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Abstract

Background: To address the problem of resource limitation, biomarkers having a

potential for mortality prediction are urgently required. This study was designed to

evaluate whether hemogram‐derived ratios could predict in‐hospital deaths in

COVID‐19 patients.

Materials and Methods: This multicenter retrospective study included hospitalized

COVID‐19 patients from four COVID‐19 dedicated hospitals in Sylhet, Bangladesh.

Data on clinical characteristics, laboratory parameters, and survival outcomes were

analyzed. Logistic regression models were fitted to identify the predictors of in‐

hospital death.

Results: Out of 442 patients, 55 (12.44%) suffered in‐hospital death. The proportion

of male was higher in nonsurvivor group (61.8%). The mean age was higher in

nonsurvivors (69 ± 13 vs. 59 ± 14 years, p < 0.001). Compared to survivors,

nonsurvivors exhibited higher frequency of comorbidities, such as chronic kidney

disease (34.5% vs. 15.2%, p ≤ 0.001), chronic obstructive pulmonary disease (23.6%

vs. 10.6%, p = 0.011), ischemic heart disease (41.8% vs. 19.4%, p < 0.001), and

diabetes mellitus (76.4% vs. 61.8%, p = 0.05). Leukocytosis and lymphocytopenia

were more prevalent in nonsurvivors (p < 0.05). Neutrophil‐to‐lymphocyte

ratio (NLR), derived NLR (d‐NLR), and neutrophil‐to‐platelet ratio (NPR) were

significantly higher in nonsurvivors (p < 0.05). After adjusting for potential covariates,

NLR (odds ratio [OR] 1.05; 95% confidence interval [CI] 1.009‐1.08), d‐NLR (OR

1.08; 95% CI 1.006‐1.14), and NPR (OR 1.20; 95% CI 1.09‐1.32) have been found to

be significant predictors of mortality in hospitalized COVID‐19 patients. The optimal

cut‐off points for NLR, d‐NLR, and NPR for prediction of in‐hospital mortality for

COVID‐19 patients were 7.57, 5.52 and 3.87, respectively.

Conclusion: Initial assessment of NLR, d‐NLR, and NPR values at hospital admission

is of good prognostic value for predicting mortality of patients with COVID‐19.
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1 | INTRODUCTION

The ongoing COVID‐19 pandemic is threatening the global health

system. Countries around the world reported 6.07 million deaths

from severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)

until mid‐March 2022.1 However, preliminary estimates suggest an

excess death of 1.2 million than officially reported in 2020. The

underlying reason behind this discrepancy may be the lack of a

proper national vital statistics system and lack of uniformity in test

strategy as well as in defining COVID‐19 death.2

Case fatality rate (CFR) is an important indicator to understand

the severity and epidemiological features of infectious diseases.

Reported CFR for COVID‐19 varies depending on geographic areas.

For example, Central Europe and North America had a higher fatality

than East Asia due to COVID‐19.3,4 Among the SAARC countries, the

reported CFR is highest in Afghanistan, followed by Pakistan, India,

and then Bangladesh. The crude CFR in Bangladesh is about 1.458%.5

For better utilization of the existing healthcare resources during the

ongoing COVID‐19 pandemic, identification of the prognostic markers is

of paramount importance. Several systematic reviews and meta‐analyses

found higher age, pre‐existing comorbidities like diabetes, chronic

obstructive pulmonary disease (COPD), hypertension, renal disease, or

cardiovascular disease are important predictors of mortality.6–8 Among

the hematological parameters, higher baseline total white blood cell count

(WBC), thrombocytopenia, C‐reactive protein (CRP), lactate‐

dehydrogenase (LDH), creatine kinase (CK), Dd‐dimer, and lower absolute

lymphocyte count (ALC) were all associated with higher mortality rate.7,9

However, prognostic parameters like procalcitonin, hs‐CRP, interleukin

(IL)‐6, and LDH are costly and not widely available, particularly in low and

middle‐income countries. To mitigate this economic and logistic

constraint, we need to focus more on exploring rapid, inexpensive, and

readily available prognostic tools. Hemogram‐derived ratios can play a

very effective role in this regard. Hemogram‐derived ratios like neutrophil

(NEU)‐to‐lymphocyte (LYM) ratio (NLR) and platelet‐to‐lymphocyte ratio

(PLR) have been found to have significant prognostic value in predicting

severe disease as well as mortality in COVID‐19.10,11 In this study, we

evaluated whether parameters derived from a routine blood test, at the

time of hospital admission, can be valuable predictors of mortality in

hospitalized COVID‐19 patients.

2 | MATERIALS AND METHODS

2.1 | Data collection

Data were extracted from the hospital record of patients who had been

admitted with a diagnosis of COVID‐19 in four hospitals of Sylhet,

Bangladesh (a major city in north‐eastern Bangladesh) during the

COVID‐19 pandemic, between October 2020 and January 2021.

Clinical, demographic, and laboratory data from all adult patients were

recorded at the time of hospital admission. The blood samples were sent

soon after hospital admission, preferably within 1 h. Cell count was done

by fully automated analyzer SYSMEX‐XT2000i (Made in Japan).

Inclusion criteria: Patients above the age of 18 years, patients

who were polymerase chain reaction (PCR) positive for SARS‐CoV‐2,

and PCR negative patients who had typical clinical and radiographic

findings of COVID‐19.

Exclusion criteria: Patients below the age of 18 years and

patients without typical symptoms or absence of radiographic

findings compatible with COVID‐19 pneumonia.

2.2 | Definition

In‐hospital death refers to those patients who died at least 24 h after

hospital admission due to COVID‐19.

COVID‐19 death was defined as certified by WHO, which states

“A death due to COVID‐19 is defined as a death resulting from a

clinically compatible illness, in a probable or confirmed COVID‐19

case, unless there is a clear alternative cause of death that cannot be

related to COVID disease.”

Count of white blood cells (×109 cells/L), neutrophil (×109 cells/L),

lymphocytes (×109 cells/L), and platelets (×1011 cells/L) were used to

calculate the hemogram‐derived ratios. NLR is the ratio between

neutrophils and lymphocytes, d‐NLR is derived NLR and calculated as

d‐NLR=ANC/(WBC−ANC), NPR is the ratio between neutrophils and

platelets, PLR is the ratio between platelets and lymphocytes, and

systemic immune‐inflammation index (SII) is determined by multiplying

the neutrophil and platelet counts and then divided by the lymphocyte

count.

2.3 | Study variables

The outcome variable was in‐hospital death (nonsurvivors and

survivors); a binary variable. Clinical data included were age, sex,

clinical features, presence of comorbidities like hypertension, chronic

kidney disease (CKD), COPD, diabetes mellitus (DM), ischemic heart

disease (IHD), and cerebrovascular accident (CVA), peripheral

capillary oxygen saturation (SpO2) at admission and length of hospital

stay (in days). Laboratory parameters included complete blood count

(CBC), D‐dimer, S. Ferritin, and random blood sugar (RBS).

2.4 | Statistical analysis

We used descriptive statistics to describe the data. Shapiro‐Wilk test

was used to assess the normality of continuous variables. We

presented continuous measurements by the mean and standard

deviation (SD) for data that followed a normal distribution, and by the

median and interquartile range (IQR) for data that were skewed. The

mean difference between two groups (survivor vs. nonsurvivor) in a

continuous variable was assessed using two independent sample

mean tests (t‐test) for the normally distributed data and using

nonparametric Mann–Whitney U test for the non‐normally distrib-

uted data. Categorical variables were presented using frequencies
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and percentages. The χ2 test of independence was used to determine

the association (difference) among categorical variables.

Multiple logistic regression models were used to identify the

predictors of mortality. The variables that were significant at 10% level

(cut‐off point p<0.1) in the univariate or bivariate analysis were included

in the multivariate analysis. We measured the correlations between the

various hemogram‐derived indices and excluded the hemogram‐derived

ratios that were responsible for multicollinearity (r>0.8) from the

multivariate analysis. We also excluded the hemogram‐derived ratios

having a variance inflation factor of >5 to make sure that there was no

multicollinearity in the multivariate logistic regression models. As there

were high correlations among some of the hemogram‐derived ratios and

as all the ratios are important, we fitted three separate multiple logistic

regression models to avoid multicollinearity (Table A1). Model findings

were presented using odds ratio (OR) and 95% confidence interval (CI). A

p<0.05 was considered statistically significant. We used Youden Index to

determine the optimal cut‐off values for hemogram‐derived ratios for

predicting in‐hospital mortality. Analysis was performed using R software.

This study is reported following the STrengthening the Reporting of

OBservational studies in Epidemiology (STROBE)12 statements.

3 | RESULTS

3.1 | Clinical characteristics and laboratory
parameters of patients

The final analysis included 442 patients. Clinical characteristics of all

patients are summarized (overall and by survivor status) and shown in

Table 1. The proportion of patients who ended up with in‐hospital

death was 12.44%. The mean age of study subjects was 60.2 ± 13.7

years. The mean age of the non‐survivor group was higher than the

TABLE 1 Clinical characteristics of patients, overall and by survivor status

Univariable analysis
Variables Total Nonsurvivor (n= 55) Survivor (n= 387) p value OR (95% CI) p value

Age, mean (±SD) 60 ± 14 69 ± 13 59 ± 14 <0.001 1.06 (1.03−1.08) 0.001

Male 291 (65.84%) 34 (61.8%) 257 (66.4%) 0.63 0.81 (0.46–1.48) 0.502

Female 151 (34.16%) 21 (38.2%) 130 (33.6%) 0.603

Comorbidity

Hypertension 311 (70.36%) 41 (74.5%) 270 (69.8%) 0.57 1.26 (0.68–2.49) 0.469

DM 281 (63.57%) 42 (76.4%) 239 (61.8%) 0.05 2.00 (1.06–3.99) 0.038

IHD 98 (22.17%) 23 (41.8%) 75 (19.4%) <.001 2.99 (1.64–5.39) 0.0002

CKD 78 (17.65%) 19 (34.5%) 59 (15.2%) <.001 2.93 (1.55–5.41) 0.0006

COPD 54 (12.22%) 13 (23.6%) 41 (10.6%) 0.011 2.61 (1.25−5.16) 0.007

CVA 20 (4.52%) 5 (9.1%) 15 (3.9%) 0.163 2.48 (0.78–6.71) NA

Clinical feature

Fever 399 (90.27%) 52 (94.5%) 353 (91.2%) 0.566 1.67 (0.57–7.10) 0.409

Cough 322 (72.85%) 36 (65.5%) 286 (73.9%) 0.248 0.66 (0.37–1.23) 0.19

SOB 294 (66.52%) 42 (76.4%) 252 (65.1%) 0.133 1.73 (0.92–3.45) 0.101

Fatigability 246 (55.66%) 33 (60%) 213 (55%) 0.584 1.23 (0.69–2.20) 0.489

Loss of smell 87 (19.68%) 9 (16.4%) 78 (20.2%) 0.631 0.77 (0.34–1.58) 0.509

Diarrhea 71 (16.06%) 11 (20%) 60 (15.5%) 0.513 1.36 (0.63–2.70) 0.397

Sore throat 47 (10.63%) 13 (23.6%) 34 (8.8%) 0.002 3.21 (1.53–6.45) 0.00137

Anorexia 13 (2.94%) 2 (3.6%) 11 (2.8%) 1 1.28 (0.19–4.97) 0.74

Chest pain 9 (2.04%) 0 (0%) 9 (2.3%) 0.527 NA NA

Vomiting 4 (0.90%) 0 (0%) 4 (1%) 1 NA NA

Headache 3 (0.68%) 1 (1.8%) 2 (0.5%) 0.824 3.56 (0.16–37.82) 0.303

Admission SpO2 92 (88–95) 84 (73–93) 93 (89–96) <0.001 0.91 (0.88–0.93) 0.001

LOS 8.7 ± 4.5 10.9 ± 7.3) 8.3 ± 3.8) 0.013 1.10(1.04–1.16) 0.0003

Abbreviations: CI, confidence interval; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CVA cerebrovascular disease; DM,
diabetes mellitus; IHD Ischemic heart disease; LOS, length of stay; OR, odds ratio; SpO2, peripheral capillary oxygen ; SOB, shortness of breath saturation.
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survivor group (69± 13 vs. 59 ± 14 years). Male comprises two‐thirds

of the study sample (65.84%).

Compared to survivors, nonsurvivors had higher prevalence of

comorbidities like CKD (34.5% vs. 15.2%, [OR]: 2.93; 95% CI:

1.55–5.41; p = <0.001), COPD (23.6% vs. 10.6%, [OR]: 2.61; 95%

CI: 1.25−5.16; p = 0.011), IHD (41.8% vs. 19.4%, [OR]: 2.99; 95% CI:

1.64–5.39; p < 0.001), DM (76.4% vs. 61.8%, [OR]: 2.00; 95% CI:

1.06–3.99; p = 0.05) and hypertension (74.5% vs. 69.8%, [OR]: 1.26;

95% CI: 0.68–2.49; p = 0.57).

Nonsurvivors had significantly lower SpO2 at admission than

survivors (median; 84 vs. 93; p < 0.001). Length of hospital stay was

significantly higher in nonsurvivors (10.9± 7.3 vs. 8.3 ± 3.8, p = 0.013).

Regarding laboratory results (Table 2), median WBC count (10.8

vs. 8.1; p = 0.003) and neutrophil count (8.8 vs. 6.1; p < 0.001) were

significantly higher while platelet (209 vs. 230; p = 0.05) and

lymphocyte (1.18 vs. 1.4; p = 0.122) count was lower in nonsurvivors.

Leukocytosis (52.7% vs. 32%; p = 0.004) and lymphocytopenia (72.7%

vs. 51.9%; p = 0.006) were significantly higher in nonsurvivors.

Nonsurvivors have higher median value of D‐dimer (900 vs. 567),

ferritin (507 vs. 328), and RBS (12 vs. 9.4).

Difference in hemogram‐derived ratios between survivors and

non‐survivors are shown in Table 3. Median value of NLR (7.08 vs.

4.05; p = 0.005), d‐NLR (4.88 vs. 3.34; p = 0.001) and NPR (3.59 vs.

2.47; p = 0.003) were significantly higher in nonsurvivor while,

TABLE 2 Lab findings on admission

Univariable analysis
Variables Normal range Nonsurvivor Survivor p value OR (95% CI) p value

TC WBC (×109/L) 4–10 10.8 (6.80–14) 8.1 (6–11.3) 0.003 2.48 (1.34–4.58) 0.003

>10 29 (52.7%) 124 (32%) 0.004 2.39 (1.35–4.25) 0.00273

4–10 26 (47.3%) 252 (65.1%) 0.014

<4 0.0% 11 (2.8%) 0.422

Neutrophil (×109/L) 2.0–7.0 8.8 (4.84–12.59) 6.1 (4.15–9.37) <.001 2.47 (1.47–4.14) 0.0006

Lymphocyte (×109/L) 0.8–4.5 1.18 (0.75‐1.8) 1.4 (1.02–2.04) 0.122 0.61 (0.38–0.97) 0.0393

<0.8 40 (72.7%) 201 (51.9%) 0.006 2.46 (1.35–4.74) 0.004

0.8–4.5 15 (27.3%) 186 (48.1%) 0.006

>4.5 0 (0%) 4 (1%) 1

Platelet (×109/L) 150–350 209 (154–254) 230 (180–300) 0.05 0.48 (0.24–0.96) 0.039

<150 10 (18.2%) 39 (10.1%) 0.118 1.98 (0.88−4.11) 0.07

150–350 37 (67.3%) 283 (73.1%) 0.455

>350 8 (14.5%) 65 (16.8%) 0.821

D‐dimer (ng/L) 0–500 900 (420–1411) 567 (300–1230) 0.12 1.26 (0.98–1.62) 0.0626

S. Ferritin 20–300 507 (181–981.32) 328 (169–748) 0.21 1.27 (0.98–1.65) 0.06

RBS 4.4–7.2 12 (8.9–14.7) 9.4 (7.6–13) 0.005 2.63 (1.32–5.22) 0.005

Note: Statistically significant values are highlighted in bold.

Abbreviations: CI, confidence interval; OR, odds ratio; RBS, random blood sugar; TC WBC, total count of white blood cells.

TABLE 3 Hematological ratios
predicting mortality

Univariable analysis
Variables Nonsurvivors Survivors p value OR (95% CI) p value

NLR 7.08 (3.85–11.12) 4.05 (2.48–7.08) 0.005 2.02 (1.42–2.88) 0.001

d‐NLR 4.88 (2.70–10.11) 3.34 (2.03–5.66) 0.001 2.30 (1.55–3.42) 0.001

NPR 3.59 (2.42–5.61) 2.47 (1.78–3.82) 0.003 2.77 (1.76–4.35) 0.001

PLR 1.96 (1.12–2.77) 1.57 (1.06–2.43) 0.879 1.10 (0.74–1.62) 0.623

SII 14.11 (7.63–25.50) 9.37 (5–17.52) 0.058 1.42 (1.06–1.89) 0.0156

Abbreviations: CI, confidence interval; D‐NLR, derived neutrophil‐to‐lymphocyte ratio; NLR,
neutrophil‐to‐lymphocyte ratio; NPR, neutrophil‐to‐platelet ratio; OR, odds ratio; PLR, platelet‐to‐
lymphocyte ratio; SII, systemic immune‐inflammation index.
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though not statistically significant, median value of PLR (1.96 vs.

1.57; p = 0.87) and SII (14.11 vs. 9.37; p = 0.05) were also higher in

nonsurvivors.

Independent mortality prediction ability is shown for each

hemogram‐derived ratio (receiver operating characteristic [ROC]

curves are shown in Figure 1). The result of multivariable regression

models that assessed the prognostic capability of different

hemogram‐derived ratios is shown in Table 4. Except for PLR and

SII, all other ratios (NLR, d‐NLR, and NPR) remain as significant

predictors for mortality.

3.2 | ROC curve to determine optimal cut‐off
values of the hematological ratios

We analyzed the optimal cut‐off values (Table 5) of NLR, d‐NLR,

NPR, PLR, and SII, calculated by the ROC analysis and presented in

Figure 1. Areas under the curve (AUC) of NLR, d‐NLR, NPR, PLR, and

SII were 0.66 (0.58–0.73), 0.65 (0.58–0.73), 0.68 (0.61–0.75), 0.55

(0.46–0.63), and 0.60 (0.52–0.67) respectively. The optimal cut‐off

values were NLR (7.57), d‐NLR (5.52), NPR (3.87), PLR (2.26), and SII

(19.68). PLR had the highest sensitivity (0.78), followed by d‐NLR

F IGURE 1 Receiver operating characteristic
(ROC) curve for the different hemogram‐derived
ratios and their respective area under the
curves (AUCs)

TABLE 4 Multivariable adjusted model for mortality prediction

Model NLR OR (95% CI) p value D‐NLR NPR OR (95% CI) p value SII OR (95% CI) p value

Model A ‐ 1.08 (1.006–1.14) 0.033 1.17 (1.06–1.29) 0.002 ‐

Model B ‐ ‐ 1.20 (1.09–1.32) <0.001 1.004 (0.99–1.01) 0.505

Model C 1.05 (1.009‐1.08) 0.014 ‐ ‐ ‐

Note: Model A: Age, DM, CKD, COPD, RBS, D‐dimer, Ferritin, NPR, d‐NLR. Statistically significant values are highlighted in bold.

Model B: Age, DM, CKD, COPD, RBS, D‐dimer, Ferritin, NPR, SII.

Model C: Age, DM, CKD, COPD, RBS, D‐dimer, Ferritin, NLR.

Abbreviations: CI, confidence interval; d‐NLR, derived neutrophil‐to‐lymphocyte ratio; NLR, neutrophil‐to‐lymphocyte ratio; NPR, neutrophil‐to‐platelet
ratio; OR, odds ratio; PLR, platelet‐to‐lymphocyte ratio; SII, systemic immune‐inflammation index.

TABLE 5 Optimal cut‐off points for hemogram‐derived ratios
for prediction of mortality

Variable Cut off Sensitivity Specificity

NLR 7.57 0.65 0.63

D‐NLR 5.52 0.67 0.59

NPR 3.87 0.65 0.63

PLR 2.26 0.78 0.44

SII 19.68 0.43 0.75

Abbreviations: d‐NLR, derived neutrophil‐to‐lymphocyte ratio; NLR,

neutrophil‐to‐lymphocyte ratio; NPR, neutrophil‐to‐platelet ratio; PLR,
platelet‐to‐lymphocyte ratio; SII, systemic immune‐inflammation index.
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(0.67) and then NLR and NPR (both 0.65). SII (0.75) has the highest

specificity, followed by NLR and the NPR (both 0.63).

4 | DISCUSSION

4.1 | Statement of principal findings

This study analyzed the data on clinical characteristics and laboratory

parameters of hospitalized COVID‐19 patients with a particular focus

on the predictive ability of hemogram‐derived ratios on mortality.

Non‐survivors are of higher age and they had a higher prevalence of

comorbidities. Length of hospital stay was more for non‐survivors. At

admission, nonsurvivors had a more severe degree of hypoxia than

survivors. Leukocytosis and lymphocytopenia were more frequent in

patients who died. The level of D‐dimer, Ferritin, and RBS were higher

in nonsurvivors. Adjusted multivariable models demonstrated that

NLR, d‐NLR, and NPR are significant predictors for mortality. The

AUC was highest for NPR.

4.2 | Strengths and limitations

As this study included patients of four large hospitals of Sylhet city, it can

be taken as representative of the wider population. Another strength of

this study lies in the utilization of basic hematological parameters, which

are widely available and can be measured even in a peripheral health

center. However, Due to the retrospective nature of the present study, it

has got some limitations. The questionnaire we used here was not a

validated one. Data that could have the potential to influence the disease

course like the presence of obesity, malignancy, smoking status, lab

parameters like CRP, LDH, ALT, and troponin I were not available in the

hospital records. So, their effects on the final outcome are overlooked

here. Additionally, information on treatment before hospital admission

was lacking in hospital records which could have modified the value of

laboratory parameters. Besides, this study focuses on one region, a

divisional city, not the whole of a country, that is why other studies

involving large geographic areas need to be conducted to check the

generalizability of these findings.

4.3 | Interpretation in the context of the wider
literature

With a new upsurge of COVID‐19 cases by emerging variants of

coronavirus in the face of resource constraints, early prediction of

mortality in COVID‐19 is an important tool in the triage process and

resource allocation. Existing scoring systems such as the Acute

Physiology and Chronic Health Evaluation (APACHE) II score and

COVID‐GRAM are good prognostic clinical tools in COVID‐19

patients.13,14 However, both scoring systems require laboratory

parameters such as arterial pH and fraction of inspired oxygen (FiO₂)

in the APACHE II and lactate dehydrogenase in the COVID‐GRAM,

which is not available in resource‐limited healthcare settings. Therefore,

tools that are cost‐effective and widely available with a potential for

predicting the prognosis of COVID‐19 patients are needed.

Presentation of COVID‐19 is heterogeneous, ranging from

asymptomatic infection to life‐threatening critical illness requiring

intensive care support. Several inflammatory markers have been

evaluated as predictors of death among hospitalized patients with

COVID‐19.15–18 Blood levels of different cytokines and inflammatory

markers have been shown to predict the critical illness of COVID‐19

disease,19 but these are not readily available outside of tertiary‐care

medical centers. In this study, we investigated the predictive role of

hematological parameters that are easily available at a low cost. Here

we observed that NLR, d‐NLR, and NPR can successfully predict

mortality at the time of hospital admission.

Advanced age and the presence of comorbidities are considered

independent predictors of in‐hospital death in COVID‐19.20–22 In this

current study, we adjusted age, comorbidities like DM, CKD, COPD,

and IHD to reduce the influence of confounding factors.

Sex differences in mortality have been widely reported in COVID‐19.

Previous coronavirus outbreaks (SARS, MERS) demonstrated a higher

risk of disease progression and high case fatality in males.23–25 Male

sex is also found to be associated with increased risk of severe

disease, ICU admission, and mortality in COVID‐19.26–28 Several

hypothesis or explanation has been put forward to explain this

increased vulnerability of male. Sexual dimorphism plays a crucial role

in the regulation of immune respnses, both innate and adaptive

immune systems.29 Female sex hormones Estradiol may have a

protective effect against the development of hyperinflammation while

male sex hormone testosterone has an immunosuppressive effect.

The difference in the expression of ACE‐2 receptor, which facilitates

entry of SARS‐CoV2 virus inside the cell and their regulation may also

contribute to this sex bias. Besides sex‐based differences in

comorbidity also may play a role.26 However, our study did not find

the male sex as a significant predictor of mortality. This could be

attributed to our demographically distinct population or racial

difference. Few studies also reported findings similar to ours.30,31

NLR represents the relationship between two arms (innate and

adaptive) of the immune system during different stages of diseases.32

Higher NLR is a poor prognostic factor in infectious diseases, malignancy,

cardiac disease, and autoimmune diseases.33–36 In the present study,

elevated NLR was a significant prognostic biomarker in COVID‐19

patients. Our study finding is consistent with previous studies done to

assess the relationship between NLR and the prognosis of COVID‐

19.37,38 This may be due to the following reason. The inflammatory

reactions could stimulate the production of neutrophils, which then

migrate to the immune organs. Afterward, neutrophil releases vast

amounts of reactive oxygen species that lead to cell damage. As a result,

antibody‐dependent cellular cytotoxicity may kill the virus directly.

Besides, neutrophil production can be also triggered by factors released

from the virus, such as IL‐6 and IL‐8, tumor necrosis factor‐α, and

interferon‐γ.39 In contrast, systemic inflammation promotes apoptosis of

lymphocytes.40 Lymphopenia also may be due to direct infection of bone

marrow and lymphatic organ by SARS‐CoV‐2.41,42 Furthermore, due to
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low immune function, these patients are at risk of co‐infection with

bacteria, which could also explain the rise in the neutrophil count.43 This

study found that the associations between NLR and COVID‐19 mortality

are independent of age and underlying diseases.

Previous studies44,45 showed that derived NLR (d‐NLR) has a similar

prognostic value to the NLR in cancer patients. The utility of d‐NLR has

also been investigated in COVID‐19 and found to be a predictor of poor

outcomes.10,38 This study also found d‐NLR as a prognostic marker.

NPR was found to be a marker of disease activity in Ulcerative

colitis46 and predictors of survival in a variety of cancers.47 Our study

suggests NPR can be used as a prognostic marker in COVID‐19,

which is consistent with other studies.48,49

The PLR reflects the interaction between platelet count and

lymphocyte count, which represents aggregation, as well as inflamma-

tory pathways. Like NLR, PLR has been demonstrated to be predictive

of worse overall survival in cancer patients50 and correlated with

disease severity in patients with Rheumatoid arthritis.51 Several

systematic reviews and meta‐analyses found the role of PLR as a

prognostic marker in COVID‐19.52,53 However, in our study, PLR was

not found to be a significant prognostic factor of mortality in

multivariable analysis, which is consistent with previous studies.54,55

Although first reported in hepatocellular carcinoma, the prog-

nostic value of SII has also been evaluated in other solid

malignancies.56,57 SII measured at admission can predict in‐hospital

mortality in COVID‐19.58,59 This current study found that SII can

predict mortality in univariable analysis but not in multivariable

analysis, which agrees with the study by Xue et al.60

To date, no cut‐off value of the hematological ratio has been

defined as optimal in COVID‐19. The cut‐off values of hemogram‐

derived ratios for the prediction of mortality in this study are 7.57,

5.52, 3.87, 2.26, and 19.68, respectively, for NLR. d‐NLR, NPR, PLR,

and SII. There is a wide variation in the cut‐off value of these

parameters in published studies.61–63 The underlying reason may be

due to differences in demographic characteristics of the study

population44,64,65 and differences in the technique applied to select

the cut‐off value. We used Youden Index to determine the optimal

cut‐off values. In line with our study, many other studies, including

systematic review and meta‐analysis11,66 reported optimal cut‐off

values for NLR with moderate sensitivity and specificity. For example,

Yildiz et al.61 estimated that the optimal cut‐off value of NLR was 6.4,

with a sensitivity of 63% and specificity of 64%. Similarly, Cheng

et al.67 estimated an optimal cut‐off value of NLR of 7.9, which

corresponded to a sensitivity of 65% and Tahtasakal et al.68 reported

NLR cut‐off >3.69 with a sensitivity of 78.68 and specificity of 66.08.

4.4 | Implications for policy, practice, and future
research

The unpredictable course of COVID‐19 disease, ranging from mild

self‐limiting illness to cytokine storms, multiorgan failure, and death

has been posing a great challenge to health care workers because

which particular patients will develop the progressive disease is

difficult to predict at admission. Therefore, there is an urgent need to

identify early prognostic biomarkers which are reliable and widely

available at low cost. With these objectives in mind, this study

evaluated the usefulness of hemogram‐derived ratios, which can be

calculated from the routine hematological test, and assessed their

role as predictors of mortality in COVID‐19.

We hope, the findings of this study will guide the clinician in

risk‐stratifying the patients upon admission and ensure better

management with the best use of available resources. Considering

the evolving nature of COVID‐19, research directed at identifying

early predictors of poor outcomes of COVID‐19 needs to be

continued.

5 | CONCLUSION

Risk‐stratifying the patients based on prognostic markers can play a

significant role in tackling the challenges of the ongoing COVID‐19

pandemic. By allocating medical resources more rationally, this strategy

will reduce the pressure on the already exhausted health system, alleviate

the shortage of resources, and ultimately will contribute to lowering of

public health burden. This study revealed that hemogram‐derived ratios

have a good predictive value on the mortality of COVID‐19 patients.

This cost‐effective tool can help the clinician in early triaging of severe

patients and to apply appropriate management in time.
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APPENDIX A

Table A1

TABLE A1 Model 1

Coefficients

Wald test
95% confidence interval
(odds ratio scale)

Estimate Standard error Odds ratio z
Wald
statistic df p

Lower
bound

Upper
bound

(Intercept) −7.373 1.034 6.277e‐4 −7.130 50.842 1 <0.001 0.000 0.005

Age 0.051 0.013 1.053 3.934 15.475 1 <0.001 1.026 1.080

DM (yes) 0.245 0.403 1.278 0.608 0.370 1 0.543 0.580 2.818

CKD (yes) 0.721 0.373 2.056 1.934 3.740 1 0.053 0.990 4.267

COPD (yes) 0.595 0.433 1.813 1.374 1.889 1 0.169 0.776 4.234

RBS 0.057 0.031 1.059 1.872 3.503 1 0.061 0.997 1.125

D‐dimer −0.000 0.000 1.000 −1.060 1.124 1 0.289 1.000 1.000

Ferritin 0.000 0.000 1.000 0.717 0.514 1 0.474 1.000 1.001

NPR 0.157 0.050 1.170 3.157 9.965 1 0.002 1.061 1.291

d‐NLR 0.072 0.034 1.075 2.127 4.526 1 0.033 1.006 1.148

Multicollinearity diagnostics
Tolerance VIF

Age 0.901 1.110

DM 0.796 1.256

CKD 0.871 1.148

COPD 0.861 1.162

RBS 0.850 1.177

D‐dimer 0.850 1.176

Ferritin 0.927 1.079

NPR 0.834 1.200

D‐NLR 0.887 1.127

Note: Prognosis level “1” coded as class 1.

Abbreviations: COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease; DM, diabetes mellitus; NPR, neutrophil‐to‐platelet ratio;
RBS, random blood sugar; VIF, variance inflation factor.
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TABLE B1 Model 2

Coefficients

Wald rest
95% confidence interval
(odds ratio scale)

Estimate
Standard
error

Odds
ratio z

Wald
statistic df p

Lower
bound

Upper
bound

(Intercept) −7.422 1.036 5.978e‐4 −7.163 51.316 1 <.001 0.000 0.005

Age 0.055 0.013 1.056 4.219 17.798 1 <.001 1.030 1.083

DM (yes) 0.338 0.402 1.403 0.842 0.710 1 0.400 0.638 3.082

CKD (yes) 0.715 0.369 2.045 1.940 3.763 1 0.052 0.993 4.213

COPD (yes) 0.711 0.425 2.035 1.671 2.791 1 0.095 0.884 4.686

RBS 0.055 0.030 1.057 1.816 3.297 1 0.069 0.996 1.121

D‐dimer −0.000 0.000 1.000 −1.115 1.244 1 0.265 1.000 1.000

Ferritin 0.000 0.000 1.000 0.827 0.684 1 0.408 1.000 1.001

NPR 0.184 0.050 1.202 3.712 13.781 1 <0.001 1.091 1.325

SII 0.004 0.006 1.004 0.666 0.444 1 0.505 0.993 1.015

Multicollinearity diagnostics
Tolerance VIF

Age 0.903 1.108

DM 0.800 1.250

CKD 0.862 1.159

COPD 0.855 1.169

RBS 0.857 1.167

D‐dimer 0.829 1.207

Ferritin 0.911 1.098

NPR 0.860 1.163

SII 0.922 1.084

Note. Prognosis level “1” coded as class 1.

Abbreviations: COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease; DM, diabetes mellitus; NPR, neutrophil‐to‐platelet ratio;
RBS, random blood sugar; VIF, variance inflation factor.
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TABLE C1 Model 3

Coefficients

Wald test

95% confidence
interval (odds ratio
scale)

Estimate
Standard
error

Odds
ratio z

Wald
statistic df p

Lower
bound

Upper
bound

(Intercept) −6.666 0.970 0.001 −6.869 47.182 1 <0.001 0.000 0.009

Age 0.049 0.013 1.050 3.855 14.863 1 <0.001 1.024 1.077

DM (Yes) 0.213 0.387 1.238 0.550 0.303 1 0.582 0.579 2.644

CKD (Yes) 0.582 0.366 1.790 1.592 2.533 1 0.111 0.874 3.664

COPD (Yes) 0.771 0.420 2.161 1.834 3.363 1 0.067 0.948 4.926

RBS 0.062 0.030 1.064 2.093 4.381 1 0.036 1.004 1.128

D‐dimer −0.000 0.000 1.000 −0.544 0.296 1 0.586 1.000 1.000

Ferritin 0.000 0.000 1.000 0.923 0.852 1 0.356 1.000 1.001

NLR 0.047 0.019 1.048 2.449 5.997 1 0.014 1.009 1.089

Multicollinearity diagnostics
Tolerance VIF

Age 0.926 1.080

DM 0.826 1.211

CKD 0.875 1.143

COPD 0.893 1.120

RBS 0.862 1.160

D‐dimer 0.889 1.125

Ferritin 0.935 1.070

NLR 0.914 1.094

Note. Prognosis level “1” coded as class 1.

Abbreviations: COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease; DM, diabetes mellitus; NPR, neutrophil‐to‐platelet ratio;
RBS, random blood sugar; VIF, variance inflation factor.
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