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Uveal melanoma (UM) represents the most common primary intraocular malignancy in adults and is
characterized by aggressive behaviors and a lack of targeted therapies. Hypoxia-targeted therapy has
become a promising new therapeutic strategy in tumors. Therefore, a better understanding of the tumor
hypoxia microenvironment is critical to improve the treatment efficacy of UM. In this study, we con-
ducted an extensive multi-omics analysis to explore the heterogeneity and prognostic significance of
the hypoxia microenvironment. We found that UM revealed the most significant degree of intertumoral
heterogeneity in hypoxia by quantifying tumor hypoxia compared with other solid tumor types. Then we
systematically correlated the hypoxia phenotypes with clinicopathological features and found that
hypoxic UM tumors were associated with an increased risk of metastasis, more aggressive phenotypes,
and unfavorable clinical outcomes. Integrative multi-omics analyses identified multidimensional molec-
ular alterations related to hypoxia phenotypes, including elevated genome instability, co-occurring of 8q
arm gains and loss of chromosome 3, and BAP1 mutations. Furthermore, hypoxic UM tumors could be
characterized by increased CD8+ T cell infiltration and decreased naïve B cell and dysregulated metabolic
pathways. Finally, we introduced DNN2HM, an interpretable deep neural network model to decode
hypoxia phenotypes from multi-omics data. We showed that the DNN2HM improves hypoxia phenotype
prediction and robustly predicts tumor aggressiveness and prognosis in different multi-center datasets.
In conclusion, our study provides novel insight into UM tumor microenvironment, which may have clin-
ical implications for future rationalized hypoxia-targeted therapy.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Uveal melanoma (UM), originating from melanocytes in the
uvea, is the most common primary intraocular malignancy in
adults and represents the second most prevalent subtype of mela-
noma after cutaneous melanoma [1,2]. The main risk factors for
UM include light eye color, Caucasian ancestry, exposure to ultra-
violet light, inherited skin disorders, and specific genetic mutations
[3]. The local recurrence rate of UMwas low, whereas nearly half of
UM patients develop distant metastases after primary tumor treat-
ment [4,5]. Up to 93% of patients with UM metastases are involved
in the liver [6], which has a poor overall survival, and usually dies
within one year [7]. However, UM metastases respond poorly to
chemotherapy, targeted therapy, and immunotherapy [8]. Cur-
rently, no effective treatments are available to prevent the devel-
opment of UM metastases.

An increased understanding of molecular biology in UM may
provide mechanistic, prognostic, and therapeutic insights. More
recently, integrative analyses on multi-omics data of UM have
identified four molecular subtypes of UM that differ in genomic
variation, methylation patterns, gene expression profiles, and clin-
ical outcomes [9]. It shows that different chromosomal abnormal-
ities and gene mutations are closely related to the clinical
outcomes of patients. Unlike other melanoma subtypes, UM is a
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genetically superficial tumor with a remarkably low mutational
burden, and the median somatic mutation density is around 1.1
per Mb versus 18 per Mb in cutaneous melanoma [9,10]. Most
UM tumors carry somatic mutations in GNAQ or GNA11, which
function by activating the mitogen-activated protein kinase path-
way [11]. Loss-of-function mutation or reduced expression of the
BAP1 gene is highly correlated with UM metastasis [12]. Loss of
one copy of chromosome 3 in UM tumors is associated with an
increased risk of metastasis and poor prognosis [13,14].

In addition, studies have also reported that in UM patients, with
the rapid growth of tumor volume, increased intervascular dis-
tance, and decreased oxygen content, a hypoxic tumor microenvi-
ronment will be generated, resulting in changes in the expression
of immune response genes, which further stimulate tumor growth
and have a poor prognosis [15]. Tumor hypoxia is one of the meta-
bolic characteristics of the tumor microenvironment, which occurs
in about half of solid tumors [16,17]. Tumor adaptation to this
hypoxic environment is associated with genomic instability, tumor
propagation, malignant progression, and resistance to therapy [18–
21]. Previous studies have evaluated tumor hypoxia across multi-
ple tumor types and characterized the associated molecular fea-
tures in the hypoxic tumor microenvironment [22]. Nevertheless,
the critical role of the hypoxic tumor microenvironment in UM
and its relationship with molecular and clinical characteristics
has not been investigated. There is a desperate need to develop
promising biomarkers to identify those who may benefit from
hypoxia-targeted therapeutic strategies.

In the present study, an extensive multi-omics analysis was
conducted to explore the heterogeneity and clinical significance
of hypoxia phenotypes in a large cohort of UM tumors across
multi-center studies to gain a comprehensive insight into UM
tumor microenvironment and refine the classification of UM sub-
types for hypoxia-targeted therapy.
2. Material and methods

2.1. Data collection and processing

TCGA multi-omics data and matched clinical data of 80 UM
patients were collected from the UCSC Xena data repository
(https://xena.ucsc.edu/) [23]. The multi-omics data containing
mRNA, lncRNA, miRNA, DNA methylation, single-nucleotide vari-
ant (SNV), and copy number variation (CNV) were measured to
depict the molecular landscape of UM. The GENCODE human anno-
tation (version 38) was utilized to define lncRNA genes and mRNA
genes. The lncRNA/mRNA gene expression profiles were estimated
using transcripts per kilobase million. The miRNA expression data
was measured with reads per million reads. We integrated the
DNA methylation level of CpG sites inside a CpG island using the
arithmetic mean method for the methylation profile. Overall sur-
vival (OS) and disease-free survival (DFS) were acquired for sur-
vival analysis.

Two external independent UM cohorts and corresponding clin-
ical data were retrospectively collected from the publicly available
Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/), including 63 UM patients from Laurent’s study (ac-
cession number GSE22138) [24] and 28 UM patients from van
Essen’s study (accession number GSE84976) [25]. Raw microarray
data from GSE22138 generated by Affymetrix Human Genome
U133 Plus 2.0 Array were processed using the RMA algorithm from
the affy R package for background correction and quantile normal-
ization. Raw data from GSE84976 generated by Illumina
HumanHT-12 V4.0 expression beadchip were processed using the
Lumi R package.
3183
2.2. Hypoxia scoring

The hypoxia status was evaluated using the hypoxia metagene
signature derived from Buffa et al., as described previously [26].
The hypoxia score for each tumor was calculated based on the 51
hypoxia metagenes using the single sample Gene Set Enrichment
Analysis (ssGSEA) method [27]. Specifically, tumors with a higher
gene expression level than the median would be given a plus one
score, and conversely, those with a lower value would be given a
minus one. This procedure was repeated for each gene in the
hypoxia metagene signature. The total scores of all genes were cal-
culated as the hypoxia scores, representing the hypoxic status of
tumors (i.e., a higher hypoxia score indicated deficient oxygen in
the tumor and vice versa).
2.3. Association between hypoxic tumor microenvironment and
clinical phenotypes

Inter-tumoral heterogeneity of hypoxia within each tumor type
was assessed using the interquartile range (IQR). High IQR indi-
cated that the tumor was heterogeneous in hypoxia, whereas low
IQR was indicative of homogeneity. The difference in hypoxia
scores between various clinical groups was evaluated by the
Mann-Whitney U test. Tumors were split into two groups (high
and low hypoxic tumors) according to the median hypoxia score
of all tumors. The Kaplan-Meier method and the log-rank test were
used to assess the correlation between the hypoxia groups and sur-
vival outcomes in different cohorts.
2.4. Identification of molecular features associated with hypoxic tumor
microenvironment

Genome instability was assessed by the percentage of the gen-
ome with a copy-number aberration (PGA), which is calculated
for each tumor as the proportion of the number of base pairs
involved in a copy-number variation for the total length of the
human genome. Four molecular distinct copy-number clusters
for 80 tumors in the TCGA cohort were obtained as previously
described [9]. The nonparametric Kruskal-Wallis test was used
to test the difference in hypoxia scores among four copy-
number clusters. The significance of the associations between
cytogenetic abnormalities, SNV and hypoxia score was evaluated
by the Mann-Whitney U test. The associations between PGAs,
mRNA, miRNA, lncRNA, methylation and hypoxia scores were
assessed using Spearman’s correlation coefficient and subsequent
significance testing.
2.5. Functional insights of hypoxia-related genes

Differential gene expression analysis was used to determine
hypoxia-related genes. Based on raw count data of mRNA genes,
DEseq2 was conducted between the distinct hypoxic subtypes
[28]. Top 100 dysregulated genes between hypoxic and normoxic
UM tumours, according to adjusted P-value, were retained as
hypoxia-related genes. Functional enrichment analysis was per-
formed based on gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases by R package clusterPro-
filer [29]. We implemented gene set enrichment analysis (GSEA)
[30] to determine which type of immune cell highly expressed
UM-specific hypoxia genes using a set of pan-cancer metagenes
for 28 immune cell subpopulations defined by Charoentong’s
study [31].
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2.6. Characterization of tumor microenvironment for different hypoxia
status

To characterize the tumor metabolic microenvironment, we
retrieved 86 metabolic pathways from the KEGG database. These
metabolic pathways were grouped into ten subcategories: Amino
acid, Lipid, Carbohydrate, Glycan, Cofactors and vitamins, Energy,
Xenobiotics, Secondary metabolites, Nucleotide, and Terpenoids
and polyketides. We then transferred the gene-level expression
data into pathway-level activity profiles. Specifically, we scored
the activity of each metabolic pathway from the expression data
of the gene set within the pathway using the R package GSVA
[32]. A comparison of pathway-level activity profiles between
two hypoxic subtypes was performed using R package limma
[33], and pathways with P-value less than 0.05 were identified as
hypoxia-associated metabolic pathways.

For deciphering the immune microenvironment of UM tumors,
we utilized the ESTIMATE method [34] to infer tumor purity (ESTI-
MATE score), the fraction of stromal and immune cells (stromal
score and immune score) in UM tumors. Different distribution of
tumor purity, stromal score, and immune score between two
hypoxic subtypes were tested using the Mann-Whitney U test. To
further evaluate the association between hypoxic subtypes and dif-
ferent immune cell types, we implemented the CIBERSORT tool
[35] to quantify the relative levels of 22 distinct immune cell types
within a tumor admixture. The difference in cell composition
between two hypoxic subtypes was tested using the Mann-
Whitney U test for each type of immune cell. Spearman’s correla-
tion coefficient and subsequent significance testing were used to
evaluate the association between hypoxia score and cell composi-
tion of a specific immune cell.

2.7. Development of an interpretable deep neural network modeling of
hypoxia microenvironment (DNN2HM) in UM

To develop a UM-specific hypoxia model, we split the TCGA
cohort into the training cohort (50 UM tumors) and the test cohort
(30 UM tumors). Each cohort comprises 50% high hypoxic and 50%
low hypoxic tumors. We defined UM-specific hypoxia markers as
the most relevant features from mRNA, lncRNA, miRNA, and
methylation data in the training cohort. For each type of data,
the correlation with hypoxia was evaluated for each feature, and
the top 100 most relevant features were retained as UM-specific
hypoxia markers. Then, we performed a 3-stage stacked autoen-
coder, a type of artificial neural network, to learn feature structure
and reduce the marker numbers to 20 for each type of data. Using
deep neural network, single molecular layer-based hypoxia predic-
tors were built by leveraging 20 markers from each molecular
layer. Based on 80 UM-specific markers from four data types, we
trained a deep neural network (DNN2HM) model to decode the
hypoxic microenvironment and distinguish between hypoxic and
normoxic tumors.

2.8. Statistical analysis

All statistical analyses were implemented using the R language
(version 3.6.3). The Mann-Whitney U test was used to compare
two groups and the Kruskal-Wallis test for comparing more than
two groups. Spearman’s correlation was used to measure the asso-
ciation between two continuous variables. The Kaplan-Meier
method and the log-rank test were used to compare the survival
outcome among distinct groups. Univariate Cox regression analysis
was conducted to assess the impact of various immune cell compo-
sitions on patients’ survival outcomes. The hazard ratio (HR) and
95% confidence interval (CI) were calculated and shown using a
forest plot. A value of p < 0.05 is statistically significant.
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3. Results

3.1. Hypoxic UM tumor is associated with clinicopathological
characteristics and predicted poor prognosis

To characterize the hypoxic microenvironment, we calculated
the hypoxia scores for 20 types of tumors in the TCGA cohort to
represent the degree of hypoxia (Fig. 1A). The degree of intertu-
moral heterogeneity in hypoxia was evaluated using IQR. Notably,
UM tumors were observed to be medium hypoxic (ranked number
nine) across all 20 tumor types, nevertheless exhibiting the highest
intertumoral variability (IQR = 38), highlighting the highest inter-
tumoral heterogeneity of hypoxic microenvironments among UM
tumors compared with other tumor types.

We next sought to identify clinicopathological features associ-
ated with hypoxic patterns. By comparing hypoxic status between
patients with different clinicopathological features in different UM
cohorts, we observed a strong correlation between tumor hypoxia
and the clinical stage of UM tumors. Tumors in early-stage subjects
were less hypoxic than tumors in late-stage subjects (P = 0.05,
Mann-Whitney U test, Fig. 1B). Specifically, there were no signifi-
cant differences in hypoxia between the T category but a margin-
ally significant association between tumor hypoxia and
metastasis status (P = 0.092, Mann-Whitney U test, Fig. 1B). To fur-
ther estimate the association between tumor hypoxia and metasta-
sis, we quantified the hypoxia in two independent cohorts
(GSE22138 and GSE84976). Strong associations were also observed
between tumor hypoxia and metastasis status. Metastatic patients
were more likely to have higher hypoxia scores than patients with-
out metastasis (P = 5e–04 in GSE22138 and P = 0.00098 in
GSE84976, Mann-Whitney U test, Fig. 1B). As indicating in the
expression heatmap of Buffa’s hypoxia metagene signature
(Fig. 1C), the expression pattern of hypoxia metagenes differed in
the metastatic and non-metastatic groups, and hypoxia metagene
is highly expressed in the metastatic group compared with the
non-metastatic group (i.e., metastasis group highly expressed
hypoxia-related genes). These results suggest that the hypoxia
microenvironment within UM tumors was associated with an
increased risk of metastasis and more aggressive tumors.

We further examined the correlations of the hypoxia status
with the clinical outcome of UM tumors. We divided each cohort
into two equal-size subgroups according to the median value of
the hypoxia score of all tumors. Kaplan-Meier analysis showed a
highly significant difference in overall survival between the high
hypoxia (i.e., hypoxic) group and the low hypoxia (i.e., normoxic)
group in the TCGA cohort (P = 0.0052, log-rank test, Fig. 1D).
Patients with low hypoxia scores are associated with prolonged
survival times. Similarly, a significant difference was observed in
disease-free survival between the two groups (P = 0.0042 for TCGA
cohort, P = 0.00097 for GSE22138 cohort, P = 2e–05 for GSE84976
cohort, log-rank test, Fig. 1D). These results suggest that the
hypoxia microenvironment within UM tumors was associated with
unfavorable clinical outcomes and thus could be a predictor to help
in individualized patient risk stratification.
3.2. The multidimensional molecular features of hypoxic tumor
microenvironment in UM

To identify genomic features associated with hypoxia patterns,
we first assessed the genome instability using PGA and found that
tumor hypoxia was significantly correlated with elevated genome
instability (rho = 0.27, P = 0.015, Spearman’s rank correlation test,
Fig. 2A). Furthermore, we obtained four distinct molecular sub-
types (copy number clusters) from Robertson’s study [9] to assess
the correlation between tumor hypoxia and copy number. There
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Fig. 2. The multidimensional molecular features of tumor hypoxia phenotype. (A) Scatter plot showing the association between tumor hypoxia and genome instability
(Spearman’s rho). (B) Boxplot of hypoxia scores among four clusters previously defined (Kruskal-Wallis test). (C) Associations of SNVs and CNVs with tumor hypoxia in UM.
(D) Hypoxia-associated multidimensional molecular signatures (Spearman’s rho). Results are shown for the top ten positively and top ten negatively correlated features,
according to adjusted P-value. PGA, the percentage of the genome altered by copy-number aberrations; SNV, single-nucleotide variant; CNV, copy number variation.
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were significant differences in hypoxia status among four clusters
(P = 5.5e–07, Kruskal-Wallis test, Fig. 2B), and the most hypoxic
tumors were enriched in cluster 4, which showed 8q isochromo-
some (i.e., chromosome 8 with two q arms) in all 20 samples. To
identify mutational features associated with tumor hypoxia, we
incorporated CNVs and SNVs into the association analysis. We
found that gain of 8q arm and loss of one copy of chromosome 3
(monosomy 3, M3) were co-occurring and significantly enriched
in hypoxic tumors (P = 0.0045 for 8q arm gain and P = 0.02 for
M3, Mann-Whitney U test, Fig. 2C), whereas loss of chromosome
1 was enriched in normoxic tumors.

We included the four most significantly mutated genes with
sufficient statistical power to consider the relationships between
specific mutational events and tumor hypoxia. Hypoxic UM tumors
showed elevated BAP1 somatic point mutations (P = 0.0036, Mann-
Whitney U test, Fig. 2C), whereas SF3B1 mutations and EIF1AX
mutations were enriched in normoxic UM tumors. These
hypoxia-CNV and hypoxia-SNV relationships suggest that tumor
hypoxia potentially underpins several aggressive genomic features
in UM tumors.

Tumor hypoxia has been demonstrated to impact multi-omics
molecular features [36]. To identify molecular features associated
with hypoxia at the multi-omics level, we performed an associa-
tion analysis between four molecular layers (mRNA, miRNA,
lncRNA, and methylation) and tumor hypoxia. The top ten posi-
3

Fig. 1. Tumor hypoxia patterns in UM. (A) The distribution of hypoxia scores for 20 types
measure the intertumoral variability of hypoxia for each type of tumor. The violin plot d
median ± 1 quartile. Whiskers extend 1.5 times the IQR. (B) Boxplot showing differen
characteristics including clinical stages, T stages, and metastasis status (Mann-Whitney U
signature. (D) Kaplan-Meier curves of overall and disease-free survival for high and low
shown in the plots.
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tively and negatively correlated features for each molecular layer
were retained, as shown in Fig. 2D. Many of them have been shown
to be associated with tumor hypoxia in other types of cancers. For
instance, mRNA gene FUT11 was recognized in hypoxic conditions
in breast cancer [37]. The lncRNA gene PVT1 functioned as compet-
ing endogenous RNA for miR-199-5p in non-small cell lung cancer,
thus promoting the expression of HIF1A, a master regulator of
response to hypoxia conditions [38].

3.3. Functional insights of distinct hypoxic patterns in UM tumors

To obtain functional insights into distinct hypoxic patterns in
UM tumors, we performed differential gene expression analysis
between hypoxic and normoxic tumors and detected 73 up-
regulated and 27 down-regulated mRNA genes, referred to as
hypoxia-related genes (Fig. 3A; Supplemental Table 1). GO enrich-
ment analysis discovered that hypoxia-related genes are mainly
involved in aerobic respiration and T cell differentiation (Fig. 3B).
KEGG pathway enrichment analysis found that oxidative phospho-
rylation, diabetic cardiomyopathy, chemical carcinogenesis, and
some neurodegenerative disease-related pathways were the most
enriched pathways (Fig. 3C). We also implemented gene set
enrichment analysis (GSEA) to determine which type of immune
cell highly expressed hypoxia-related genes using pan-cancer
metagenes for 28 immune cell subpopulations defined by Charoen-
of tumors, sorted by median values. The interquartile range (IQR) was calculated to
epicts the distribution of hypoxia scores using density curves. The boxes show the
ces of tumor hypoxia pattern between subgroups stratified by clinicopathological
test). (C) Heatmap showing gene expression profiles for Buffa’s hypoxia metagene

hypoxic tumors (Log-rank test). The number of cases and events in a subgroup are
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tong’s study [31]. We observed hypoxia-related genes significantly
enriched in activated CD8 T cells, activated B cells, type 1 T helper
cells, activated CD4 T cells, regulatory T cells, and myeloid-derived
suppressor cells (Fig. 3D-E). These findings indicate that UM-
specific hypoxia-related genes may be involved in immune-
mediated biological processes besides oxidative phosphorylation.

3.4. Effects of hypoxia on the tumor microenvironment

The above results implied relationships between hypoxia and
immune-mediated biological processes. We further explored
which composition of immune cells had been affected by the
hypoxic microenvironment. The ESTIMATE method was performed
to infer the ESTIMATE score, stromal score, and immune score as a
representation of tumor purity and the fraction of stromal and
immune cells. There was no significant difference in stromal scores
between hypoxic and normoxic tumors (P = 0.13, Mann-Whitney U
test, Fig. 4A), whereas ESTIMATE scores and immune scores were
significantly higher in hypoxic tumors than normoxic tumors
(P = 0.026 for immune score and P = 0.036 for ESTIMATE score,
Mann-Whitney U test, Fig. 4B-C). Specifically, the relative levels
of 22 distinct immune cell types were quantified within a tumor
admixture. Overall, resting memory CD4 T cell and resting den-
dritic cell were the most abundant cell types in both hypoxic and
3187
normoxic tumors. There were significant differences in the compo-
sition of naïve B cell, CD8 T cell, activated memory CD4 T cell, and
follicular helper T cell between hypoxic and normoxic tumors
(Fig. 4D). We confirmed that the composition of naïve B cells was
negatively correlated with hypoxia in the TCGA cohort (P = 0.003,
rho = �0.33, Fig. 4E). In contrast, the composition of CD8 T cells
was positively correlated with hypoxia in the TCGA cohort
(P = 0.003, rho = 0.33, Fig. 4F). These findings demonstrate the
effects of hypoxia status on the immune microenvironment and
immune cell compositions.

We further investigated the metabolic microenvironment in
distinct hypoxia patterns. By comparing 84 pathway-level tran-
scriptional activity profiles between hypoxic tumors and normoxic
tumors, we sought to identify which metabolic pathway was dys-
regulated in hypoxic tumors. GSEA and differential analysis
demonstrated that a total of 32 metabolic pathways were signifi-
cantly up-regulated, whereas nine metabolic pathways were
downregulated in hypoxic tumors in reference to normoxic tumors
(P < 0.05) (Fig. 5A). These dysregulated pathways encompass most
of the metabolic subcategories except energy metabolic pathways
(Fig. 5B). In addition, the majority of dysregulated pathways were
up-regulated in hypoxic tumors. These results show that hypoxia
in aggressive UM tumors might induce metabolic reprogramming
to support the increased request of neoplastic cells.
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3.5. Effects of hypoxia and immune on patient prognosis

To further depict the immune microenvironment in UM tumors,
survival analysis was performed for each type of immune cell to
assess the impact of various immune cell compositions on patients’
survival outcomes. As a result, patients with a high fraction of
naïve B cell, resting memory CD4 T cell, or resting dendritic cell
tend to live longer than patients with a low fraction. Conversely,
patients with a high fraction of CD8 T cell, regulatory T cell, resting
3188
NK cell, M0 macrophage, and M1 macrophage appear to have a
poor survival (Fig. 6A).

We next investigated whether a combination of hypoxic pat-
terns and immune compositions could provide a more accurate
prediction for survival. All 80 patients from the TCGA cohort were
divided into four subcategories by combining the hypoxic patterns
(low/high hypoxia score) and immune cell compositions (low/high
immune score). Considering the abundance of immune cells, five
types of immune cells with relatively high composition in UM
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tumors were included in further analysis. Overall, significant dif-
ferences were observed in the Kaplan-Meier survival analysis for
all combinations of five types of immune cell composition and
hypoxia patterns (Fig. 6B-F). Patients with a high immune cell
composition, such as naïve B cell, resting memory CD4 T cell, rest-
3189
ing dendritic cell, and low hypoxia score have the longest survival
time compared with patients in other combinations. In contrast,
patients with low immune cell composition, such as M0 macro-
phage, CD8 T cell, and low hypoxia score, have the longest survival
time compared with patients in other combinations.
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3.6. Development of a deep neural network modeling of hypoxic tumor
microenvironment in UM

We confirmed hypoxia was a critical microenvironmental factor
in aggressive UM tumors, and multi-omics features were associ-
ated with distinct hypoxic patterns. We thus integrated multi-
omics features using a deep neural network (DNN) framework to
develop a hypoxia predictor to model the hypoxic tumor microen-
vironment (Fig. 7A).

Firstly, single molecular layer-based hypoxia predictors were
derived from mRNA, lncRNA, miRNA, and methylation data. As
shown in Fig. 7B, single molecular layer-based four hypoxia predic-
tors performed very well in predicting hypoxic patterns in training
cohort (area under the curve [AUC] = 0.94 for mRNA model,
AUC = 0.87 for lncRNA model, AUC = 0.86 for miRNA model and
AUC = 0.86 for methylation model). Similar performance was
observed in the test and entire cohorts, indicating that no obvious
overfitting was detected in four hypoxia predictors. Two GEO
cohorts were included as independent test cohorts to explore the
performance of hypoxia predictors further. As only mRNA data
available in GEO cohorts, we tested the mRNA-based hypoxia pre-
dictor and observed well performance (AUC = 0.86, 95% CI = 0.77–0.
95, P = 5.1e-07 in GSE22138 cohort; AUC = 0.92, 95% CI = 0.81–1,
P = 7.7e-05 in GSE84976 cohort, Fig. 7D). We developed a compre-
hensive model (DNN2HM) for predicting hypoxic patterns by com-
bining multi-omics data using a deep learning algorithm. DNN2HM
outperformed all single molecular layer-based four hypoxia pre-
dictors (AUC = 0.95, 95% CI = 0.88–1, P = 3.4e-08 in training cohort;
AUC = 0.96, 95% CI = 0.91–1, P = 8e-06 in test cohort; AUC = 0.95,
95% CI = 0.9–0.99, P = 2.5e-12 in entire cohort, Fig. 7C), highlighting
the validity of strategy (i.e., combining multi-omics data). We also
performed a survival analysis to investigate whether the DNN2HM
could predict survival outcomes. Patients were grouped into three
subcategories: low-, medium- and high-risk groups, and significant
differences in survival rate among three subcategories were
detected in different patient cohorts (P < 0.001 for all three UM
cohorts, log-rank test) (Fig. 7E). These results demonstrate that
DNN2HM could serve as a promising clinically applicable predic-
tive therapeutic biomarker to improve the clinical benefit of
hypoxia-targeted therapy and aid future rationalized precision
treatment.

4. Discussion

Tumor hypoxia is an essential feature of the microenvironment
in solid tumors [16,17]. Nevertheless, the hypoxic microenviron-
ment in UM tumors had not been described. In this study, we eval-
uated the hypoxic patterns of UM tumors and demonstrated the
critical role of the hypoxic tumor microenvironment in UM tumors.
The relations of tumor hypoxia with metastasis, genomic instabil-
ity, and specific genomic alterations were determined through
association analysis. In addition, altered gene expression and
methylation profiles were observed in hypoxic UM tumors. We
also found that hypoxia in UM tumors influenced the immune
and metabolic microenvironment. Finally, a deep neural network
modeling of the hypoxic tumor microenvironment, DNN2HM,
was developed for UM patients. Overall, our study provides valu-
able insights into the heterogeneity of the hypoxic microenviron-
ment in UM tumors.

The development of risk stratification tools concerning cancer
survivorship has become one of the priorities for research to
inform clinical practice [39]. Many examples exist in risk stratifica-
tion to assess risk and determine clinical management in UM
tumors [40–42]. For example, a previous study identified four dis-
tinct molecular subtypes correlated with differential clinical out-
comes [9]. This study quantified the hypoxia score for each UM
3192
tumor by leveraging the hypoxia metagene signature derived from
Buffa’s study [26]. The degree of intertumoral heterogeneity in
hypoxia was evaluated, and UM tumors exhibited the highest
intertumoral heterogeneity of hypoxic microenvironments com-
pared with other tumor types. The high degree of hypoxic hetero-
geneity can pose challenges for personalized medicine [43] and
lead to classifying tumor subtypes [44] for accurate risk stratifica-
tion. We classified UM tumors into hypoxic and normoxic sub-
groups across three cohorts, and hypoxia-related subgroups
showed prognostic associations. We combined hypoxic patterns
and immune compositions of UM tumors, and four subcategories
were obtained to provide a more delicate classification, suggesting
that combining different hypoxia and immune patterns could pro-
vide a clinically relevant classifier. Thus, we propose that hypoxia-
based risk stratification be considered a screening test to identify
those who need further investigation, intervention, or support.

Unlike other melanoma subtypes, UM is a genetically simple
tumor with a remarkably low mutational burden, and the median
somatic mutation density is around 1.1 per Mb [9]. However, a
hostile tumor microenvironment (e.g., a hypoxic tumor environ-
ment) may drive the adaptation of a distinctive genomic profile
[22]. In UM tumors, tumor hypoxia was correlated with elevated
genome instability. Specifically, 8q arm gains and loss of one copy
of chromosome 3 (monosomy 3, M3) were co-occurring and signif-
icantly enriched in hypoxic tumors, whereas loss of chromosome 1
was enriched in normoxic tumors. For single-nucleotide variants,
hypoxic UM tumors showed an elevated rate of BAP1 somatic point
mutations, whereas SF3B1 mutations and EIF1AX mutations were
enriched in normoxic UM tumors. Some of these chromosome
aberrations (e.g., M3) and gene mutations (e.g., Loss-of-function
mutations in BAP1 and SF3B1 has been identified in previous stud-
ies to correlate strongly with clinical outcome in UM tumors [45–
47].

Nonetheless, the molecular pathways involved in aggressive
UM tumors have not been elucidated. Through multi-omics data
mining, we identified molecular alterations driven by the hypoxic
microenvironment for four different molecular layers (mRNA,
miRNA, lncRNA, and methylation). Many of them (e.g., FUT11 and
PVT1) have been associated with tumor hypoxia in other types of
cancers. Integrating multi-omics features, a hypoxia predictor
(DNN2HM) was developed to model the hypoxic tumor microenvi-
ronment for UM tumors. These molecular alterations driven by the
hypoxic microenvironment provide insights into biological pro-
cesses responsible for aggressive UM tumors with poor prognoses.

Oxygen is indispensable for cellular metabolism, and hypoxia is
common in aggressive tumors that often impact a broad range of
hypoxia-associated biological processes, including apoptosis, pro-
liferation, angiogenesis, inflammation, and metabolism [48]. The
adaptation to tumor hypoxia is regulated by hypoxia-inducible fac-
tors (HIFs), central regulators of many innate and adaptive
immunological functions [49]. A typical feature of immune cells
is their ability to infiltrate and function in low nutrients and oxy-
gen tissues [50]. In this study, we confirmed the relationships
between hypoxia and the composition of various immune cells
(e.g., naïve B cell, CD8 T cell, activated memory CD4 T cell, and fol-
licular helper T cell), highlighting the crucial role of HIFs in modu-
lating immune cell functions. In addition, immune cells can be
recruited from the oxygen-rich circulatory system into a patholog-
ically hypoxic immune environment (i.e., tumors), thus needing to
balance its requirements for energy and molecular biosynthesis.
Consequently, HIF signaling changes immune cell function by
inducing metabolic reprogramming and unregulated metabolic
pathways, such as fatty acid synthesis, the tricarboxylic acid cycle,
and amino acid metabolism [51].

UM metastases usually have poor clinical outcomes, and con-
ventional systemic chemotherapy has shown low response rates
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in UM patients. Severe hypoxia contributes primarily to resistance
to anticancer therapies, and blocking HIF activity can improve the
response rates of chemotherapy treatment [52]. Therefore,
hypoxia-targeted therapy is in desperate need of UM tumors. Our
findings suggest that different molecular subtypes of UM tumors
had distinct hypoxic patterns, and some of these UM tumors may
benefit from hypoxia-targeted therapy. For example, the previ-
ously defined molecular subtype, copy number cluster 4, showed
the most hypoxic patterns and thus may benefit from hypoxia-
targeted treatment. Furthermore, DNN2HM has partitioned UM
tumors into three subcategories with varying degrees of hypoxia.
Tumors with the highest degree of hypoxia are most likely associ-
ated with favorable responses to hypoxia-targeted therapy. How-
ever, the sample size of the study was relatively small. Further
studies with a larger sample size are necessary to validate our
findings.

In conclusion, our study characterized heterogeneous hypoxia
phenotypes associated with differential clinical outcomes and
therapeutic effects and identified multidimensional hypoxia-
associated molecular features. With a more profound understand-
ing of the tumor hypoxia microenvironment, the hypoxia pheno-
typic characteristics of UM hold the potential to help improve
the clinical benefit of hypoxia-targeted therapy, and aid future
rationalized precision treatment.
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