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ABSTRACT

The highly stable within-sample relative expression orderings (REOs) of gene 
pairs in a particular type of human normal tissue are widely reversed in the cancer 
condition. Based on this finding, we have recently proposed an algorithm named 
RankComp to detect differentially expressed genes (DEGs) for individual disease 
samples measured by a particular platform. In this paper, with 461 normal lung tissue 
samples separately measured by four commonly used platforms, we demonstrated that 
tens of millions of gene pairs with significantly stable REOs in normal lung tissue can 
be consistently detected in samples measured by different platforms. However, about 
20% of stable REOs commonly detected by two different platforms (e.g., Affymetrix 
and Illumina platforms) showed inconsistent REO patterns due to the differences in 
probe design principles. Based on the significantly stable REOs (FDR<0.01) for normal 
lung tissue consistently detected by the four platforms, which tended to have large 
rank differences, RankComp detected averagely 1184, 1335 and 1116 DEGs per sample 
with averagely 96.51%, 95.95% and 94.78% precisions in three evaluation datasets 
with 25, 57 and 58 paired lung cancer and normal samples, respectively. Individualized 
pathway analysis revealed some common and subtype-specific functional mechanisms 
of lung cancer. Similar results were observed for colorectal cancer. In conclusion, 
based on the cross-platform significantly stable REOs for a particular normal tissue, 
differentially expressed genes and pathways in any disease sample measured by 
any of the platforms can be readily and accurately detected, which could be further 
exploited for dissecting the heterogeneity of cancer.

INTRODUCTION

Recently, we have reported an interesting biological 
phenomenon that the within-sample relative expression 
orderings (REOs) of gene pairs in a particular type of 
normal tissue are highly stable but widely reversed in 
the corresponding cancer tissue. Based on this finding, 
we have developed an algorithm, named RankComp [1], 
to identify differentially expressed genes (DEGs) and 
deregulated pathways in each disease tissue in comparison 
with its own previously normal state by exploiting the 

reversal REO patterns of this disease sample [1]. Totally 
different from the traditional population-level case-control 
comparison methods, such as T-Test [2], SAM [3], Limma 
[4] and RanProd [5], the individual-level analysis can 
capture the heterogeneity of cancer and help us study 
cancer subtype-specific mechanisms and develop cancer 
prognostic biomarkers [6]. Especially, RankComp is an 
economic and efficient method which can identify DEGs 
for individual disease samples measured by different 
laboratories by fully using previously accumulated gene 
expression data of normal samples [1].
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It is well known that gene expression profiling 
is susceptible to various technical artifacts or ‘batch 
effects’ introduced by differences in laboratory 
conditions, reagent lots and personals [7–13], especially 
when studies have to be carried out over a long period 
of time or when clinical specimens originate from 
different hospitals [9]. Current batch effect adjustment 
or data normalization algorithms, such as DWD [8], 
XPN [14], PAMR [15], SVA [16] and EB [17], are 
usually inadequate and may even distort the real 
biological signals [18, 19]. In contrast, because the 
within-sample REOs of gene pairs are insensitive to 
experimental batch effects [20–22], the application of 
RankComp obviates the need of batch effect adjustment 
and inter-sample normalization. As validated in our 
previous studies, the within-sample REOs are highly 
reproducible and comparable between data produced 
by different laboratories using the same or similar 
platforms [1, 6]. However, the within-sample REOs may 
be subject to a certain degree of uncertainty in samples 
measured by different platforms due to the differences 
in probe design principles. Thus, it is necessary to 
further evaluate the cross-platform properties of within-
sample REOs in order to extend the application scope 
of the individual-level differential expression analysis. 
Another problem of the current RankComp algorithm is 
that it is based on REOs that are highly stable in a pre-
defined percentage (e.g., 99%) of normal samples, which 
is lack of statistical control and may limit the detection 
power of DEGs in individual samples. Thus, it is also 
necessary to evaluate the performance of RankComp 
when using significantly stable gene pairs, selected with 
statistical control rather than a pre-defined percentage, 
in a particular type of normal tissue as the basis for the 
individual-level differential expression analysis.

In this article, we firstly compared gene expression 
profiles generated with four commonly used gene 
expression profiling platforms (Affymetrix, Illumina, 
Agilent microarray platforms and a RNA-sequencing 
platform) for normal lung and colorectal tissues, 
respectively. For each type of normal tissue, we showed 
that tens of millions of gene pairs with significantly 
stable REOs, especially those with large expression 
differences, can be consistently detected in samples 
measured by different platforms. Then, we showed that, 
comparing with RankComp based on gene pairs with 
highly stable REOs in at least 99% normal samples, 
RankComp based on significantly stable REOs in normal 
samples can detect much more DEGs for each disease 
sample with slightly decrease of precision. Finally, 
based on the individual-level differential expression 
analysis, we applied the individual-level pathway 
analysis to reveal some common and subtype-specific 
functional mechanisms of lung adenocarcinoma and 
colon adenocarcinoma, respectively.

RESULTS

Significantly stable REOs in normal samples 
measured by four platforms

For a particular type of normal tissue, we focused 
on evaluating the consistency between the within-sample 
relative expression orderings (REOs) in samples separately 
measured by four platforms, including three commonly 
used microarray platforms (Affymetrix, Illumina, Agilent) 
and a RNA-sequencing platform. All the data used in this 
study are described in Table 1 and the flowchart of the 
analysis procedure is described in Figure 1.

Firstly, for the Affymetrix platform, we collected a 
set of 150 normal lung tissue samples from four datasets 
(GSE19804, GSE18842, GSE27262 and GSE31210) 
and another set of 65 normal lung tissue samples from 
the GSE19188 dataset, referred to as SetA and SetB, 
respectively. From SetA and SetB, 197,546,446 and 
195,767,556 significantly stable REOs (binomial test, 
FDR< 0.01) were identified, respectively. The two lists of 
significantly stable REOs had 190,118,028 overlaps, among 
which 98% showed the same REO patterns in SetA and 
SetB, indicating that the significantly stable REOs of gene 
pairs were highly reproducible (binomial test, p<1.0-16). 
As shown in Table 2, 94.34% of the significantly stable 
REOs for SetA with 150 samples could be found in SetB 
with 65 samples, and 95.19% of the significantly stable 
REOs for SetB could be found in SetA. To further evaluate 
the sample size required for detecting significantly stable 
REOs, we resettled the GSE31210 dataset with 20 samples 
as SetB’ and all the other 195 samples as SetA’ and found 
that 88.50% of the significantly stable REOs found in SetA’ 
could be found in SetB’. Similar results were observed in 
the normal lung tissue samples measured by the Illumina 
and Agilent platforms, respectively, as described in Table 2. 
Especially, for the data measured by the Agilent platform, 
89.06% of the significantly stable REOs found in SetA 
with 58 samples could be found in SetB with 24 samples. 
For the data measured by the Illumina platform, 78.33% 
of the significantly stable REOs detected from SetA with 
60 samples could be found in SetB with only 13 samples. 
Similar results were observed for the normal colorectal 
tissue, as described in Table 2.

Notably, for both the normal lung and colorectal 
tissue, the gene pairs with significantly stable REOs 
found in each dataset involved all genes measured by the 
corresponding platform. For each type of tissue, when 
combining all the samples measured by a platform, above 
80% of all the possible gene pairs were significantly 
stable (FDR<0.01), as shown in Figure 2. In addition, 
above 80% of the significantly stable REOs detected in 
the combined data measured by a platform could be found 
with a relatively small sample size (about 20 samples), as 
described in Supplementary Table S1.
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Table 1: Description of normal sample data and paired cancer-normal sample data used in this study

 GEO Acc or Data 
source

Platform Normal sample sizea Tumor sample size

The normal sample data for REO evaluation

Lung

SetA GSE19804 Affymetrix GPL570 60  

 GSE18842 Affymetrix GPL570 45  

 GSE27262 Affymetrix GPL570 25  

 GSE31210 Affymetrix GPL570 20  

SetB GSE19188 Affymetrix GPL570 65  

SetA GSE32863 Illumina GPL6884 58  

SetB GSE31267 Illumina GPL6947 24  

SetA GSE40588 Agilent GPL6480 60  

SetB GSE15197 Agilent GPL6480 13  

 GSE57148b Illumina GPL11154 91  

Colorectal

SetA GSE21510 Affymetrix GPL570 25  

 GSE18105 Affymetrix GPL570 17  

 GSE4107 Affymetrix GPL570 10  

SetB GSE8671 Affymetrix GPL570 32  

SetA GSE56789 Illumina GPL10558 40  

SetB GSE31279 Illumina GPL6104 32  

 GSE43841 Illumina GPL14951 6  

SetA GSE46271 Agilent GPL14550 22  

 GSE50114 Agilent GPL6480 9  

SetB GSE28000 Agilent GPL4133 23  

 GSE50760b Illumina GPL11154 18  

The paired cancer-normal sample data for the performance of RankComp evaluation

Lung

 GSE27262 Affymetrix GPL570 25 25

 GSE32863 Illumina GPL6884 57 57

 TCGA_luadb IlluminaHiSeq_
RNASeqV2 58 58

Colorectal

 GSE8671 Affymetrix GPL570 32 32

 GSE31279 Illumina GPL6104 32 32

 TCGA_coadb IlluminaHiSeq_
RNASeqV2 26 26

Note: aTo determine stable gene pairs for a particular type of normal tissue, only the normal sample sizes were described for 
the datasets.bDenotes mRNA_seq data, especially TCGA_luad and TCGA_coad denote paired lung adenocarcinoma and 
colon adenocarcinoma samples from TCGA, respectively.
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The above results together indicated that the REOs 
of gene pairs are widely stable in a particular type of 
human normal tissue and most of them could be found 
with only about 20 samples.

Cross-platform significantly stable REOs in 
normal tissue samples

Then, we evaluated the consistency between the 
significantly stable REOs detected by different platforms. 
For each of the three microarray platforms, we defined the 
REOs consistently detected in SetA and SetB measured by 
the platform for a type of normal tissue as the stable REOs 
of the platform for this type of normal tissue. Especially, 
we only analyzed the gene pairs consisting of genes 
commonly detected by all the four platforms.

For the 94,145,902 significantly stable REOs 
detected from the normal lung tissue samples measured 
by the Affymetrix platform, 85.50% were also detected 
from the data measured by the Illumina platform, among 
which 82.37% showed the same REO patterns in the 
samples measured by the two platforms (binomial test, 
p<1.0-16). For the 66,305,728 significantly stable REOs 

consistently detected by the above two platforms, 79.91% 
were included in the 77,825,426 significantly stable REOs 
found in the data measured by the Agilent platform and 
the consistency increased to 92.1%. Furthermore, for the 
48,802,858 significantly stable REOs consistently detected 
by the three microarray platforms, 98.01% were included 
in the 99,202,212 significantly stable REOs (binomial 
test, FDR<0.01) detected by the RNA-sequencing 
platform and the consistency further increased to 96.79%. 
Totally 46,295,854 gene pairs with significantly stable 
REOs (FDR<0.01) were consistently detected by the 
four platforms for the normal lung samples. Similar 
results were also observed for normal colorectal tissue, as 
described in Table 3.

The above results indicated that the cross-platform 
ability of significantly stable REOs increases as the 
significantly stable REOs can be consistently detected in 
increasing number of platforms. A possible explanation 
could be that the REOs kept across multiple platforms 
with different probe design principles tend to have 
large rank differences which are difficult to be reversed 
by the probe detection biases of various platforms. To 
illustrate this possibility, for the significantly stable REOs 

Figure 1: The flowchart of the analysis procedure.
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Table 2: Reproducibility of significantly stable REOs in normal samples measured by each of the platforms

 Label Normal 
sample size Gene# Number of 

stable REOs
Number of 

overlaps POG12 POG21 Consistency P

 Lung

Affymetrix SetA 150 20283 197,546,446 190,118,028 0.9434 0.9519 0.9802 <1.0-16

 SetB 65  195,767,556      

Illumina SetA 58 23364 251,964,302 231,498,834 0.8906 0.9061 0.9694 <1.0-16

 SetB 24  247,667,868      

Agilent SetA 60 19596 181,534,752 151,185,241 0.7833 0.9105 0.9406 <1.0-16

 SetB 13  156,176,364      

 Colorectal

Affymetrix SetA 52 20283 193,475,574 184,134,774 0.9136 0.9135 0.96 <1.0-16

 SetB 32  193,501,698      

Illumina SetA 40 17789 148,902,375 131,019,285 0.8048 0.8723 0.9147 <1.0-16

 SetB 38  137,385,589      

Agilent SetA 31 18583 145,935,881 121,390,845 0.8099 0.87 0.9736 <1.0-16

 SetB 23  135,855,195      

Note:#denotes the number of genes of SetA and setB measured by a particular platform. POG12 (or POG21) denotes the 
percentage of the significantly stable gene pairs (FDR<0.01) detected from SetA (or SetB) that are consistently detected in 
SetB (or SetA). Consistency denotes the percentage of overlapped gene pairs that display the same REO patterns between 
SetA and SetB and P denotes the significance of the consistency.

Figure 2: The percentage of the gene pairs with significantly stable REOs (FDR<0.01) in all measured gene pairs.
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commonly detected by the Affymetrix and Illumina 
platforms for normal lung tissue, we compared the rank 
differences between the gene pairs with consistent REOs 
and the gene pairs with inconsistent REOs detected 
by the two platforms using the GSE19188 dataset. As 
expected, the median of the rank differences of gene pairs 
with consistent REOs was 6855, which was significantly 
larger than that (median=3144) of the gene pairs with 
inconsistent REOs (Wilcoxon rank sum test, p<1.0-16).

In summary, for a particular type of human normal 
tissue, significantly stable within-sample REOs especially 
for gene pairs with large expression differences are largely 
consistent across samples measured by different platforms.

Individualized DEGs detection based on cross-
platform significantly stable REOs

As described above, totally 46,295,854 gene 
pairs with significantly stable REOs (FDR<0.01) 
were consistently detected in the normal lung samples 
separately measured by the four platforms. Based on 
these significantly stable REOs, we applied RankComp 
[1] to detect differentially expressed genes (DEGs) in a 
given cancer sample compared with its own previously 
(usually unknown) normal state. The detail of the 
RankComp algorithm was described in [1] and briefly in 
the METHODS section. We evaluated the performance 
of RankComp using cancer samples with paired 

adjacent normal samples, assuming that the previously 
normal state of a cancer tissue could be approximately 
represented by the adjacent normal tissue of the cancer 
tissue. After identifying DEGs for each cancer sample, 
we evaluated the precision of DEGs identified for this 
cancer sample using the observed expression differences 
(up- or down-regulations) between the cancer sample 
and the paired adjacent normal sample as the benchmark 
(see Methods). Considering that other individual-
specific factors irrelevant to the cancer condition may 
induce transcriptional alternations in the cancer sample, 
we focused on individualizing the population-level 
DEGs predetermined to ensure the DEGs identified in 
individual cancer samples to be associated with cancer. 
We also evaluated the performance of RankComp for 
individualized differential expression analysis based 
on the highly stable REOs (stable in at least 99% of the 
samples) consistently detected in the normal lung and 
colorectal tissue samples measured by the four platforms, 
respectively.

For lung cancer, using the GSE19188 and 
GSE19804 datasets, we firstly detected 12,359 and 8,681 
DEGs (Student's t-test, FDR<0.01) between the cancer and 
normal tissues, respectively. The two lists of DEGs had 
6,929 overlaps, among which 98.46% showed the same 
deregulation directions in the cancer tissues in the two 
datasets (binomial test, p<1.0-16). We defined the 6,822 
reproducible DEGs as the population-level DEGs for lung 

Table 3: Cross-platform evaluation of the significantly REOs for normal tissues

 Number of 
stable REOs

Number of 
overlaps POG12 POG21 Consistency P

lung

Affymetrix 94,145,902 80,493,915 0.7043 0.7471 0.8237 <1.0-16

Illumina 88,746,864      

Affy_Illu 66,305,728 52,986,997 0.736 0.6271 0.921 <1.0-16

Agilent 77,825,426      

Affy_Illu_Agi 48,802,858 47,832,844 0.9486 0.4667 0.9679 <1.0-16

RNA_seq (GSE57148) 99,202,212      

Colorectal

Affymetrix 100,855,012 78,495,790 0.6729 0.7569 0.8645 <1.0-16

Illumina 89,653,488      

Affy_Illu 67,862,351 52,201,960 0.7347 0.6223 0.9551 <1.0-16

Agilent 80,116,625      

Affy_Illu_Agi 49,856,959 48,851,749 0.9662 0.4453 0.9861 <1.0-16

RNA_seq (GSE50670) 108,187,244      

Note: Affy_Illu denotes stable gene pairs consistently detected from the data measured by Affymetrix and Illumina 
platforms. Similarly, Affy_Illu_Agi denotes stable gene pairs consistently detected from the data measured by Affymetrix, 
Illumina and Agilent platforms.
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cancer. Then, using three datasets with paired lung cancer 
and adjacent normal samples separately measured by 
three different platforms, we evaluated the performance of 
RankComp in individualizing the population-level DEGs. 
For each cancer sample, we performed RankComp based 
on the 46,295,854 gene pairs with significantly stable 
REOs (FDR<0.01) consistently detected in the normal 
lung samples measured by the four platforms. For the 25 
lung cancer samples of the GSE27262 dataset measured 
by the Affymetrix platform, RankComp identified 
averagely 1,184 DEGs per sample with averagely 96.51% 
precision according to the observed expression differences 
between the cancer samples and their paired adjacent 
normal samples. We also evaluated RankComp using 
the GSE32863 and TCGA-luad (lung adenocarcinoma 
samples from TCGA) datasets which included 57 and 
58 paired cancer and adjacent normal samples measured 
by the Illumina microarray platform and the Illumina 
HiSeq 2000 platform, respectively. Averagely 1,335 and 
1,116 DEGs were identified per cancer sample and the 
average precisions were 95.95% and 94.78% for the two 
datasets, respectively. In contrast, based on the 21,789,916 
highly stable REOs (stable in at least 99% of the samples) 
consistently detected in the normal lung samples measured 
by the four platforms, the average precision increased to 
98.96%, 98.97 % and 95.65% but averagely only 392, 
542 and 474 DEGs were identified per sample in the three 
datasets, respectively. Similar results were also observed 
for colorectal cancer, as shown in Figure 3.

The above results showed that RankComp based 
on significantly stable REOs exhibited greatly enhanced 
detection power at the cost of slightly decrease of 
precision, compared with RankComp based on highly 
stable REOs.

Individualized pathway analysis based on 
individualized DEGs

After identifying DEGs for a disease sample, we can 
detect deregulated pathways for this disease sample. Here, 
we analyzed all the 515 lung adenocarcinoma samples and 
the 285 colon adenocarcinoma samples documented in 
TCGA to illustrate this application.

First, we detected pathways separately enriched 
with up- or down-regulated genes for each of the 515 
lung adenocarcinoma samples (hypergeometric test, 
FDR<0.1) [23]. As shown in Figure 4A, some well-known 
cancer pathways could be commonly altered in lung 
adenocarcinoma samples. For examples, the ‘Osteoclast 
differentiation’ [24] and ‘TNF signaling’ [25] significantly 
enriched with down-regulated genes in about 60% of the 
515 samples (FDR<0.1) and the coverage increased to 
above 90% with a looser significance threshold of p<0.05. 
In addition, the ‘Cell cycle’ [26] pathway significantly 
enriched with up-regulated genes in about 75% or 90% 
(with FDR<0.1 or p<0.05) of the 515 samples. In contrast, 
some pathways could be subtype-specific. For example, 
the ‘Fanconi anemia pathway’ significantly enriched with 

Figure 3: RankComp based on significantly stable REOs can detect much more DEGs with slightly decreased precision 
for each disease sample than RankComp based on highly stable REOs (stable in above 99% samples).
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up-regulated genes in about 20% or 65% (with FDR<0.1 
or p<0.05) of the 515 samples, indicating that it might 
be associated with cancer prognosis [27]. For another 
example, the ‘Chemokine signaling pathway’ significantly 
enriched with down-regulated genes in about 18% or 77% 
(with FDR<0.1 or p<0.05) of the 515 lung cancer samples, 
indicating that it might also be associated with cancer 
prognosis [28].

Similarly, we performed pathway enrichment 
analysis for each of the 285 colon adenocarcinoma 

samples. As shown in Figure 4B, two pathways 
(‘oxidative phosphorylation’ and ‘metabolic pathway’) 
were significant in all the 285 samples with FDR<0.1 and 
another five pathways (‘Mineral absorption’, ‘Cardiac 
muscle contraction’, ‘Fatty acid degradation’, ‘Nitrogen 
metabolism’ and ‘Peroxisome’) were also significant 
in above 90% of the 285 samples when defined with a 
looser significance threshold (p<0.05). Thus, these 
pathways, such as the ‘metabolic’ [29] and ‘oxidative 
phosphorylation’ [30] pathways, could be commonly 

Figure 4: The KEGG pathways separately enriched with up- and down-regulated genes in at least 10% of the TCGA 
lung adenocarcinoma samples A. and the TCGA colon adenocarcinoma samples B.
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altered in colon cancer. In contrast, some other pathways 
such as ‘valine, leucine and isoleucine degradation’ 
[31] and ‘Tyrosine metabolism’ [32] pathways could 
be subtype-specific and thus could be associated with 
cancer prognosis. Especially, with p<0.05, the ‘Cell cycle’ 
pathway significantly enriched with up-regulated genes in 
89% of the 515 lung adenocarcinoma and in 82% of the 
285 colon adenocarcinoma samples, indicating that this 
pathway might be commonly deregulated in cancer [33]. 
In addition, the ‘Mineral absorption’ pathway significantly 
enriched with down-regulated genes in 97% of the 515 
lung adenocarcinoma and in 100% of the 285 colon 
adenocarcinoma samples, indicating that this pathway 
might also be commonly deregulated in cancer [34, 35].

The above results suggested that individualized 
pathway analysis could provide hints for revealing 
common and subtype-specific functional mechanisms of 
cancer. The functional analysis results also provided extra 
evidence for the authenticity of individualized DEGs at 
the functional level.

DISCUSSION

As demonstrated in this article, tens of millions of 
gene pairs with significantly stable REOs in a particular 
type of normal tissue, especially those with large 
expression differences, can be consistently detected by 
different platforms. This provides the basis for individual-
level differential expression analysis for cancer samples 
measured by different platforms. Compared with 
RankComp based on highly stable REOs (e.g., stable in 
above 99% samples), RankComp based on significantly 
stable REOs can detect much more DEGs with slightly 
decrease of precision for each disease sample, as 
demonstrated by the results for both lung cancer and 
colorectal cancer. Individual-level DEGs analysis 
naturally enables us to perform pathway analysis at the 
individual level, which could reveal common functional 
mechanisms as well as subtype-specific functional 
mechanisms of cancer. This is totally different from the 
traditional population-level pathway analysis which 
cannot discriminate whether a significant pathway is 
altered in a group of patients (i.e., a subtype) or all 
patients. Furthermore, our results showed that almost all 
gene pairs had significantly stable REOs across samples 
for a given normal tissue. This indicated that the relative 
ordering of gene expression is overall stable in a particular 
type of normal human tissue, indicating that genes may 
need to express in a comprehensive coordination structure 
to carry normal function systematically [1].

Based on the significantly stable REOs consistently 
detected by multiple platforms for a particular type of 
tissue, DEGs and deregulated pathways for any disease 
sample measured by any of these platforms can be readily 
detected. This could be of particular valuable when we 

need to analyze multiple datasets of disease samples 
measured by different platforms to identify and validate 
various cancer signatures (such as prognostic signatures) 
[36]. Moreover, for a particular normal tissue, our result 
showed that, the significantly stable REOs consistently 
detected in more platforms tend to be more likely to 
remain consistent in a new platform. Especially, almost 
all (above 97%) significantly stable REOs consistently 
detected (binomial test, FDR<0.01) by the three 
microarray platforms could be reproducibly found by 
the RNA-sequencing platform. This might be helpful for 
analyzing disease samples measured by a less commonly 
used platforms when no or insufficient normal samples are 
measured by the platform for determining the stable REOs 
for this platform. Notably, a major limitation of selecting 
cross–platform stable REOs is that many truly stable 
REOs could be lost. As shown in Table 3, about half of the 
stable REOs detected by a particular platform will be lost 
when screening the stable REOs from samples measured 
by the four platforms for lung and colorectal tissue. 
Although our results indicated that it might be sufficient 
to detect DEGs based on the cross-platform stable REOs, 
the effects of using a certain percentage of stable REOs 
on the DEGs detection power need to be further studied.

In summary, a large fraction of the widely stable 
REOs in a particular type of normal tissue can be 
consistently detected in samples measured by different 
platforms. By fully using previously accumulated gene 
expression data of normal samples, RankComp is an 
economic and efficient method which can identify DEGs 
for individual disease samples measured by different 
platforms. Moreover, the individual-level analysis of 
DEGs can also provide the possibility to identify robust 
diagnostic and prognostic biomarker for precision 
medicine [36].

MATERIALS AND METHODS

Data and preprocessing

The gene expression profiles analyzed in this 
study are described in Table 1. The data generated with 
three commonly used microarray platforms (Affymetrix, 
Illumina, Agilent) were downloaded from Gene 
Expression Omnibus [37] (GEO, http://www.ncbi.nlm.
nih.gov/geo/) and the mRNA-seq data measured by RNA-
sequencing platform were downloaded from GEO and 
TCGA [38] (http://cancergenome.nih.gov/).

For the data measured by the Affymetrix platform, 
we downloaded the raw mRNA expression data (.CEL 
files) and used the Robust Multi-array Average algorithm 
for background adjustment [39]. For the data measured 
by the Illumina platform, we directly downloaded 
the processed data. For the data measured by the 
Agilent platform, we downloaded the raw fluorescent 
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signal intensities data of the channel (gMedianSignal 
or rMedianSignal) for normal samples and used the 
intensities to minus the corresponding background signal 
intensities as the probe-expression matrix. Especially, for 
the data of TCGA, we directly downloaded the expression 
data of level 3.

For array-based data, each probeset ID was mapped 
to Entrez gene ID with the corresponding platform file. 
If a probeset was mapped to multiple or zero gene, then 
the data of this probeset was deleted. If multiple probesets 
were mapped to the same gene, the expression value 
for the gene was defined as the arithmetic mean of the 
value of multiple probesets. For the sequence-based data 
form GEO, we directly downloaded the processed data 
and each Gene Symbol was mapped to Entrez gene ID 
with biological DataBase network (bioDBnet). For the 
sequence-based data of level 3 from TCGA, we removed 
genes whose expression measurements were at or below 
a noise threshold of 0.2 normalized counts in at least 75% 
of samples [40].

Identification of significantly stable REOs in 
normal tissue

The REO of two genes, A and B, is denoted as A >B 
(or B<A) if gene A has a higher (or lower) expression level 
than gene B. The significance of a REO is determined by a 
binomial test [41] as follows:
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where n denotes the total number of normal 
samples, k denotes the number of samples that have 
a certain REO pattern (e.g., A>B or A<B) in n normal 
samples and p0 (p0=0.5) is the probability of observing 
a certain REO pattern in a normal sample by chance. 
Then, the p-values were adjusted using the Benjamini and 
Hochberg method [42].

Evaluation of the reproducibility of the 
significantly stable REOs

We used the POG (Percentage of Overlapping 
Gene pairs) score [43, 44] to evaluate the reproducibility 
of significantly stable gene pairs identified from two 
independent datasets. If two lists of stable gene pairs, 
list 1 with length L1 and list 2 with length L2, have n 
overlaps, among which k have the same REO patterns, 
then the POG score from list 1 (or list 2) to list 2 (or 
list 1), denoted as POG12 (or POG21), is calculated as k/
L1 (or k/L2), and the concordance score is calculated as 
k/n. The probability of observing the concordance score 
by chance is calculated with the binomial distribution 
model as described above, where p0 (p0 =0.5) is the 
probability of a gene pair having the same REO patterns 
in the two lists by chance.

Performance evaluation of RankComp

The detail of the RankComp algorithm is described 
in [1]. Briefly, for each cancer sample, gene pairs with 
reversal ordering in comparison with their stable ordering 
in normal samples are firstly determined as reversal gene 
pairs by RankComp. Then, to determine whether a given 
gene A is differentially expressed in a given disease 
sample, Fisher’s exact test [45] is used to test the null 
hypothesis that the proportion of reversal gene pairs 
supporting the up-regulation of gene A is equal to the 
proportion of gene pairs supporting its down-regulation. 
For a given gene A, if its ordering is significantly lower 
(or higher) than that of another gene in normal samples 
but this REO is reversed in a cancer sample, then this 
reversal gene pair could support up-regulation (or down-
regulation) of gene A in the cancer sample. If gene A 
itself is not changed in expression level, the effect of 
the expression changes of other genes on the upward or 
downward shift in the rank of gene A is assumed to be 
a random event. Finally, a filtering process is utilized to 
retain only those DEGs which are still significant with 
Fisher’s exact test after excluding their coupled gene pairs 
including any other DEGs.

We used paired cancer and adjacent normal samples 
to evaluate the performance of RankComp, assuming that 
the unknown previously normal state of a cancer tissue 
could be approximately represented by the adjacent 
normal tissue of the cancer tissue. After identifying DEGs 
for one cancer sample, if the deregulation directions (up- 
or down-regulations) of DEGs are consistent with the 
deregulation directions observed in the cancer sample 
compared with its own adjacent normal sample, then 
they are defined as true positives (TP); otherwise, false 
positives (FP). The precision rate is calculated as TP/
(TP+FP) for each cancer sample. To ensure the association 
between the individualized DEGs and cancer, we restricted 
our evaluation to the reproducible population-level 
DEGs predetermined using two datasets for each type of 
cancer. For each cancer, the statistical significance of the 
concordance score between two lists of DEGs between 
cancer samples and normal controls, detected by Student's 
t-test, is calculated by the binomial distribution model as 
described above. Finally, the DEGs reproducibly detected 
in the two datasets for each cancer are defined as the 
population-level DEGs associated with the cancer.

The KEGG pathways

Data of 223 pathways covering 6290 unique 
genes were extracted from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [46] on 10 May 2015. The 
hypergeometric distribution model is used to determine 
the significance of biological pathways enriched with up- 
and down-regulated DEGs, respectively [23]. The p-values 
are adjusted using the Benjamini and Hochberg procedure.
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REOs: relative expression orderings; DEGs: 
differentially expressed genes; GEO: Gene Expression 
Omnibus; KEGG: Kyoto Encyclopedia of Genes and 
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