larger using the 
number field sieve (i.e. we go from being able to factor n-bit numbers to being able to factor (n+ o(n2/3))-bit 
numbers). Given these quantum scalings, it will be much harder to reliably extrapolate the size of numbers that 
can be quantumly factored, and a relatively small change in computing resources or a relatively small algorithmic 
improvement can have a significant impact on the size of the number that can be quantumly factored. This is 
one reason why it is valuable to have post-quantum cryptography ready for wide-scale deployment before fault-
tolerant quantum computers are available.

The Boolean satisfiability problem (SAT) asks whether there exists an assignment to the Boolean variables 
of a given propositional logic formula such that the formula evaluates to TRUE. This problem was the first that 
was proven to be NP-complete5,6. NP-complete problems are both NP-hard and in NP. Since no algorithms with 
polynomial runtime for NP-hard problems are known, solving NP-hard problems has long been considered to be 
intractable for real-world computers. Despite this result, coming from asymptotic analysis, modern SAT-solvers 
perform very well on solving large SAT instances originating from industry and academics, with formulas that 
have up to a million clauses7. At the moment of writing there exists no good general method or metric to predict 
if a given SAT instance is hard to solve. For practical applications it therefore makes sense to assess the perfor-
mance of the solvers on the investigated instances by careful benchmarking instead of doing asymptotic analysis.

The approach considered in this work reduces factoring, a problem with a subexponential algorithm, to an 
NP-hard problem and then running (classical or quantum) solvers that have exponential runtime in the worst-
case. At the surface, this obviously does not sound like a promising idea, as the quantum SAT solver must make 
up the exponential ground lost by translating the problem with subexponential algorithms to one where the best 
known algorithms are exponential. One might hope that good SAT solving heuristics for solving SAT on random 
or average-case instances could nevertheless have a practical impact on integer factorization.

The original goal of this project was to encode the RSA factoring challenges8 to SAT instances and see how 
well modern SAT solvers would perform on those instances. The smallest semi-prime of these challenges is 
RSA-100: a 100-digit or 330-bit number. This number was factored in a few days almost immediately after the 
challenge was posted9 in 1991, whereas the current record for factoring stands at factoring RSA-250: an 829-bit 
semi-prime10. The intention was to compare current state-of-the-art SAT solvers against the numerical results 
from 1991, but it turns out that even the smallest RSA semi-prime poses too big of a challenge for these solvers.

A more promising approach is to try to speed up the solution to some subroutine of the NFS, as is done in11. 
In particular, one could reduce some carefully chosen sub-problem solved within the number field sieve to SAT. 
The sub-problem should be chosen so that classically solving the SAT instance is roughly as costly as the usual 
approach to solving the sub-problem. In this case, any quantum speed-up for solving these SAT instances would 
lead to a faster implementation of the number field sieve. This approach is explored in12.

Contributions.  This work provides a numerical analysis on the hardness of factoring numbers by solving 
the corresponding satisfiability problem, thereby confirming the folklore that factoring numbers does indeed 
give “hard” SAT instances. This is done by measuring the speed of the currently fastest SAT solver. We justify 
the choice of numerical analysis over theoretical asymptotic analysis by applying some common analysis tools 
from modern SAT solving theory and the observation that the tools provide no good prediction for the actual 
runtime. We extrapolate the numerical results to investigate the asymptotic behavior of the solver and compare 
the results with the asymptotics of factoring with numerical algorithms. Finally, the results are used to estimate 
an upper bound on the speedup that can be achieved on this specific problem using currently known quantum 
algorithms.

As a minor contribution, we developed a tool that can create smaller SAT instances for factoring (using 
long multiplication) than any other publicly available tool. This tool and scripts for generating semi-primes and 
reproducing the results of this paper have been made available online13.

SAT instances
An instance of the SAT problem is a formula in Boolean propositional logic. Every variable (x) can take the 
value TRUE or FALSE. An instance is said to be satisfiable if an assignment to the variables exists such that the 
overall formula evaluates to TRUE. Sometimes (as is the case when factoring via SAT) we are also interested in 
the values of the variables in the satisfying assignment itself. Formally this is no longer a decision problem, but 
we will sometimes be a bit informal in our language and discuss these as if they were decision problems.

This work considers CNF-SAT where all formulas are in conjunctive normal form (CNF): each formula must 
be a conjunction of disjunctions of literals. A literal is either a direct variable (x) or a negated variable (denoted 
x̄ ), a disjunction of literals is called a clause. Further restricting each clause to exactly three literals would give 
the 3SAT problem. A satisfying assignment to CNF-SAT thus assigns a Boolean value to each variable such that 
at least one literal evaluates to TRUE in every clause. The CNF-SAT problem is equivalent to SAT14, in the sense 
that for each SAT instance an equisatisfiable CNF-SAT instance can easily be found with its size linear in the 
length of the original SAT instance. All tools we used for generating and solving SAT instances work with the 
DIMACS format which specifies formulas in CNF form.

A closely related problem is called CircuitSAT: given a Boolean circuit with a single output, is there an input 
such that the output is TRUE? One can translate any Boolean circuit into a Boolean formula: assign a variable to 
each input wire, then consider the logical operator corresponding to each gate (with a single output wire) in order. 
Each operator has a short CNF description, for example a NAND-gate (which forms a complete basis for Boolean 
formulas) with input wires x, y and output wire z has the corresponding formula (x ∨ z) ∧ (y ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄) . 
Once the input wires are fixed to some value, there is only one possible value for the output wires such that the 



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7982  | https://doi.org/10.1038/s41598-022-11687-7

www.nature.com/scientificreports/

gate formula evaluates to TRUE. For example we fix can the input to x = TRUE , y = FALSE by adding the 
clauses x and ȳ . A SAT-solver can examine those five clauses and find that the only satisfying assignment sets 
z = TRUE . Combining gates to make a circuit is done by reusing output variables of earlier gates as input vari-
ables in later gates.

More interesting is to fix a value on the output variables of a circuit and ask the SAT-solver to find a satisfying 
assignment. For example adding the clause z to the NAND-gate gives three satisfying assignments: x ∧ ȳ , x̄ ∧ y , 
and x̄ ∧ ȳ . In general a circuit might have zero or more satisfying assignments. Effectively the SAT-solver is 
finding preimages to the function described by the circuit. An immediate cryptanalytic application that springs 
to mind is finding preimages to secure hash functions: indeed this has been done with varying results15–17. More 
general cryptanalytic applications can be found throughout literature18 and occur in modern benchmarks7, 
although asymmetrical cryptographic primitives are rarely targeted.

This work examines circuits that encode the multiplication of two integers p and q. We fix the multiplication 
output bits of the circuit to the bit-values of the semi-prime N and ask the SAT-solver to find a satisfying assign-
ment. Only two exist (trivial solutions are excluded by the problem encoding) those representing N = pq and 
N = qp , so from the assignment one can read the factorization of N. For the remainder of this paper n represents 
the size of N in bits. We limit p and q similar to how the RSA cryptosystem limits its parameters: both need to 
be equally sized primes. We interpreted this last requirement to mean that their most significant bit may differ 
by at most one position.

Encoding.  Despite the asymptotic worst-case exponential runtime associated with SAT instances, it is not 
trivial to generate “hard” SAT instances: instances where the solver runtime grows exponentially in the num-
ber of variables. For several problems (encoded as a SAT problem) it turns out that modern SAT solvers can 
solve many instances in short time in practice. Specialized tools such as ToughSat19 exist that can generate SAT 
instances that are hard on average, based on problems such as integer factorization.

Multiplying larger integers requires larger circuits, which leads to instances with more variables and clauses, 
which leads to longer solving times. However, there are many choices to make when computing multiplication 
in a circuit and each choice will lead to different encodings of the SAT instance and a different solver runtime. 
For SAT solvers in general it turns out that the details of the encoding of a problem (beyond metrics such as 
number of variables and clauses) can have a significant impact on the solver runtime. The first choice is to 
consider different multiplication algorithms: a simple one and a more complex encoding that in theory leads to 
smaller instances.

Long multiplication (or schoolbook multiplication) is computed by multiplying p by each digit (bit) of q and 
adding the shifted results. For multiplying two m-bit numbers (where m = n/2 ) this requires �(m2) bitwise 
multiplications and additions. The exact number of operations depends mainly on the circuit used for addition: 
our tool for generating instances13 minimizes the number of both variables and clauses by maximizing the num-
ber of full-adders used in the circuit. Counting the variables in the generated instances and applying regression 
reveals that the number of variables grows approximately as 0.750n2 + 0.496n− 2.05 and similarly the number 
of clauses grows as 4.25n2 − 4.01n− 9.87 with on average 3.31 literals per clause.

Karatsuba multiplication20 asymptotically improves upon long multiplication by a divide-and-conquer strat-
egy and requires only �(mlog2 3) multiplications at the cost of requiring more additions. The instances we tested 
were generated by the ToughSat application19 and contain approximately 2.59nlog2 3 − 7.57n+ 8.75 variables and 
61.5nlog2 3 − 170n− 386 clauses with on average 6.77 literals per clause. Inspection of the generated instances 
reveals that the Karatsuba circuits were built from more complex gates, which explains why there are more liter-
als per clause. It is likely that building the Karatsuba circuit with a similar gate set would increase the number of 
variables and clauses by another (constant) factor.

Asymptotically the Karatsuba algorithm is not the best known algorithm and is outperformed by for example 
Toom-Cook or FFT-multiplication. These methods introduce additional overhead that is especially significant 
for small instances, where it would result in larger SAT instances. Given that we also observed only a minor 
difference in the runtime of long multiplication and Karatsuba instances, we decided not to encode these more 
complex multiplication algorithms.

Hardware design provides alternative multiplication algorithms, which are often optimized to minimize 
latency and for various other physical constraints. There is no indication that these optimizations are related to 
optimizations that lead to smaller and/or easier SAT instances. In fact our adder encoded in the SAT instances 
minimizes the number of half-adders required, which gives the smallest number of variables and clauses and 
results in the fastest SAT solver times, but the resulting clauses encode a circuit that would give extremely high 
latency if built from physical components.

Since the multiplication circuit is the same for each semi-prime of the same bitlength there is an alternative 
strategy we can apply when we want to factor only one semi-prime out of a polynomial sized set. We encode 
the multiplication circuit once and then “fanout” the resulting wires to one circuit per semi-prime that checks if 
the output equals that semi-prime. Those results are combined with a large OR-gate, so that the entire instance 
evaluates to TRUE if the multiplication outcome is equal to any of the semi-primes. By inspecting which values 
were assigned on the circuit input wires by the solver we learn which of the semi-primes it actually factored. The 
idea behind this encoding is that if there is an easy semi-prime somewhere in the input, then the solver itself 
may detect this and focus on solving that instance. As long as we encode only polynomially many semi-primes 
in the instance, the total instance size will remain polynomial.

An alternative solution for factoring numbers with SAT is to encode the integer division circuit N/p = q+ r 
and fixing the input value N and output remainder r = 0 . The rationale for this encoding is that the solver would 
only have to assign values to the bits of p and can then deterministically evaluate the entire circuit and check if 
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the remainder is zero. However, in practice this encoding leads to substantially larger SAT-instances and tests 
with various solvers indicate that solving such instances is significantly slower, so we did not investigate this 
encoding any further.

A more promising approach is to reduce some subroutine of the number field sieve (NFS) to SAT where there 
is little or no increase in complexity by mapping to SAT, analogous to the approach taken by Bernstein, Biasse 
and Mosca11. In this case, even a small quantum speed-up will lead to a faster integer factorization algorithm. 
This approach is studied in detail in12.

Classical solvers
Modern SAT solvers come in two classes. Conflict-Driven Clause Learning (CDCL)21,22 combines conflict analy-
sis with branch heuristics to systematically backtrack the search-space of an instance. Stochastic local search 
approaches such as employed by WalkSAT23 or simulated annealing combine randomized assignments with 
probabilistic updates to find assignments that minimize the number of clauses violated. We found that for the 
semi-prime instances CDCL solvers outperformed the local search solvers by an order of magnitude. The scope 
of this project is limited to the black-box analysis of publicly available SAT solvers. This means we will not 
investigate the internals of the solvers for analysis of the runtime, nor do we allow domain-specific knowledge 
to speed up solver times.

When considering the runtime T of an algorithm (either classical or quantum) we are most interested in the 
runtime as a function of the input size. In order to determine if one solver is faster than the other, we should 
always consider the total runtime. We measure the total runtime of the SAT solver including the runtime of the 
preprocessor. Technically the measurement should also include the time for generating the SAT instances, but 
this is negligible compared to the solver time. For many classical solvers the total runtime can be naturally par-
titioned into the time spent in pre-/post-processing ( Tp ) and the time spent solving ( Ts ): T(n) = Tp(n)+ Ts(n) 
where n is the input size of the problem. Examples of this partitioning occur with the SAT preprocessor ( Tp ) and 
the SAT solver ( Ts ), the compiling ( Tp ) and running ( Ts ) of Shor’s algorithm or the creation of a Hamiltonian 
( Tp ) and the execution of the adiabatic algorithm ( Ts).

In order to properly analyze the runtime of any algorithm we need to consider T(n) and not just Ts(n) , since 
an unbounded amount of preprocessing can find a solution and render Ts(n) to be trivial. We should also take 
care to set n to be the input size of the problem. Concretely this means we should let n be the size of the semi-
prime and not the number of variables or clauses in our SAT instance. It is also important to analyse instance 
sizes larger than some lower bound ( n ≥ n0 ), as the asymptotic behaviour is not visible for smaller sizes. For 
example the asymptotics of the MapleCOMSPS solver (discussed next) on integer factorization only become 
apparent at n0 = 20 bit semi-primes.

We tested the MapleCOMSPS24 SAT solver for the simple reason that at the time of running the benchmarks 
this was the fastest solver according to the SAT Competition 201625. We compiled and ran the solver with default 
settings, except for the random seed which was fixed for each call to the solver to ensure reproducibility of the 
results.

Another solver that we tested is CryptoMiniSat 526, because it has “Automatic detection of cryptographic 
[...] instances”27. One might consider this to be cheating by using domain-specific knowledge and therefore it 
should not be included in the benchmarks. CryptoMiniSat appears to focus on symmetric cryptography and 
appears to provide no speedup on public cryptography instances, which we confirmed during an initial round 
of benchmarking. We inspected the (partial) results and found that CryptoMiniSat 5 was consistently being 
outperformed by MapleCOMSPS. For this reason we did not further analyze this solver, but the results can be 
found in the Supplementary Material.

All measurements were performed on a ThinkPad laptop with a 64-bit Intel Core i5–4200M (Haswell) CPU 
running at 2.50 GHz. All measurements were executed sequentially and on a single core. Where applicable we 
use regression to fit a line to the data and the goodness-of-fit is quantified by the r2 parameter.

Results.  Usually when analyzing the runtime of a randomized algorithm we are interested in the expected 
runtime: the mean computed over the random bits. We do this by factoring the same number multiple times 
using a different PRNG-seed for the solver and average the runtime to compute the expected runtime numeri-
cally. We are interested in the asymptotics: the growth of the runtime as a function of the size of its input, so 
we group the semi-primes by their bitlength n (100 semi-primes per bitlength) and plot the mean runtime of 
solving five times. The results are given in Fig. 1a and are showing an exponential trend. The green line is fitted 
against the median runtime of all semi-primes of the same bitlength.

We repeated the same experiment for multiplication with the Karatsuba algorithm. The results are given in 
Fig. 1b: note that asymptotic runtime has improved somewhat over schoolbook multiplication at the cost of 
a larger constant. We conclude that changing the multiplication algorithm does not make factoring with SAT 
solvers efficient. Since the larger constant dominates the runtime at this small scale, we will consider schoolbook 
multiplication for the remainder of our experiments.

An alternative strategy for factoring is to run several solvers in parallel and wait for the first one to return 
a solution. We simulate this strategy by taking the minimum solver time of solving the same instance with the 
solver initialized with 100 different random seeds for 100 semi-primes per bitlength: the results are given in Fig. 2. 
Asymptotically the runtime became worse by employing this strategy. Note that this strategy does push down 
the constant by approximately 26.1 . Since this is smaller than 100 it does not lead to a lower expected runtime on 
this small scale when we consider the total runtime of all parallel solvers.

We can also see in Fig. 2 that some semi-primes are significantly easier to solve than others with this strategy. 
Even if we only manage to factor some semi-primes that may be important to (for example) cryptography. For 
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this method to be asymptotically efficient, it is required that the runtime is pushed down exponentially for more 
than just negligibly many cases. To see if it does we can inspect the distribution of the solver runtime given dif-
ferent seeds. Here we focus on three different semi-primes: the easiest, average and hardest semi-prime from 
the 100 semi-primes of 35 bits, where hardness is defined by the expected (mean) solve time computed over 360 
seeds. The distribution for all other semi-primes can be generated at13.

Although no strong conclusions should be drawn from the results in Fig. 3a, the distribution does suggest 
that running a few parallel solvers may lower the total runtime. To see if it may be considered efficient we again 
inspect the distribution but this time on a logarithmic scale: see Fig. 3b.

This data suggests that even if the method could push down the runtime significantly for any semi-prime, 
it only does so with negligible probability. Another way of interpreting this data is that employing parallel SAT 
solvers to factor a semi-prime does not appear to be better than employing a single solver.

The last strategy we investigate is that of encoding multiple semi-primes into a single instance: for example an 
adversary may interested into breaking just one out of many cryptographic keys. We encoded 100 semi-primes 
per bitlength in each instance and solved it 100 times using different seeds. The results are given in Fig. 4. Note 
that whereas the vertical boxplots in previous plots show a distribution over different primes, here a distribution 
over different solver PRNG-seeds is shown. From the data we conclude that this strategy is less efficient than 
solving instances with a single semi-prime. From inspection of the solver solution we can see which semi-prime 
was factored (see13). This reveals that some semi-primes in the same instance are factored more often than oth-
ers, suggesting that these are easier to factor by the solver, although we note that these are not “easy enough” to 
make the overall method efficient. The supplementary information contains further analysis of patterns in the 
SAT instances, but finds no pattern that can be exploited for significantly faster solver times.

Comparison to number‑theoretical methods.  One can put the above results in context by comparing 
the absolute runtime to that of other number-theoretical results. Using SageMath28 we measured the runtime 
of two approaches: factoring with the built-in factor function (Fig. 5a) and factoring by trial division (Fig. 5b).

(a) schoolbook multiplication (b) Karatsuba multiplication

Figure 1.   Runtime of MapleCOMSPS on factoring semi-primes.

Figure 2.   Minimum runtime of MapleCOMSPS on factoring semi-primes using schoolbook multiplication.
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(a) Linear time-scale (b) Logarithmic time-scale

Figure 3.   Histogram of the MapleCOMSPS runtime on factoring semi-primes using schoolbook multiplication.

Figure 4.   Runtime of MapleCOMSPS on factoring one of 100 semi-primes encoded in each instance using 
schoolbook multiplication.

(a) SageMath factor() (b) Trial division

Figure 5.   Runtime of factoring using numerical methods. No randomization was applied for obtaining these 
results.
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SageMath is able to factor almost all semi-primes up to a 100 bits in under 0.025 s. The tested semi-
primes are so small that the asymptotic behavior of the underlying algorithm is not even visible yet, so 
there is no point in extrapolating these results. In fact the cross-over point where the NFS is faster than 
asymptotically slower methods such as the quadratic sieve and the elliptic-curve method is much larger 
than 100 bits, so that SageMath is not even using NFS to factor these small numbers. Instead, we refer to 
the literature to find that the best classical factoring algorithm (the general number field sieve29) runs in 
exp

(

((64/9)1/3 + o(1))(lnN)1/3(lnN)2/3
)

= LN [2/3, (64/9)1/3] and this was indeed used to factor a 829-bit 
RSA modulus in approximately 2700 core-years10.

The timing of factoring using trial division is shown in Fig. 5b. The results reveal an exponential trend and 
with a much smaller constant than the SAT solver. On this small scale on which measurements were performed, 
trial division easily outperforms the SAT solvers. The asymptotic runtime of the methods are so close together 
that we cannot meaningfully extrapolate the results to find a cross-over point where the SAT solvers become 
faster than trial division. We therefore cannot rule out that factoring with classical SAT solvers is always slower 
than trial division.

Quantum solvers
State of the art classical factoring algorithms have super-polynomial expected runtime LN [1/3, (64/9)1/3]29, 
whereas Shor’s algorithm30 runs in expected polynomial time. This algorithm requires a fault-tolerant quantum 
computer and no scalable version has been implemented yet. Shor’s algorithm has profound practical implica-
tions for currently deployed public-key cryptography such as RSA and the timing of the factoring of 1024-bit, 
2048-bit or even larger semi-primes is of great practical significance for both contemporary and future security 
systems31. Mitigations for future systems and current systems requiring long-term security are being researched 
by the field of post-quantum cryptography32–34.

An interesting notion of quantum computing has been proposed by Farhi et al.35 in the form of adiabatic 
quantum computers. It was suggested that adiabatic quantum algorithms may be able to outperform classical 
computers on hard instances of NP-complete problems36. Since then, adiabatic quantum computation (a gen-
eralization of the adiabatic optimization explored deeply by Farhi et al.) has been proven to be polynomially 
equivalent to quantum computation in the standard gate model37. While the possibility of super-polynomial (or 
even just super-quadratic) quantum speed-up for NP-hard problems remains an open question it is generally 
believed that quantum computers (including adiabatic quantum computers) are not able to efficiently solve 
NP-hard problems such as SAT. It is known that any such speed-up must go beyond pure “black-box” search38 
as attempted by Farhi et al.36 and must somehow exploit additional knowledge or structure39. Note that this 
assumption is implicit, e.g. in the fact that post-quantum cryptographers are working on the assumption that 
symmetric algorithms like AES and SHA that offers n bits of security against classical attacks offer n/2 bits of 
security against the best known quantum attacks33 (excluding some specific attacks in the “quantum superposi-
tion” attack model40). In this section we consider the speedup that can be achieved by reducing the problem of 
factoring a semi-prime to an instance of an NP-hard problem which is then solved with a quantum computer.

Faster SAT solvers.  One might hope that we can apply a quantum strategy that can improve on the best 
known classical methods. We chose SAT solvers to represent the best classical methods as their implementations 
are the highly optimized result of years of research. Generic quantum searching methods can achieve at most 
a quadratic speed-up, and we are aware of no convincing evidence that more than a quadratic speed-up can be 
achieved by quantum SAT-solving methods. For example, many modern SAT solvers rely on machine-learning 
techniques24 and many quantum methods with a quadratic speedup are known for a variety of machine-learning 
algorithms41. See also42 for why the exponential speedup promised in some quantum machine-learning litera-
ture is unlikely to be achieved in real-world implementations.

A quick calculation shows that even with a quadratic speedup, this strategy is not a very efficient one. We set 
an upper bound on the number of operations required for the classical solver based on our results. Accounting 
for any internal parallelism in the processor (four arithmetic ports per processor) and assuming that the CPU 
was fully occupied at every clock cycle this means that 1010 operations were being executed every second during 
the solving time.

Under this assumption the expected number of operations required for classical SAT solving becomes 
216.8 × 20.495n . With a quantum computer we might hope to reduce this to 

√
216.8 × 20.495n = 28.41 × 20.247n 

operations. To put this in perspective, consider a quantum computer that can execute 1040 quantum operations 
per second. Note that even a classical computer with such speeds could break AES-128, SHA-256, RSA-2048 
and ECC P-256 in an instant, so this is a very generous upper bound. Under these assumptions it would still take 
approximately a hundred times the lifetime of the universe to factor the RSA-250 number using the quantum SAT 
solving approach, whereas this number has been factored classically on a real machine in roughly 2700 core-years 
using number-theoretical methods. A visual comparison of these results are given in Fig. 6.

Note that all estimates so far are biased towards more (classical) operations per second. The reason is that we 
want to compute an upper bound on the speedup that can be achieved by applying Grover’s algorithm (or some 
alternative quadratic speedup) in order to factor numbers with SAT solving. It is almost certain that the processor 
executed less operations and it is very unlikely that the quadratic speedup can be applied to the full computation 
without any overhead of executing the algorithm. Therefore, classical algorithms will likely require less operations 
than reported and quantum algorithms will likely require more operations than computed.

Note also that the known speedups for quantum solvers are applied to Ts , even though the above calcula-
tion generously assumes that Tp(n) = 0 and the speedup can be applied to the full calculation time T(n). For 
most classical solvers it indeed holds that Tp(n) ≪ Ts(n) as n grows large enough, but for many of the adiabatic 
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factoring methods discussed below it holds that Tp(n) ≫ Ts(n) as n grows. This means that our calculation is a 
significant overestimation of the maximum speedup that can be achieved with the adiabatic factoring method.

Adiabatic factoring.  The method used for factoring with the adiabatic algorithm first reduces factorization 
to finding the roots in a set of integer equations in which the unknown variables are restricted to binary values, 
corresponding to the input bits of the prime and carry bits of the intermediate computation. This is translated 
to the pseudo-Boolean optimization problem by squaring all equations (so that the roots correspond to the 
minimum values) and summing over all equations, resulting in a quartic polynomial. This reduction was first 
suggested by Burges as a method for generating unconstrained optimization problems whose complexity can be 
easily controlled43. The adiabatic algorithm35 is particularly well suited for encoding optimization problems of 
this kind: the resulting sum describes a Hamiltonian whose ground state encodes the solution and every vari-
able corresponds to a single qubit. In general it is not easy to physically initialize the system in the ground state 
of the problem Hamiltonian. Instead the adiabatic method intializes the system in the ground state of an easier 
Hamiltonian. The adiabatic theorem tells us that if we evolve the physical system from the initial Hamiltonian to 
the final Hamiltonian slow enough, the system will remain in its ground state. Measuring the final state will then 
provide the answer to the optimization problem.

To assess the power of the adiabatic algorithm it is therefore important to quantify how fast this evolution can 
be done. A coarse lower bound is given by the spectral width of the time-dependent Hamiltonian, but sharper 
bounds on the runtime so far elude us39. This has led some researchers to study the applicability of the adiabatic 
algorithm to some NP-complete problems36. Most evidence for a speed-up is based on noise-free simulations 
on small instances (for which the asymptotic behaviour might not be visible) which are chosen randomly, shed-
ding light on typical performance for small instances. Cryptographic problems require average-case hardness 
in order to be practical, which is why they are so suitable for testing worst-case behaviour of algorithms that 
solve them, especially when the reduction to an NP-hard problem is as simple as reducing factoring to SAT as 
demonstrated in the previous section.

Pseudo-Boolean optimization is known to be NP-hard, meaning amongst other things that a polynomial 
reduction exists from the SAT problem44. Real-world demonstrations of the adiabatic algorithm suffer from 
additional limitations (besides noise-resistance) in the number of available qubits and multi-qubit interac-
tions. The latter limitation means that quartic terms in the objective function cannot always be realized. Using 
quadratization45 each objective function can be simplified to a quadratic polynomial at the price of additional 
variables, giving an instance of the well-studied quadratic unconstrained binary optimization (QUBO) problem. 
This simplification runs in polynomial time and results in only polynomially many variables overhead, so the 
problems are equivalent.

However for many real-world systems the extra variables (qubits) are not available, so additional simplifica-
tions are required. This is fine as long as these simplification steps do not dominate the overall runtime of the 
program. More precisely we can execute polynomially many simplification operations and Tp(n) will remain poly-
nomial in n, thereby not significantly increasing the runtime T(n) which is dominated by the super-polynomial 
runtime Ts(n) . When the simplification process is allowed to have an exponential runtime it can absorb the 
hardness of the problem, leaving a weaker problem to be solved (trivially) in polynomial time.

Implementations.  The first adiabatic factorization46 was implemented in 2008 using nuclear magnetic reso-
nance (NMR) to factor 21 using three qubits. The authors fit a quadratic curve against a theoretical approxima-
tion in a noiseless model, they measure the runtime as a function of the number of input qubits (not the size 

Figure 6.   Comparison of efficiency of various factoring methods. The classical results are extrapolated from 
experimental data. The quantum results apply a quadratic speedup over the full classical computation. The 
number field sieve result plots LN [1/3, (64/9)1/3] operations assuming the same number of operations per 
second.
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of the factored number) and they only consider the small domain of seven to sixteen input qubits. The same 
method has factored 551 by applying some preprocessing first47. It is doubtful that such small instances are a 
good indicator of polynomial asymptotic behaviour.

Later work48 translates the problem of factoring 143 into a pseudo-binary optimization instance, which is an 
NP-hard problem44. The authors manage this by introducing the additional assumption that both factors must 
be of equal bitlength with the most significant bit set to one. Combining these assumption with some simplifi-
cations in the pseudo-Boolean equations simplifies the problem so that it only concerns four input bits of the 
prime factors. Although the used simplifications are efficient, only an upper bound of their effectiveness is given.

Subsequent research49 observes that a minor generalization of the previous method reduces the problem to 
four input qubits whenever the two primes composing the semi-prime differ only in two positions, which likely 
occurs for infinitely many semi-primes50. This provides some evidence that the simplifications do not generalize 
and the factored number 143 was identified as a particularly easy number to factor. In other words, this example 
was hand-picked from an exponentially unlikely family of semi-primes that are by design easy to factor. The 
authors report the number 56,153 as being the largest semi-prime factored quantumly and at the same time 
argue that the work has factored an arbitrarily large set of semi-primes (since they can be pre-processed into 
solving the same pseudo-Boolean equations). The reason for not reporting a bigger number appears to be the 
large runtime Tp of the simplification process.

Much subsequent research in the adiabatic factoring field has focussed on methods such as deduc–reduc51, 
split-reduc52 and energy landscape manipulation53, all of which can be seen as improvements on the preprocessor 
runtime Tp and none of which do any improvements on Ts.

The problems with viewing these works as relevant quantum integer factorization benchmarks is highlighted 
even further in the more recent paper that claims to have factored 291,311 with adiabatic quantum computation54. 
The authors take the above approach and reduce the problem of factoring 291,311 to the integer equations 
q1 + q2 − 2q1q2 = 1 , q2 + q5 − 2q2q5 = 0 , and q1 + q5 − 2q1q5 = 1 . where the variables qi must take on binary 
values and represent unknown bits in the binary representation of factor q = 1000q501q2q11 . The authors stop 
their simplification process at this point and fail to notice that the above equations can be further simplified to 
q1 = 1− q2 = 1− q5 . Both solutions q1 = 0 and q1 = 1 correspond with respective factors q = 557 and q = 523 . 
In other words, the number was already factored by the simplification process and the adiabatic quantum com-
putation was a complicated way of flipping a coin and deciding between the two factors. The above criticism of 
these claims to meaningful quantum factoring benchmarks was in fact already made in 201355.

A method called Variational Quantum Factoring (VQF)56 employs the same strategy for factoring, which is 
to reduce it to an NP-hard optimization problem. The authors are careful to ensure that preprocessing takes only 
polynomial time. Although the authors claim that “VQF could be competitive with Shor’s algorithm even in the 
regime of fault-tolerant quantum computation”, we find no convincing argument to support this conjecture. In 
particular, they do not provide convincing evidence that the solving step is efficient: no semi-prime larger than 215 
is considered by their work and they observe that “the mere presence of carry bits negatively affects the algorithm”.

The criticism from55 applies equally well against “compiled versions” of Shor’s algorithm (where partial knowl-
edge of the factors is used to specify the quantum circuit): both implementations require much precomputation 
and therefore do not scale to factoring larger numbers. The problem is that both precomputations require prior 
knowledge of the solution. “Compiled versions” of Shor’s algorithm were never intended to scale to meaning-
ful input sizes, as is highlighted in the abstract of the work factoring 15 with NMR: “scalability is not implied 
by the present work. The significance of our work lies in the demonstration of experimental and theoretical 
techniques”57.

The important difference is that the runtime of Shor’s algorithm is well understood and provides a super-pol-
ynomial speedup in Ts over even the best numerical methods for factoring. As fault-tolerant hardware emerges, 
we can simply strip away the non-scalable optimizations. On the other hand the runtime of reducing factoring 
to an NP-hard problem and then solving it with (quantum) solvers is not understood very well, but the evidence 
provided in this work points in the direction that it cannot even compete with classical numerical methods for 
factoring.

D‑Wave.  The D-Wave systems work by a process called quantum annealing, which can be viewed as a noisy 
version of adiabatic quantum computing. It has been shown that O(n2) qubits suffice to encode factoring into 
a quantum annealing instance with local interactions58. The article “Boosting integer factoring performance 
via quantum annealing offsets”59 describes a “boost” when comparing factoring on the D-Wave machine with 
annealing offsets against the D-Wave machine without annealing offsets. The largest factored number has 20 bits.

All semi-primes up to 200,000 (18 bits) have been factored with help of the D-Wave 2X by heuristically 
mapping the optimization problem to the Chimera graph underlying the machine60. Exponential methods from 
computational algebraic geometry are used for preprocessing the instances without quantification of the (asymp-
totic or measured) runtime so that there is no indication of the efficiency of this preprocessing step. Although 
some statistics on the annealing process are provided for six semi-primes, not enough information is given for a 
meaningful assessment on the scalability of both the efficiency and effectiveness of this method.

Integer factorization has been implemented many times on the D-Wave 2000Q by similar strategies. While 
early experiments only factored four semi-primes61, later work62,63 has factored more numbers by reducing the 
required number of qubits through more preprocessing (in polylogarithmic time). Wang et al.63 claim O(n2) 
annealing runtime without any justification; this unjustified claim seems incorrect, especially when considering 
the observation by Peng et al.62 that the rapidly decreasing accuracy limits the scalability of the method. None of 
these works presents convincing evidence that quantum annealing will find factors with significant likelihood 
in polynomial (or even sub-exponential) time.
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A similar method was developed independently by Kieu64 and Yan et al.65. Their method translates factoring 
into an (NP-hard) optimization problem of minimizing (N − pq)2 (or a similar expression), by encoding that 
directly in the problem Hamiltonian. Besides problems in translating the work to the Boolean logic required by 
the D-Wave machine66, the method has an exponential cost in energy in order to be efficient in time.

Discussion
SAT solvers are not known or believed to be able to factor semi-primes efficiently. Overall, even the fastest solver 
(MapleCOMSPS) has an exponential runtime in the size of the factors. Closer inspection of the solver runtime 
indicates that the solver is not able to detect any pattern in the SAT formulas that encode the factorization prob-
lem. Asymptotically the solver runtime appears to be comparable to that of trial division, but this advantage is 
almost completely negated by the overhead in the constant term. The performance of SAT solvers does not even 
come close to that of number-theoretical methods.

Of course if it were that easy RSA would be broken regularly by SAT solvers which is not the case. Fur-
thermore, in practice it appears that SAT instances derived from integer factorization instances are hard SAT 
instances. Thus it would be especially surprising if a SAT solver could solve these instances with resources com-
parable to that of using the classical number field sieve (i.e. subexponential complexity).

Quantum SAT solvers are not expected to do much better. Published results from experiments on quantum 
hardware lack the details to conclude exactly how big of a quantum speedup can be practically achieved, but it 
certainly seems insufficient to make up for the gap introduced by switching from subexponential algorithms 
to (worst-case) exponential ones. Even when calculating a very optimistic quantum speedup to the current 
state-of-the-art classical solvers, these solvers are outperformed with orders of magnitude by (classical) number-
theoretical factoring methods.

Our work explores the possibility of a quantum speedup more deeply and reinforces the folklore that reducing 
multiplication to SAT and then applying SAT solvers, classical or quantum, is not useful for factoring numbers 
of sizes relevant to cryptography.

Of course, one cannot rule out unexpected breakthroughs in quantum SAT solving or a wide range of other 
quantum or classical approaches to factoring semi-primes. However, it is important to distinguish the possibility 
of unexpected breakthroughs (especially those that contradict conventional wisdom or lack a plausible roadmap) 
from tracking progress of an existing hardware platform and of an algorithm that is pertinent for cryptographi-
cally relevant semi-primes (i.e. classical computers and the NFS). Once scalable fault-tolerant quantum computers 
capable of implementing Shor’s algorithm are available, a similar tracking would be very meaningful (with the 
caveat outlined in the introduction). In the meantime, it is important to track progress toward achieving scalable 
fault-tolerant quantum computers.

In other words, notwithstanding other scientific merits of these works, we are not aware of any evidence that 
any SAT-based quantum factoring results to date, including factorization by quantum annealing, are relevant 
milestones toward large-scale integer factorization or the demonstration of a speed-up over the best known 
classical algorithms for integer factorization.

Received: 2 November 2021; Accepted: 25 April 2022

References
	 1.	 Rivest, R. L., Shamir, A. & Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 

21, 120–126. https://​doi.​org/​10.​1145/​359340.​359342 (1978).
	 2.	 Emerson, J., Alicki, R. & Życzkowski, K. Scalable noise estimation with random unitary operators. J. Opt. B Quantum Semiclassical 

Opt. 7, S347. https://​doi.​org/​10.​1088/​1464-​4266/7/​10/​021 (2005).
	 3.	 Lenstra, A. K. Key lengths. Handbook of Information Security. https://​infos​cience.​epfl.​ch/​record/​164539/​files/​NPDF-​32.​pdf (2004).
	 4.	 Abdalla, M. et al. Algorithms, key size and protocols report. Tech. Rep., University of Bristol (2018). http://​www.​ecrypt.​eu.​org/​

csa/​docum​ents/​D5.4-​Final​AlgKe​ySize​Prot.​pdf.
	 5.	 Cook, S. A. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of 

Computing, STOC ’71, 151–158. https://​doi.​org/​10.​1145/​800157.​805047 (ACM, 1971).
	 6.	 Levin, L. A. Universal Sequential Search Problems. Probl. Peredachi Inf. 9, 115–116 (1973). http://​mi.​mathn​et.​ru/​eng/​ppi914.
	 7.	 Balyo, T., Heule, M. J. H. & Järvisalo, M. (eds.). Proceedings of SAT Competition 2017: Solver and Benchmark Descriptions, Publica-

tion series B, Report B-2017-1 (2017). http://​hdl.​handle.​net/​10138/​224324.
	 8.	 Kaliski, B. RSA factoring challenge. http://​groups.​google.​com/​groups?​selm=​BURT.​91Mar​18092​126%​40chi​rality.​rsa.​com (1991).
	 9.	 Dixon, B. & Lenstra, A. K. Factoring Integers Using SIMD Sieves 28–39 (Springer, 1994). https://​doi.​org/​10.​1007/3-​540-​48285-7_3.
	10.	 Boudot, F. et al. Comparing the difficulty of factorization and discrete logarithm: A 240-digit experiment. In Advances in Cryptol-

ogy-CRYPTO 2020 (eds Micciancio, D. & Ristenpart, T.) 62–91 (Springer, 2020). https://​doi.​org/​10.​1007/​978-3-​030-​56880-1_3.
	11.	 Bernstein, D. J., Biasse, J.-F. & Mosca, M. A low-resource quantum factoring algorithm. In Post-Quantum Cryptography (eds Lange, 

T. & Takagi, T.) 330–346 (Springer, **, 2017). https://​doi.​org/​10.​1007/​978-3-​319-​59879-6_​19.
	12.	 Mosca, M., Vensi Basso, J. M. & Verschoor, S. R. On speeding up factoring with quantum SAT solvers. Sci. Rep. 10, 1–8. https://​

doi.​org/​10.​1038/​s41598-​020-​71654-y (2020).
	13.	 Verschoor, S. R. SAT factoring. GitHub. https://​github.​com/​sebas​tianv​89/​facto​ring-​sat (2019).
	14.	 Karp, R. M. Reducibility among combinatorial problems. In Complexity of Computer Computations 85–103 (Springer, 1972). 

https://​doi.​org/​10.​1007/​978-1-​4684-​2001-2_9.
	15.	 Mironov, I. & Zhang, L. Applications of SAT solvers to cryptanalysis of hash functions. In Theory and Applications of Satisfiability 

Testing-SAT 2006 (eds Biere, A. & Gomes, C. P.) 102–115 (Springer, 2006). https://​doi.​org/​10.​1007/​11814​948_​13.
	16.	 Morawiecki, P. & Srebrny, M. A SAT-based preimage analysis of reduced Keccak hash functions. Inf. Process. Lett. 113, 392–397. 

https://​doi.​org/​10.​1016/j.​ipl.​2013.​03.​004 (2013).
	17.	 Dwivedi, A. D. et al. SAT-based cryptanalysis of authenticated ciphers from the CAESAR competition. https://​eprint.​iacr.​org/​

2016/​1053 (2016).

https://doi.org/10.1145/359340.359342
https://doi.org/10.1088/1464-4266/7/10/021
https://infoscience.epfl.ch/record/164539/files/NPDF-32.pdf
http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://doi.org/10.1145/800157.805047
http://mi.mathnet.ru/eng/ppi914
http://hdl.handle.net/10138/224324
http://groups.google.com/groups?selm=BURT.91Mar18092126%40chirality.rsa.com
https://doi.org/10.1007/3-540-48285-7_3
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.1007/978-3-319-59879-6_19
https://doi.org/10.1038/s41598-020-71654-y
https://doi.org/10.1038/s41598-020-71654-y
https://github.com/sebastianv89/factoring-sat
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/11814948_13
https://doi.org/10.1016/j.ipl.2013.03.004
https://eprint.iacr.org/2016/1053
https://eprint.iacr.org/2016/1053


11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7982  | https://doi.org/10.1038/s41598-022-11687-7

www.nature.com/scientificreports/

	18.	 Massacci, F. & Marraro, L. Logical cryptanalysis as a SAT problem. J. Autom. Reason. 24, 165–203. https://​doi.​org/​10.​1023/A:​10063​
26723​002 (2000).

	19.	 Yuen, H. & Babel, J. Tough SAT Project. https://​tough​sat.​appsp​ot.​com/ (2011).
	20.	 Karatsuba, A. A. & Ofman, Y. Multiplication of multidigit numbers on automata. Soviet Phys. Doklady 7, 595–596 (1963).
	21.	 Davis, M. & Putnam, H. A computing procedure for quantification theory. J. ACM 7, 201–215. https://​doi.​org/​10.​1145/​321033.​

321034 (1960).
	22.	 Davis, M., Logemann, G. & Loveland, D. A machine program for theorem-proving. Commun. ACM 5, 394–397. https://​doi.​org/​

10.​1145/​368273.​368557 (1962).
	23.	 Selman, B., Kautz, H. A. & Cohen, B. Local search strategies for satisfiability testing. Cliques Coloring Satisfiabil. 26, 521–532 (1993).
	24.	 Liang, J. H., Ganesh, V., Poupart, P. & Czarnecki, K. Learning rate based branching heuristic for SAT solvers. In Theory and Appli-

cations of Satisfiability Testing-SAT 2016 (eds Creignou, N. & Le Berre, D.) 123–140 (Springer, 2016). https://​doi.​org/​10.​1007/​
978-3-​319-​40970-2_9.

	25.	 Heule, M. J. H., Järvisalo, M. & Balyo, T. SAT competition. https://​baldur.​iti.​kit.​edu/​sat-​compe​tition-​2016/​index.​php (2016) (Affili-
ated with the 19th International Conference on Theory and Applications of Satisfiability Testing).

	26.	 Soos, M. CryptoMiniSat 5.0.1. https://​github.​com/​msoos/​crypt​omini​sat/​relea​ses/​tag/5.​0.1 (2016).
	27.	 Soos, M. CryptoMiniSat 2.5.1. http://​www.​msoos.​org/​wordp​ress/​wp-​conte​nt/​uploa​ds/​2010/​08/​crypt​omini​sat-2.​5.1.​pdf (2010).
	28.	 The Sage Developers. Sagemath, the Sage Mathematics Software System (Version 7.5.1). http://​www.​sagem​ath.​org (2017).
	29.	 Lenstra, A. K., Lenstra, H. W., Manasse, M. S. & Pollard, J. M. The Number Field Sieve 11–42 (Springer, 1993). https://​doi.​org/​10.​

1007/​BFb00​91537.
	30.	 Shor, P. W. Polynominal time algorithms for discrete logarithms and factoring on a quantum computer. In ANTS, vol 877 of Lecture 

Notes in Computer Science Notes in Computer Science 289 (Springer, 1994). https://​doi.​org/​10.​1007/3-​540-​58691-1_​68.
	31.	 Mosca, M. Setting the scene for the ETSI Quantum-safe Cryptography Workshop. e-proceedings of “1st Quantum-Safe-Crypto 

Workshop”, Sophia Antipolis (2013).
	32.	 Bernstein, D. J. et al. (eds) Post-quantum Cryptography (Springer, 2009).
	33.	 Chen, L. et al. Report on post-quantum cryptography. https://​doi.​org/​10.​6028/​NIST.​IR.​8105 (2016).
	34.	 Chen, L., Moody, D. & Liu, Y.-K. Post-quantum cryptography. https://​csrc.​nist.​gov/​Proje​cts/​Post-​Quant​um-​Crypt​ograp​hy (2018).
	35.	 Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution (2000). arXiv:​00011​06.
	36.	 Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 

472–475. https://​doi.​org/​10.​1126/​scien​ce.​10577​26 (2001).
	37.	 Aharonov, D. et al. Adiabatic quantum computation is equivalent to standard quantum computation. In 45th Annual IEEE Sym-

posium on Foundations of Computer Science, 42–51. (IEEE Computer Society, Rome, Italy, 2004). https://​doi.​org/​10.​1109/​FOCS.​
2004.8.

	38.	 Bennett, C. H., Bernstein, E., Brassard, G. & Vazirani, U. Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 
1510–1523. https://​doi.​org/​10.​1137/​S0097​53979​63009​33 (1997).

	39.	 van Dam, W., Mosca, M. & Vazirani, U. V. How powerful is adiabatic quantum computation? In 42nd Annual Symposium on 
Foundations of Computer Science. FOCS 279–287 (IEEE Computer Society, Las Vegas, Nevada, USA, 2001). https://​doi.​org/​10.​
1109/​SFCS.​2001.​959902.

	40.	 Kaplan, M., Leurent, G., Leverrier, A. & Naya-Plasencia, M. Breaking symmetric cryptosystems using quantum period finding. In 
Advances in Cryptology-CRYPTO 2016 Vol. 9815 (eds Robshaw, M. & Katz, J.) 207–237 (Springer, 2016). https://​doi.​org/​10.​1007/​
978-3-​662-​53008-5_8.

	41.	 Biamonte, J. et al. Quantum machine learning. Nature 549, 195. https://​doi.​org/​10.​1038/​natur​e23474 (2017).
	42.	 Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293. https://​doi.​org/​10.​1038/​nphys​3272 (2015).
	43.	 Burges, C. J. C. Factoring as optimization. Tech. Rep., Microsoft (2002). MSR-TR-2002-83.
	44.	 Boros, E. & Hammer, P. L. Pseudo-boolean optimization. Discret. Appl. Math. 123, 155–225. https://​doi.​org/​10.​1016/​S0166-​

218X(01)​00341-9 (2002).
	45.	 Rosenberg, I. G. Reduction of bivalent maximization to the quadratic case. Cahiers Centre d’etudes Rech. Oper. 17, 71–74 (1975).
	46.	 Peng, X. et al. Quantum adiabatic algorithm for factorization and its experimental implementation. Phys. Rev. Lett. 101, 220405. 

https://​doi.​org/​10.​1103/​PhysR​evLett.​101.​220405 (2008).
	47.	 Pal, S., Moitra, S., Anjusha, V. S., Kumar, A. & Mahesh, T. S. Hybrid scheme for factorisation: Factoring 551 using a 3-qubit NMR 

quantum adiabatic processor. Pramana.https://​doi.​org/​10.​1007/​s12043-​018-​1684-0 (2019).
	48.	 Xu, N. et al. Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130501. 

https://​doi.​org/​10.​1103/​PhysR​evLett.​108.​130501 (2012).
	49.	 Dattani, N. S. & Bryans, N. Quantum factorization of 56153 with only 4 qubits (2014). arXiv:​1411.​6758.
	50.	 Polymath, D. H. J. Variants of the Selberg sieve, and bounded intervals containing many primes. Res. Math. Sci. 1, 12. https://​doi.​

org/​10.​1186/​s40687-​014-​0012-7 (2014).
	51.	 Tanburn, R., Okada, E. & Dattani, N. S. Reducing multi-qubit interactions in adiabatic quantum computation without adding 

auxiliary qubits. Part 1: The “deduc–reduc” method and its application to quantum factorization of numbers (2015). arXiv:​1508.​
04816.

	52.	 Okada, E., Tanburn, R. & Dattani, N. S. Reducing multi-qubit interactions in adiabatic quantum computation without adding 
auxiliary qubits. Part 2: The “split-reduc” method and its application to quantum determination of Ramsey numbers (2015). arXiv:​
1508.​07190.

	53.	 Tanburn, R., Lunt, O. & Dattani, N. S. Crushing runtimes in adiabatic quantum computation with energy landscape manipulation 
(ELM): Application to quantum factoring (2015). arXiv:​1510.​07420.

	54.	 Li, Z. et al. High-fidelity adiabatic quantum computation using the intrinsic Hamiltonian of a spin system: Application to the 
experimental factorization of 291311 (2017). arXiv:​1706.​08061.

	55.	 Smolin, J. A., Smith, G. & Vargo, A. Oversimplifying quantum factoring. Nature 499, 163–165. https://​doi.​org/​10.​1038/​natur​e12290 
(2013).

	56.	 Anschuetz, E. R., Olson, J. P., Aspuru-Guzik, A. & Yudong, C. Variational quantum factoring (2018). arXiv:​1808.​08927.
	57.	 Vandersypen, L. M. K. et al. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. 

Nature 414, 883–887. https://​doi.​org/​10.​1038/​41488​3a (2001).
	58.	 Macready, W. G., Rose, G. & Love, P. Quantum processor-based systems, methods and apparatus for solving problems as logic 

circuits (2013). Patent No. US 8,560,282 B2, Filed August 3, 2010, Issued October 15, 2013.
	59.	 Andriyash, E. et al. Boosting integer factoring performance via quantum annealing offsets (D-Wave Systems Inc, Tech. Rep., 2016).
	60.	 Dridi, R. & Alghassi, H. Prime factorization using quantum annealing and computational algebraic geometry. Sci. Rep. 7, 43048. 

https://​doi.​org/​10.​1038/​srep4​3048 (2017).
	61.	 Jiang, S., Britt, K. A., McCaskey, A. J., Humble, T. S. & Kais, S. Quantum annealing for prime factorization (2018). arXiv:​1804.​

02733​v2.
	62.	 Peng, W. et al. Factoring larger integers with fewer qubits via quantum annealing with optimized parameters. Sci. China Phys. 

Mech. Astron. 62, 8. https://​doi.​org/​10.​1007/​s11433-​018-​9307-1 (2019).
	63.	 Wang, B., Hu, F., Yao, H. & Wang, C. Prime factorization algorithm based on parameter optimization of Ising model. Sci. Rep. 10, 

7106. https://​doi.​org/​10.​1038/​s41598-​020-​62802-5 (2020).

https://doi.org/10.1023/A:1006326723002
https://doi.org/10.1023/A:1006326723002
https://toughsat.appspot.com/
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://baldur.iti.kit.edu/sat-competition-2016/index.php
https://github.com/msoos/cryptominisat/releases/tag/5.0.1
http://www.msoos.org/wordpress/wp-content/uploads/2010/08/cryptominisat-2.5.1.pdf
http://www.sagemath.org
https://doi.org/10.1007/BFb0091537
https://doi.org/10.1007/BFb0091537
https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.6028/NIST.IR.8105
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
http://arxiv.org/abs/0001106
https://doi.org/10.1126/science.1057726
https://doi.org/10.1109/FOCS.2004.8
https://doi.org/10.1109/FOCS.2004.8
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nphys3272
https://doi.org/10.1016/S0166-218X(01)00341-9
https://doi.org/10.1016/S0166-218X(01)00341-9
https://doi.org/10.1103/PhysRevLett.101.220405
https://doi.org/10.1007/s12043-018-1684-0
https://doi.org/10.1103/PhysRevLett.108.130501
http://arxiv.org/abs/1411.6758
https://doi.org/10.1186/s40687-014-0012-7
https://doi.org/10.1186/s40687-014-0012-7
http://arxiv.org/abs/1508.04816
http://arxiv.org/abs/1508.04816
http://arxiv.org/abs/1508.07190
http://arxiv.org/abs/1508.07190
http://arxiv.org/abs/1510.07420
http://arxiv.org/abs/1706.08061
https://doi.org/10.1038/nature12290
http://arxiv.org/abs/1808.08927
https://doi.org/10.1038/414883a
https://doi.org/10.1038/srep43048
http://arxiv.org/abs/1804.02733v2
http://arxiv.org/abs/1804.02733v2
https://doi.org/10.1007/s11433-018-9307-1
https://doi.org/10.1038/s41598-020-62802-5


12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7982  | https://doi.org/10.1038/s41598-022-11687-7

www.nature.com/scientificreports/

	64.	 Kieu, T. D. A factorisation algorithm in adiabatic quantum computation. J. Phys. Commun. 3, 025014. https://​doi.​org/​10.​1088/​
2399-​6528/​ab060d (2019).

	65.	 Yan, B. et al. Adiabatic quantum algorithm for factorization with growing minimum energy gap. Quantum Eng. 3, e59. https://​doi.​
org/​10.​1002/​que2.​59 (2021).

	66.	 Warren, R. H. Experimental evidence about “A factorisation algorithm in adiabatic quantum computation” by T. D. Kieu (2019). 
arXiv:​1901.​04579.

Acknowledgements
We would like to thank Vijay Ganesh and Curtis Bright for the many lessons about modern SAT solving and 
insightful discussions regarding this project. We also would like to thank Colin P. Williams and Kenneth Pater-
son for their helpful comments. This work was supported in part by Canada’s NSERC. IQC and the Perimeter 
Institute (PI) are supported in part by the Government of Canada and Province of Ontario.

Author contributions
M.M. and S.R.V. wrote the main manuscript text and S.R.V. ran the benchmarks.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​11687-7.

Correspondence and requests for materials should be addressed to S.R.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1088/2399-6528/ab060d
https://doi.org/10.1088/2399-6528/ab060d
https://doi.org/10.1002/que2.59
https://doi.org/10.1002/que2.59
http://arxiv.org/abs/1901.04579
https://doi.org/10.1038/s41598-022-11687-7
https://doi.org/10.1038/s41598-022-11687-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Factoring semi-primes with (quantum) SAT-solvers
	Contributions. 
	SAT instances
	Encoding. 

	Classical solvers
	Results. 
	Comparison to number-theoretical methods. 

	Quantum solvers
	Faster SAT solvers. 
	Adiabatic factoring. 
	Implementations. 

	D-Wave. 

	Discussion
	References
	Acknowledgements


