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SUMMARY

We developed an approach to decompose neuronal signals into disjoint compo-
nents, corresponding to task- or event-based epochs. This protocol describes
how to project behavioral templates onto a low-dimensional subspace of
neuronal responses to derive neuronal templates, then how to decompose and
cluster neuronal responses using these derived templates. We outline these
steps on complementary datasets of calcium imaging and spiking activity. Our
approach relies on fundamental, linear algebraic principles and is adaptive to
the temporal structure of the neural data.
For complete details on the use and execution of this protocol, please refer to
Adam et al. (2022).1

BEFORE YOU BEGIN

Advances in systems neuroscience rely heavily on linking neuronal activity to observable outcomes,

such as behavior. Technological advances have allowed for simultaneous recording of increasing

numbers of neurons. The analysis of these large population data sets has fueled the need for tech-

niques that reduce dimensionality of the neuronal response space and allow clustering of high-

dimensional population dynamics while linking them to behavioral correlates.2–4 Among current

methodologies, principal component analysis (PCA) has been heavily employed to reduce dy-

namics to dimensions along which the variability in neuronal response is maximized.4,5 However,

with PCA being unsupervised, the principal components cannot always immediately be tied to

behavioral outcomes, as these components are often derived by only considering neuronal activity.

Generalized linear models (GLMs) tend to be supervised models and have also provided means of

clustering neuronal responses, linking them to features of the task by employing templates4,6 (or

filters). In GLMs, dimensionality is intrinsically reduced through the templates. However, it is un-

clear how to best select the training signals from which the templates are fitted to capture a desired

neuronal activity feature, especially in the absence of obvious task structure signal. Choosing these

‘design’ training signals can be arbitrary, requiring insight and experience to execute. In this pro-

tocol, we developed a method that encapsulates the dimensionality reduction observed in PCA

with template-based interpretation often offered through GLMs to decompose and cluster

neuronal responses, while linking the decomposition and clustering to behavioral correlates. Our

method relies on fundamental linear algebraic principles, and can be easily applied to a wide range

of situations.

The protocol below describes the preparatory steps for analyzing the calcium data used in Adam

et al.1 We also apply similar steps for analyzing electrophysiological recordings. In general, the

same preparation applies for any response dataset that is temporally structured into epochs.
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The data analyzed here consists of neuronal responses recorded during behavioral sessions where

mice underwent a visually guided locomotion task. Mice were trained to run towards a visual land-

mark, then stop and wait at the landmark for 1.5 s to collect a reward.1 The preparation phases

consist of establishing a matrix of neuronal responses and selecting templates representing task

epochs to use for decomposition and clustering.

Prepare the data matrix of neuronal responses to decompose

Timing: 5 min (for step 1 and 2)

This section describes the steps needed prepare the data matrix of neuronal responses which will be

decomposed and clustered.

1. Segment the neural data into task phases windows (Figure 1A).

Note: In our example dataset, a mouse is running towards a landmark, and stops at the land-

mark and waits to collect reward. A behavioral session consists of time-evolving velocity and

position trajectories of the mouse over each trial.

a. Determine the locomotion stops at the landmark which were rewarded in a behavioral session.

b. For each such locomotion stop, determine the ‘switching point’ in locomotion corresponding

to the time of the last major velocity peak (above 25% of the maximum velocity within 200 ms

window before sustained zero velocity) before the rewarded stop.

Note: Other criteria to indicate stopping time are also valid approaches.

c. From each behavioral session, define landmark-stop windows for each rewarded stop with

2.5 s duration starting 1 s before the switching point and ending 1.5 s after.

Note: The duration of 1.5 s after stop initiation corresponds to the necessary waiting time to

collect reward.

Note: In general, the goal is to delimitate temporal windows of similar duration, that are all

aligned to a particular reference point (e.g., initiation of action, onset of stimulation, etc).

Figure 1. Preparing the data and selecting the behavioral templates

(A) Examples of speed traces in landmark-stop windows aligned to the last peak in velocity before stopping indicating the ‘switching point’ (30 trials

drawn from all the sessions across animals. N=10 mice, 3 sessions each). Adapted from Adam et al.1 Figure 2B.

(B) Schematic of the prepared data matrix M.

(C) Graph showing the three ideal behavioral template signals for a landmark-stop window, template_pre, template_stop and template_post.

Adapted from Adam et al.1 Figure S3A.
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2. Prepare the data matrix of neuronal response (Figure 1B).

a. For each neuron, compute the average change in fluorescence DFF over landmark-stop win-

dows.

Note: DFF = (Ft(t) - F0)/F0 where Ft is the fluorescence value at a given time and F0 is the base-

line fluorescence value.

b. Normalize each average response to a maximum DFF of 1.

c. Form an N-by-T (N: number of neurons and T: number of time bins) matrix M where each row

corresponded to the normalized average DFF of a neuron.

Note: Data matrix preparation should be tailored to the specific application but, at the end,

should give an N-by-T matrix of responses.

Note: Some form of normalization as performed in 2.b can be essential to ensure that

the results are not swayed by only a few extreme/high-amplitude responses. However,

it is often desirable for the result to capture high-amplitude responses if these are

common as they may indicated strongly task-responsive neurons. The researcher is then

faced with a trade-off between undervaluing strong-responses and undervaluing weak-

responses, which can be best decided by considering the data under investigation. When

in doubt, it is safe to first attempt without normalization, and then assess the obtained

solution.

Select behavioral templates over which the signals will be decomposed

Timing: 5 min (for step 3 and 4)

This section describes the steps needed to create behavioral templates, each representing an epoch

in the behavior, over which the neuronal responses will be decomposed.

3. The landmark-stop window consists of three epochs: pre-stop, stop and post-stop. Define

three ideal behavioral template signals, denoted by template_pre, template_stop and

template_post, where each represents one of the epochs (Figures 1A and 1C).

a. Set template_pre to be equal to 1 for -1 % t % 0 s and 0 otherwise.

b. Set template_stop to be equal to the velocity averaged across animals and sessions for

0 % t % 1.5 s and 0 otherwise.

c. Set template_post to be equal to 1 for 0.5 % t % 1.5 s and 0 otherwise.

Note: In general, the templates can be chosen using the following rule. Choose one tem-

plate for each behavioral epoch under investigation. For each epoch in the time window

of the neuronal response, create a template which is equal to 1 during the epoch and

zero otherwise. If, during that epoch, there exists a signal that can be used to characterize

it (e.g., in our setting, the decreasing velocity during the stop epoch), then use a template

that is equal to the signal during the epoch, and zero otherwise. Other methods are

possible, and the subsequent processing (See ‘‘step-by-step method details’’ sections

1–6) in projecting the templates to a low-dimensional subspace to obtain neuronal tem-

plates ensures that different choices defined over the same epochs ought not have large

effects on the results.

CRITICAL: The ideal templates can overlap in time at this stage, and thereby need not be

orthogonal. A subsequent processing step will ensure that they are orthogonal to get a

basis.
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KEY RESOURCES TABLE

MATERIALS AND EQUIPMENT

No specific computing power is needed for our methodology other than enough processor speed

and memory to load and manipulate the data.

Alternatives: We provide a step-by-step description of our method using the Python 3 lan-

guage, but any other computing language (e.g., MATLAB) would work as well with applicable

modifications to the syntax.

STEP-BY-STEP METHOD DETAILS

Our general method first identifies a low dimensional neural subspace that captures most of the en-

ergy in neuronal responses. It then takes the ideal templates that delimitate behavioral epochs and

projects them onto that subspace to yield ideal neuronal signals representing each of the ideal tem-

plates. It then forms a basis from these ideal neuronal signals, and decomposes the data onto this

basis to recover coefficients. Finally, it uses these coefficients to cluster the responses.

Reduce dimensions and identify a neural subspace that captures most of the energy in

neuronal responses

Timing: 5 min (for step 1, 2 and 3)

This section describes the steps needed to derive a low-dimensional subspace of neuronal re-

sponses that captures most of the energy in the responses.

1. Perform a singular value decomposition7–9 of the prepared data matrix M as USVT where the ma-

trix S is a rectangular diagonal matrix of singular values, and the matrices U and V are orthonormal

matrices (Figure 2A).

Note: Check that USVT is equal to M to verify that all went correctly with the computation.

2. Each singular value in S corresponds to a temporal neuronal response in VT (Figure 2A). Select the

responses v0, v1, v2 and v3 corresponding to the highest 4 singular values in S, which together

will span a 4-dimensional space (Figure 2B).

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python 3 python.org Version > 3.7

Numpy numpy.org N/A

Other

Dell OptiPlex Dell.com N/A

> import numpy as np

> U, s, VT = np.linalg.svd(M, full_matrices=False)

> S = np.zeros([U.shape[1], VT.shape[0]])

> for i in range(len(s)):

S[i,i] = s[i]
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Note:We reasoned that we had (not necessarily independent) four-degrees of freedom in our

analysis: baseline, pre-stop, stop and post-stop activity, and thus sought to begin with a

4-dimensional space.

Note: In general, the number of dimensions can be chosen as follows. If K ideal behavioral

templates were selected in the data preparation phase, choose K+1 temporal neuronal re-

sponses in VT. The reasoning is that each template would need one distinct dimension, and

the remaining dimension would correspond to baseline activity which plays a role as offset,

better connecting the behavioral templates to neuronal responses despite the difference

in baselines. In the next steps 4–6, the ideal behavioral templates will be projected onto

the four (or K+1) dimensional subspace, and thus the choice of dimensions only affects the

final shape of the templates used for clustering, and will not alter the original neuronal

responses.

Note: In some applications, it is also possible that the neural data is inherently high dimen-

sional, and that relevant aspects are captured in dimensions with lower singular values. In

such setting, the researcher may not restrict to the highest four (or K+1) singular values but

other four (or K+1) singular values that yield interpretable neuronal responses.

Note: Plot the signals v0,.,v3 to assess and verify that they represent temporally evolving

trajectories.

3. Compute the fraction of energy of the neuronal responses captured by this subspace by squaring

all the singular values si on the diagonal in S, and dividing the sum of the greatest 4 by the sum of

all the squared singular values.8,9

Note: The resulting subspace contained more than 80% of the calcium signal energy for the

whole population.

Note: In steps 4–6, the ideal behavioral templates will be projected onto the four (or K+1)

dimensional subspace. Adding additional dimensions will facilitate capturing more of the

shape of the ideal behavioral templates following the projection by capturing more energy

in the neuronal responses. Generally, fewer dimensions will lead to a more interpretable

and robust analysis that avoids over-fitting. However, in the case where either (i) the fraction

of the energy captured is low or (ii) the obtained neuronal template derived in a subsequent

step appears too coarse to capture the ideal behavioral template, then the researcher ought

to increase the number of dimensions. In such a setting, a principled approach consists of

cross-validation, where dimensionality is reduced for a random subset of neurons and then

> v0 = VT[0,:]

> v1 = VT[1,:]

> v2 = VT[2,:]

> v3 = VT[3,:]

> energy = sum(s[:4]**2)

> total_energy = sum(s**2)

> fraction = energy / total_energy
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the captured energy is evaluated on the remaining neurons (See e.g., Bro et al.10). The reduc-

tion is performed over multiple iterations for each number of dimensions to determine at what

dimensions noise is more likely being captured by the reduction.

Figure 2. Decomposing neural signals in a low dimensional subspace

(A) Schematic illustrating singular value decomposition of a matrix. Each diagonal element in S corresponds to one row in VT. These elements can be

ordered by decreasing magnitude, with VT re-arranged accordingly.

(B) Graph showing a basis for a four-dimensional subspace that captures more than 80% of the energy in the responses, all pooled together.

(C) Left. The three initial non-neuronal templates defined for pre-stop, stop and post-stop activity. Middle. The projections of the initial three non-

neuronal templates onto a 4-dimensional subspace derived through low-rank approximation. These correspond to the neural responses that represent

the non-neuronal templates. Right. The orthonormalized responses that form a basis, generating a 3-dimensional subspace, upon which we can

decompose our signals. Adapted from Adam et al.1 Figure S3A.

(D) Schematic showing the decomposition of a neuronal signal into a linear combination of the basis signals with additional noise.
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Change the basis of the subspace to recover neuronal template signals

Timing: 5 min (for step 4, 5 and 6)

This section describes the steps needed to project the behavioral templates selected in the prepa-

ratory steps on the low-dimensional subspace, and form a basis upon which to decompose the

neuronal signals.

4. Take the inner-product (dot-product) of each ideal template signal template_* (in Figure 1C) with

each temporal neuronal response v0, ., v3, to compute a weight coefficient (Figure 2C).

5. Define three neuronal template signals v_stop,v_pre and v_post as a sum of the 4 neuronal re-

sponses v0, ., v3, each scaled by its corresponding coefficient in step 4 (Figure 2C).

Note: These neuronal template signals represent the best neuronal response in the

4-dimensional subspace that can explain the ideal template signals representing behavioral

outcomes.

6. Using the gram-schmidt orthonormalization process,9 transform v_stop, v_pre and v_post

into an orthonormal basis b_stop, b_pre and b_post (Figure 2C).

Note: This step ensures that the templates are orthonormal, and thereby form a basis onto

which we can project. Verify that the inner-product of any pair of these two basis vectors is

> w_stop_0 = np.dot(template_stop,v0)

> w_stop_1 = np.dot(template_stop,v1)

...

> w_pre_0 = np.dot(template_pre,v0)

...

> w_post_0 = np.dot(template_post,v0)

> v_stop= w_stop_0*v0 + w_stop_1*v1 + w_stop_2*v2 + w_stop_3*v3

> v_pre= w_pre_0*v0 + w_pre_1*v1 + w_pre_2*v2 + w_pre_3*v3

> v_post= w_post_0*v0 + w_post_1*v1 + w_post_2*v2 + w_post_3*v3

> def norm(v):

return np.sqrt(np.dot(v,v))

> v = v_stop

> b_stop = v/norm(v)

> v = v_pre - b_stop*np.dot(b_stop,v_pre)

> b_pre = v/norm(v)

> v = v_post – b_stop*np.dot(b_stop,v_post) - b_pre*np.dot(b_pre,v_post)

> b_post = v/norm(v)
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zero, and that the norm of each is equal to 1. These 3 basis signals will be used to decompose

neuronal signals and then cluster them.

Note: We first reduced our space to 4 dimensions, and then further restricted to a

3-dimensional subspace within it. The first reduction relies purely on neural data, while the

second relies on the behavioral data. We could have directly reduced to 3 dimensions, but

we found that having an additional degree of freedom aids in finding the 3-dimension sub-

space that is best tailored to the information we want. Indeed, ideal behavioral templates

have different baseline offsets compared to the neuronal responses, and the additional

dimension aids in offsetting that baseline. As we are only interested in 3 epochs (pre-stop,

stop and post-stop) in the task, we do not need to keep the fourth dimension after using it

to derive the neuronal template signals.

Decompose neuronal responses onto the neuronal basis signals

Timing: 5 min (for step 7 and 8)

This section describes the steps needed to decompose the neuronal signals.

7. Take the inner-product (dot-product) of each neuronal response with each basis signal b_stop,

b_pre and b_post, to compute a weight coefficient.

Note: Each neuronal response can then be written as a weighted sum of the three basis signals

plus some additional component orthogonal to the subspace (considered as noise). The

weighted sum of the three basis signals gives an approximation of the original neural

response, which resides in the 3-dimensional subspace spanned by the basis signals

(Figure 2D).

8. Keep the neurons for which the fraction of their calcium signal energy (area of the squared signal)

that came from the three-dimensional subspace is above a chosen threshold, and discard the rest

from the analysis.

Note: For different approaches, one can either keep the neurons that have their energy ratio

above a fixed percentage (e.g., greater than 80% or the fraction of energy captured by the

subspace), or above twice the standard deviation from the mean energy, or above a deter-

mined percentile in the ratio distribution (e.g., highest 80%).

> coefs_stop = np.dot(M, b_stop)

> coefs_pre = np.dot(M, b_pre)

> coefs_post = np.dot(M, b_post)

> energy_stop = coefs_stop**2

> energy_pre = coefs_pre**2

> energy_post = coefs_post**2

> percentages=(energy_stop+energy_pre+energy_post)/np.sum(s**2)
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Note: In step 8, retaining the neurons for which the fraction of their calcium signal energy that

came from the three-dimensional subspace is greater than 85% (roughly the fraction of energy

captured by the 4-dimensional subspace) kept about 64% of all neurons we started with, and

we performed clustering on them as described in steps 9 and 10 below. In these neurons, less

than 15% of their energy is explained outside the 3-dimensional subspace, and we expect

most of that remainder to be explained by the 4th dimension that complements b_stop,

b_pre and b_post to span the 4-dimensional space generated by v0, v1, v2 and v3.

Indeed, we find that the remaining activity outside the subspace is concentrated after the

stop (Figures 3A and 3B). As we investigated only 3 epochs (pre-stop, stop and post-stop)

in Adam et al.,1 we considered that 4th dimension to be ‘noise’ for our purposes. In case

Figure 3. Neural response decomposition reveals three clusters of neurons in M2

(A) Plot showing STN-projecting M2 neurons (n=271), whose neural response energy (area under the squared signal) was more than 80% explained by

the subspace, clustered into three groups (pre-stop, stop and post-stop) using the templates in Figure 2C. Adapted from Adam et al.1 Figure 4D.

(B) Each neuronal response can be written as a combination of four components: the first three correspond to weighted versions of the basis functions,

and the fourth corresponds to the activity that remains outside the three-dimensional subspace spanned by the basis. The weights on the templates are

used to perform clustering. The remaining activity shows some surge after stopping. The 1-dimensional subspace containing the highest energy in the

remaining activity will consist of a neural trajectory with activity concentrated after the stop. When added to the three basis functions (pre-stop, stop and

post-stop), the new set will span the 4-dimensional space obtained initially. The decomposition is only used for clustering and not to post-process

neural signals. Adapted from Adam et al.1 Figure S3B.

(C) Scatterplot of the coefficient of contribution of the stop template in Figure 2C in spontaneous-stops versus landmark-stops. Each data point

represents a stop- neuron (N = 108) taken from (A), and the coefficient represents the energy of the response along the dimension of the basis, obtained

by taking the dot product of the calcium response with the stop basis vector, b_stop. Landmark stops have a higher coefficient than spontaneous stops,

indicating that b_stop has a greater contribution to responses during landmark stops. Adapted from Adam et al.1 Figure 2F.

(D) Box plots for the distribution of the coefficients in (C). The orange lines represent the respective medians. The means of the distributions are

significantly different (Paired t-test, ***:p=1.09e-6). Adapted from Adam et al.1 Figure 2G.

(E) Examples of the calcium activity of six M2 neurons projecting to STN during stops at the landmark and in the middle of the track. The response for

spontaneous-stops is normalized to the maximum value of the corresponding response for landmark-stops. Adapted from Adam et al.1 Figure 2H.

(F) Graph showing 3 templates of ideal neuronal responses related to three epochs in the task: pre-stop, stop and post-stop. The data is derived from

extracellular single-unit recordings in M2, and neuronal responses are obtained by deriving firing rates. Each neuronal response can be expressed as a

weighted combination of these 3 templates. Adapted from Adam et al.1 Figure 6B.

(G) Plots of all the M2 neurons whose neural response energy (area under the squared signal) was more than 80% explained by the subspace, clustered

into three groups (pre-stop, stop and post-stop, from top to bottom) using the templates in (F). Adapted from Adam et al.1 Figure 6C.
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we are interested in studying localized surges of activity after stops, that dimension becomes

relevant and should be included in the reduced subspace yielding 4 dimensions. More gener-

ally, the choice of dimensions reduced to defines everything outside the reduced subspace as

irrelevant noise. It is then important to choose the subspace to capture the features essential

to the investigation.

Note: The discarded neurons have more than 15% of their calcium signal energy explained

outside the three-dimensional subspace. These neurons might have responses related to pre-

stop, stop and post-stop, but these responses are considered weak with respect to our criterion.

However, these neurons might be tuned to other features of the task, and therefore other exclu-

sion criteria may be considered if they are more adequate to the application at hand.

Cluster neurons based on decomposition weights

Timing: 5 min (for step 9 and 10)

This section describes the steps needed to cluster the neuronal signals, using the decomposition.

9. Multiply the weight coefficient coefs_stop, coefs_pre and coefs_post, respectively by the

maximum value of the basis signals v_stop, v_pre and v_post to account for the template width

and get a corrected weight coefficients.

10. Attribute a neuron to one of three classes (pre-stop, stop and post-stop) whose corresponding

corrected weight coefficient is highest.

Note:Most importantly, the calcium responses in each class were not reduced in dimensions;

they were the original averages of the raw DFF traces taken over landmark stop windows. The

dimensionality reduction was only used to cluster the neuronal responses, leaving the neural

responses unaltered.

EXPECTED OUTCOMES

Weexpect this decomposition to enable clustering of neuronal responses.We applied it in Adam et al.1

to cluster in-vivo calcium signals during behavior imaged using two-photon microscopy, and found

three populations of neurons, each preferentially tuned to one epoch of the task (Figure 3A). Figure 3B

shows the contribution of each of the basis vector b_stop, b_pre and b_post to every neuronal

response, and highlights a residual noise. We further identified stops that occurred spontaneously

and were not rewarded, and defined corresponding their stop-windows. By taking inner-product (dot

product) of the averaged neural response during such stops with v_stop, we recovered coefficients

for non-rewarded stops. Our method revealed a significant difference in the coefficients between re-

warded and non-rewarded stops (Figures 3C and 3D), which indicated thatmanyM2 neurons projecting

to STN are active at visually-guided stops but not spontaneous stops (Figure 3E). Our method can also

be applied to electrophysiological data where action potential firing rates, instead of calcium response

intensity, are used as the neuronal responses. Single unit recordings in M2 reveal similar basis signals

representing the epochs (Figure 3F) and clusters of neurons (Figure 3G).

LIMITATIONS

Our approach is a hybrid between a supervised- and an unsupervised approach. Ideal behavioral

templates indicating task epochs need to be chosen at the beginning, which may alter results.

From that perspective, our approach is opposite to the direct use of PCA or more generally

> corrected_coefs_stop = coefs_stop*max(v_stop)
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canonical correlation analysis11 (CCA) which tends to be unsupervised. However, relying on chosen

behavioral templates is crucial to guide the analysis towards the behavioral features or epochs under

investigation. While PCA and CCA provide dimensions that maximizes information content, using

them in an unsupervisedmanner cannot ensure that these dimensions reflect neural information dur-

ing specified epochs in the task. Furthermore, our technique relies on projecting these templates

onto a low-dimensional neural response subspace, which will ensure that only the prominent fea-

tures of these templates are used in the analysis, leading to more robust conclusions. Nevertheless,

it is possible to incorporate PCA or CCA to our approach. Indeed, we recover a low dimensional sub-

space using directly SVD onto the data matrix and it is possible to replace this step with PCA or CCA

and derive another suitable subspace. The behavioral templates can then be projected onto that

newly obtained subspace, and the technique continue thereafter as described in this protocol.

Furthermore, CCA can be alternatively used to bypass template projection by deriving, for each

behavioral template, the 1st component (dimension) that maximally correlated with the template.

A neural basis for decomposition can then be derived using the orthogonalization process described

in this protocol.

Our approach also relies on the major patterns in the data that represent most of the energy in the

neuronal responses, and can therefore miss more nuanced activity patterns. In particular, the re-

maining unused dimensions are considered to be task irrelevant. How many and which dimensions

to consider becomes an essential issue that can unbiasedly be addressed through cross-validation,

as described in step 3. Furthermore, it can be ill-posed to compare the obtained coefficients from

Group A (e.g., rewarded stops) to those obtained in Group B (e.g., non-rewarded stops) when the

neuronal templates are optimally derived through dimensionality reduction in Group A. The opti-

mality condition may be a confound with any significant difference observed. It is best to perform

additional analysis of difference significance relying directly on the raw signals or an alternative visu-

alization and not only rely on the coefficients. On the other end, cross-validation can be employed,

e.g., by using a fraction of the rewarded trials to derive the templates, and compute coefficients on

the remaining trials, while considering all the neurons in the analysis. Furthermore, our approach can

be prone to forcing an identification and interpretation of clusters that is not present in the data. The

validity of the findings can again be justified through cross-validation techniques, where templates

are derived using a subset of the behavioral windows (e.g., the rewarded stops) and then evaluated

on the remaining withheld set of behavioral windows. Alternatively, investigating the distribution of

coefficients can provide additional information on how clustered is the data.

Lastly, our approach provides a static decomposition of the data into separate behavioral epochs. It

does not explicitly target dynamical evolution of the data. For instance, it is often desirable to

decompose the neuronal signals into evolving latent (hidden) variables that reflect different physi-

ological conditions. For such situations, combining our approach with state-space methods would

yield the needed perspective. Such a combination is outside the scope of this protocol.

TROUBLESHOOTING

It can be useful to always check and plot the obtained vectors and templates, and assess whether

they are consistent with expectations and insight. Throughout the step-by-step description, we

added verify steps to minimize troubleshooting needs. Among the problems that can emerge are:

Problem 1

In step 2, the temporal neuronal response obtained do not appear to represent neuronal responses.

Potential solution

Unintentionally transposing the data matrix either in step 1 or step 2 will yield columns in VT indexed

by neuron number instead of time. Furthermore, unintentionally deriving a column from V instead of

VT in step 2 will yield an uninterpretable response. Be sure that nomatrix is inadvertently transposed.
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Problem 2

In step 2, the temporal neuronal responses are mostly capturing responses with very high amplitude,

and are not capture more nuanced responses.

Potential solution

In the situation where the contribution of high amplitude response needs to be discount in the anal-

ysis, normalizing the responses is crucial before reducing dimensions. We discuss details and ratio-

nales for normalization as a note in step 3.

Problem 3

In step 3, the dimensionality reduction does not capture a large fraction of the energy.

Potential solution

There appears to be a lot of response heterogeneity in the neural responses. Increase the number of

dimensions to capture more of this variability and increase the amount of captured energy.

Problem 4

In steps 5 and 6, the derived neuronal response templates do not appear to capture the ideal behav-

ioral templates well.

Potential solution

The sought features through the behavioral templates might be refined, and best captured

in higher dimensions. Try increasing the number of dimensions as noted in step 3. The additional

first few dimensions that did not fully capture the behavioral templates should also inform

you on additional coarser behavioral templates to consider that might be relevant to the

investigation.

Problem 5

In step 7, the derived coefficients appear uninterpretable and wrongly scaled.

Potential solution

Before projecting to the low-dimensional neural subspace, it is important to ensure that the tem-

plate neural responses form an orthonormal basis. Check that the dot product of every pair of tem-

plate vectors is zero, and that the norm of each is equal to 1. A non-unitary norm would scale the

coefficients inappropriately.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the Lead Contact, Elie Adam (eadam@mit.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data reported in this paper will be shared by the lead contact upon request.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
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