data reports

CRYSTALLOGRAPHIC

OPEN access

Crystal structure of methyl (2Z)-2-{[N-(2formylphenyl)-4-methylbenzenesulfonamido]methyl}-3-(4-methoxyphenvl)prop-2-enoate

Ankur Trigunait,^a Kannan Damodharan,^b Bakthadoss Manickam^b and Gunasekaran Krishnasamy^b*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. *Correspondence e-mail: gunaunom@gmail.com

Received 23 October 2015; accepted 16 December 2015

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina

In the title compound, C₂₆H₂₅NO₆S, the S atom shows a distorted tetrahedral geometry, with O-S-O [119.46 (9)°] and N-S-C $[107.16 (7)^{\circ}]$ angles deviating from ideal tetrahedral values, a fact attributed to the Thorpe-Ingold effect. The sulfonyl-bound phenyl ring forms dihedral angles of 41.1 (1) and 83.3 (1) $^{\circ}$, respectively, with the formylphenyl and phenyl rings. The dihedral angle between formylphenyl and phenyl rings is 47.6 (1)°. The crystal packing features C-H···O hydrogen-bond interactions.

Keywords: crystal structure; sulfonamide; Thorpe-Ingold effect.

```
CCDC reference: 1442750
```

1. Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas et al. (1988); Mandell & Sande (1992). For the antifilarial activity of sulfonamide derivatives, see: Radembino et al. (1997); For related structures, see: Ranjith et al. (2009); Madhanraj et al. (2011). For the Thorpe-Ingold effect, see: Bassindale et al. (1984).

 $\gamma = 80.954 \ (1)^{\circ}$

Z = 2

T = 293 K

 $R_{\rm int} = 0.028$

V = 1218.52 (5) Å³

Mo $K\alpha$ radiation $\mu = 0.17 \text{ mm}^{-1}$

 $0.25 \times 0.20 \times 0.20 \text{ mm}$

23816 measured reflections

5519 independent reflections

4232 reflections with $I > 2\sigma(I)$

2. Experimental

2.1. Crystal data

C26H25NO6S $M_r = 479.53$ Triclinic, $P\overline{1}$ a = 8.3501 (2) Å b = 8.4859 (2) Å c = 17.6814 (4) Å $\alpha = 84.424 (1)^{\circ}$ $\beta = 80.952 \ (1)^{\circ}$

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker 2004) $T_{\rm min} = 0.979, \ T_{\rm max} = 0.983$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	13 restraints
$wR(F^2) = 0.135$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
5519 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
314 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C9—H9····O1 <i>B</i> ⁱ	0.93	2.50	3.397 (7)	162
C15—H15 <i>A</i> ····O6	0.97	2.24	2.7322 (19)	111
C24—H24 <i>A</i> ····O4 ⁱⁱ	0.96	2.52	3.341 (3)	143

Symmetry codes: (i) x - 1, y, z; (ii) -x + 3, -y, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Acknowledgements

KG thanks the UGC, India, for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BG2572).

References

- Bassindale, A. (1984). *The Third Dimension in Organic Chemistry*, ch. 1, p. 11. New York: John Wiley and Sons.
- Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.
- Madhanraj, R., Murugavel, S., Kannan, D. & Bakthadoss, M. (2011). Acta Cryst. E67, 03511.
- Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw-Hill.
- Radembino, N., Dessalles, M. C., -, C., Trouvin, J.-H., Loiseau, P. M., Gayral, P., Mahuzier, G., Rapp, M., Labarre, P., Godeneche, D., Madelmont, J.-C., Maurizis, J.-C., Veyre, A. & Chabard, J.-L. (1997). *Xenobiotica*, 27, 73–85.
- Ranjith, S., Sugumar, P., Sureshbabu, R., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, 0483.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o1088–o1089 [doi:10.1107/S2056989015024172]

Crystal structure of methyl (2*Z*)-2-{[*N*-(2-formylphenyl)-4-methylbenzenesulfonamido]methyl}-3-(4-methoxyphenyl)prop-2-enoate

Ankur Trigunait, Kannan Damodharan, Bakthadoss Manickam and Gunasekaran Krishnasamy

S1. Comment

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative micro-organisms, some fungi, and certain protozoa (Korolkovas *et al.*, 1988, Mandell & Sande 1992). One of the Sulfonamide derivatives (epoxysulphonamides and ethynesulphonamides) shows anti-filarial activity (Radembino *et al.*, 1997). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here. The molecular structure of the title compound is shown in Fig. 1.The S1 atom shows a distorted tetrahedral geometry, with O2—S1—O3 [119.4 (1)°] and N1—S1—C8 [107.1 (1)°] angles deviating from ideal tetrahedral values are attributed to the Thrope-Ingold effect (Bassindale *et al.*, 1984). The sum of bond angles around N1 (348.3°) indicates that N1 is in sp2 hybridization. The sulfonyl bound phenyl (C8–C13) ring forms dihedral angles of 41.1 (1)° and 83.3 (1)°, respectively, with the formyl phenyl (C1–C6) and phenyl (C18—C23) rings. The dihedral angle between formyl phenyl and phenyl rings is 47.6 (1)°. The geometric parameters agree well with those reported for similar structures (Ranjith *et al.*, 2009; Madhanraj *et al.*, 2011). Crystal packing is stabilized by C19—H19…O5 and C24—H24A…O4 inter molecular hydrogen bond interaction. (Shown in Fig.2).

S2. Experimental

A solution of *N*-(formylphenyl)(4-methylbenzene)sulfonamide (1 mmol, 0.275 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile solvent was stirred for 15 min at room temperature. To this solution, methyl(2*Z*)-2-(bromomethyl)-3-(4-methoxyphenyl)prop-2-enoate (1.2 mmol, 0.342 g) was added dropwise till the addition was complete. After the completion of the reaction, as indicated by TLC, acetonitrile was evaporated. EtOAc (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100–200mesh) using ethylacetate and hexane(1:9) as solvents. The pure title compound was obtained as a colourless solid (0.426 g, 89% yield). Recrystallization was carried out using ethylacetate as solvent.

S3. Refinement

All H atoms were fixed and refined using a riding model with C—H ranging from 0.93 to 0.97 Å. The formylphenyl O1 (O1A, O1B) and H7 (H7A, H7B) atoms appear disordered over two sites with s.o.f 0.740 (4) and 0.260 (4), respectively. O1A and O1B were refined with restraints in their anisotropic thermal parameters and C-O distances.

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms

Figure 2

Crystal packing diagram. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

 $Methyl \ (2Z)-2-\{[N-(2-formylphenyl)-4-methylbenzenesulfonamido]methyl\}-3-(4-methoxyphenyl)prop-2-enoate$

Crystal data

C ₂₆ H ₂₅ NO ₆ S	$\beta = 80.952 \ (1)^{\circ}$
$M_r = 479.53$	$\gamma = 80.954 (1)^{\circ}$
Triclinic, $P\overline{1}$	V = 1218.52 (5) Å ³
Hall symbol: -P 1	Z = 2
a = 8.3501 (2) Å	F(000) = 504
b = 8.4859 (2) Å	$D_{\rm x} = 1.307 {\rm ~Mg} {\rm ~m}^{-3}$
c = 17.6814 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 84.424 \ (1)^{\circ}$	Cell parameters from 8834 reflections

 $\theta = 2.6 - 31.2^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scan
Absorption correction: multi-scan
(SADABS; Bruker 2004)
$T_{\min} = 0.979, \ T_{\max} = 0.983$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.0713P)^2 + 0.275P]$
$wR(F^2) = 0.135$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
5519 reflections	$\Delta ho_{ m max} = 0.34$ e Å ⁻³
314 parameters	$\Delta \rho_{\min} = -0.35 \text{ e} \text{ Å}^{-3}$
13 restraints	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Block, colourless

 $R_{\rm int} = 0.028$

 $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -22 \rightarrow 22$

 $0.25 \times 0.20 \times 0.20$ mm

23816 measured reflections 5519 independent reflections 4232 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.89631 (5)	0.51292 (5)	0.33325 (2)	0.04835 (15)	
01A	1.4384 (2)	0.5552 (4)	0.2246 (2)	0.1151 (13)	0.740 (4)
H7A	1.2277	0.5012	0.2267	0.080*	0.740 (4)
O1B	1.3729 (9)	0.4953 (8)	0.2764 (4)	0.1151 (13)	0.260 (4)
H7B	1.2365	0.5460	0.1946	0.080*	0.260 (4)
O2	0.82045 (18)	0.40111 (14)	0.30104 (8)	0.0609 (4)	
03	1.04550 (18)	0.46004 (16)	0.36347 (8)	0.0696 (4)	
04	1.35510 (18)	0.15273 (16)	0.03718 (9)	0.0700 (4)	
05	0.83811 (19)	1.06484 (15)	0.08082 (8)	0.0693 (4)	
O6	0.66997 (15)	1.02738 (14)	0.18898 (7)	0.0565 (3)	
N1	0.93431 (15)	0.65272 (14)	0.26408 (7)	0.0379 (3)	
C1	1.03147 (19)	0.76893 (18)	0.27928 (9)	0.0396 (3)	
C2	0.9569 (2)	0.9142 (2)	0.30551 (11)	0.0525 (4)	
H2	0.8432	0.9362	0.3149	0.063*	
C3	1.0505 (3)	1.0272 (2)	0.31794 (13)	0.0677 (6)	

H3	0.9996	1.1253	0.3352	0.081*
C4	1.2173 (3)	0.9952 (3)	0.30501 (14)	0.0720 (6)
H4	1.2801	1.0710	0.3139	0.086*
C5	1.2920 (2)	0.8516 (3)	0.27898 (12)	0.0651 (5)
Н5	1.4059	0.8307	0.2703	0.078*
C6	1.2016 (2)	0.7363 (2)	0.26528 (10)	0.0494 (4)
C7	1.2889 (2)	0.5845 (3)	0.23465 (13)	0.0674 (6)
C8	0.7539 (2)	0.6044 (2)	0.40537 (9)	0.0493 (4)
C9	0.5901 (2)	0.6237 (2)	0.39958 (11)	0.0587 (5)
H9	0.5535	0.5855	0.3588	0.070*
C10	0.4797 (3)	0.7018 (3)	0.45622 (13)	0.0703 (6)
H10	0.3682	0.7165	0.4528	0.084*
C11	0.5324 (3)	0.7579 (2)	0.51727 (12)	0.0702 (6)
C12	0.6966 (4)	0.7339 (3)	0.52188 (13)	0.0793 (7)
H12	0.7333	0.7691	0.5634	0.095*
C13	0.8076 (3)	0.6594 (3)	0.46667 (11)	0.0678 (6)
H13	0.9190	0.6457	0.4703	0.081*
C14	0.4101 (4)	0.8423 (3)	0.57835 (16)	0.1047 (10)
H14A	0.3053	0.8683	0.5608	0.157*
H14B	0.4473	0.9388	0.5882	0.157*
H14C	0.4002	0.7734	0.6247	0.157*
C15	0.79663 (18)	0.71501 (18)	0.22006 (9)	0.0401 (3)
H15A	0.7147	0.7856	0.2509	0.048*
H15B	0.7455	0.6265	0.2089	0.048*
C16	0.85673 (19)	0.80473 (18)	0.14613 (9)	0.0392(3)
C17	0.03073(1))	0.74544 (19)	0.08975 (9)	0.0392(3)
H17	0.9941	0.8196	0.0488	0.052*
C18	1 0633 (2)	0.58688 (19)	0.08059 (9)	0.032 0.0424 (4)
C19	1.0035(2) 1.2034(2)	0.50000(1))	0.00009(9)	0.0121(1) 0.0524(4)
H19	1 2334	0.6645	-0.0027	0.063*
C20	1 2982 (2)	0.0045 0.4287(2)	0.0027 0.01316(12)	0.005
H20	1.2902 (2)	0.4237 (2)	-0.0232	0.0507 (5)
C21	1.3920 1.2547 (2)	0.4232 0.2007 (2)	0.0232 0.05425 (11)	0.070
C21	1.2347(2) 1 1140(2)	0.2907(2)	0.03423(11) 0.10750(10)	0.0507(4)
U22 H22	1.1149(2) 1.0840	0.2998 (2)	0.10759 (10)	0.0521 (4)
C23	1.00+0	0.2070	0.1331	0.002
U23	0.0265	0.4402 (2)	0.12001 (10)	0.0489 (4)
C24	0.9205	0.4310 0.0075 (2)	0.1339 0.07567 (14)	0.039
U24 H24 A	1.3110 (5)	-0.0803	0.07307 (14)	0.0790(7)
1124A 1124A	1.3910	-0.0071	0.0580	0.119
H24C	1.2039	0.0071	0.0030	0.119
1124C C25	1.3080 0.7007 (2)	0.0117 0.07716 (10)	0.1300	0.119°
C25	0.7707(2)	1.1055(2)	0.13337 (7)	0.0443 (4)
U20 U26 A	0.0040 (3)	1.1955 (2)	0.10209 (14)	0.0095 (0)
1120A U26P	0.5177	1.2170	0.2230	0.104*
1120D 1120D	0.5007	1.2211	0.1333	0.104
11200	0.0700	1.4317	0.1030	0.104

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	U^{23}
S 1	0.0578 (3)	0.0350 (2)	0.0469 (2)	0.00262 (17)	-0.00629 (19)	0.00590 (16)
O1A	0.0336 (12)	0.118 (2)	0.199 (3)	0.0111 (12)	-0.0125 (15)	-0.082 (2)
O1B	0.0336 (12)	0.118 (2)	0.199 (3)	0.0111 (12)	-0.0125 (15)	-0.082 (2)
O2	0.0854 (10)	0.0349 (6)	0.0604 (8)	-0.0140 (6)	-0.0004 (7)	-0.0018 (5)
03	0.0716 (9)	0.0610 (8)	0.0674 (8)	0.0168 (7)	-0.0208 (7)	0.0137 (7)
O4	0.0663 (9)	0.0500 (7)	0.0866 (10)	0.0013 (6)	0.0017 (8)	-0.0059 (7)
05	0.0902 (10)	0.0450 (7)	0.0628 (8)	-0.0074 (7)	0.0068 (7)	0.0127 (6)
O6	0.0576 (8)	0.0441 (6)	0.0602 (8)	0.0031 (5)	-0.0009 (6)	0.0047 (6)
N1	0.0368 (7)	0.0346 (6)	0.0406 (7)	-0.0006 (5)	-0.0064 (5)	0.0006 (5)
C1	0.0417 (8)	0.0379 (7)	0.0383 (8)	-0.0002(6)	-0.0089 (6)	-0.0023 (6)
C2	0.0524 (10)	0.0443 (9)	0.0589 (11)	0.0044 (7)	-0.0095 (8)	-0.0106 (8)
C3	0.0856 (16)	0.0428 (10)	0.0773 (14)	-0.0027 (9)	-0.0198 (12)	-0.0158 (9)
C4	0.0803 (16)	0.0650 (13)	0.0815 (15)	-0.0261 (11)	-0.0252 (12)	-0.0128 (11)
C5	0.0493 (11)	0.0781 (14)	0.0737 (13)	-0.0138 (10)	-0.0171 (10)	-0.0125 (11)
C6	0.0417 (9)	0.0550 (10)	0.0522 (10)	0.0012 (7)	-0.0134 (8)	-0.0104 (8)
C7	0.0425 (10)	0.0754 (13)	0.0857 (15)	0.0117 (9)	-0.0194 (10)	-0.0296 (11)
C8	0.0617 (11)	0.0423 (8)	0.0395 (9)	-0.0038 (7)	-0.0039 (8)	0.0074 (7)
C9	0.0653 (12)	0.0546 (10)	0.0525 (10)	-0.0110 (9)	-0.0007 (9)	0.0058 (8)
C10	0.0643 (13)	0.0620 (12)	0.0742 (14)	-0.0079 (10)	0.0090 (11)	0.0136 (10)
C11	0.0995 (18)	0.0490 (10)	0.0504 (11)	-0.0066 (11)	0.0152 (11)	0.0061 (9)
C12	0.111 (2)	0.0733 (14)	0.0500 (12)	-0.0041 (13)	-0.0071 (12)	-0.0084 (10)
C13	0.0805 (15)	0.0700 (13)	0.0512 (11)	-0.0029 (11)	-0.0138 (10)	-0.0026 (10)
C14	0.134 (2)	0.0742 (16)	0.0836 (17)	-0.0069 (16)	0.0461 (17)	-0.0058 (14)
C15	0.0339 (8)	0.0409 (8)	0.0436 (8)	-0.0044 (6)	-0.0060 (6)	0.0047 (6)
C16	0.0403 (8)	0.0395 (8)	0.0402 (8)	-0.0108 (6)	-0.0108 (7)	0.0022 (6)
C17	0.0499 (9)	0.0417 (8)	0.0394 (8)	-0.0138 (7)	-0.0086 (7)	0.0019 (6)
C18	0.0479 (9)	0.0440 (8)	0.0383 (8)	-0.0126 (7)	-0.0085 (7)	-0.0042 (6)
C19	0.0540 (10)	0.0483 (9)	0.0529 (10)	-0.0127 (8)	0.0003 (8)	0.0023 (8)
C20	0.0481 (10)	0.0584 (11)	0.0652 (12)	-0.0090 (8)	0.0068 (9)	-0.0041 (9)
C21	0.0499 (10)	0.0464 (9)	0.0566 (10)	-0.0042 (7)	-0.0105 (8)	-0.0086 (8)
C22	0.0659 (12)	0.0416 (8)	0.0501 (10)	-0.0156 (8)	-0.0054 (8)	-0.0033 (7)
C23	0.0554 (10)	0.0464 (9)	0.0452 (9)	-0.0158 (7)	0.0026 (8)	-0.0075 (7)
C24	0.0998 (18)	0.0466 (11)	0.0829 (15)	-0.0004 (11)	0.0001 (13)	-0.0043 (10)
C25	0.0486 (9)	0.0414 (8)	0.0442 (9)	-0.0079 (7)	-0.0102 (7)	0.0013 (7)
C26	0.0743 (14)	0.0447 (10)	0.0818 (14)	0.0054 (9)	-0.0061 (11)	-0.0011 (9)

Geometric parameters (Å, °)

<u>S1</u> —03	1.4233 (14)	C11—C12	1.368 (3)	
S1—O2	1.4259 (14)	C11—C14	1.515 (3)	
S1—N1	1.6486 (13)	C12—C13	1.365 (3)	
S1—C8	1.7517 (18)	C12—H12	0.9300	
01A—C7	1.222 (3)	C13—H13	0.9300	
O1B—C7	1.223 (3)	C14—H14A	0.9600	
O4—C21	1.359 (2)	C14—H14B	0.9600	

supporting information

O4—C24	1.419 (3)	C14—H14C	0.9600
O5—C25	1.193 (2)	C15—C16	1.504 (2)
O6—C25	1.339 (2)	C15—H15A	0.9700
O6—C26	1.445 (2)	C15—H15B	0.9700
N1—C1	1.440 (2)	C16—C17	1.340 (2)
N1—C15	1.4891 (18)	C16—C25	1.489 (2)
C1—C2	1.379 (2)	C17—C18	1.454 (2)
C1—C6	1.391 (2)	C17—H17	0.9300
C2—C3	1.382 (3)	C18—C23	1.389 (2)
C2—H2	0.9300	C18—C19	1.392 (2)
$C_3 - C_4$	1 363 (3)	$C_{19} - C_{20}$	1.368(3)
C3—H3	0.9300	C19—H19	0.9300
C4-C5	1 366 (3)	C_{20} C_{21}	1.384(3)
C4—H4	0.9300	C20_H20	0.9300
C5 C6	1 386 (3)	C_{20} C_{21} C_{22}	1.377(3)
C5 H5	0.0300	$C_{21} = C_{22}$	1.377(3)
C6 C7	1.492(2)	C22—C23	1.378(2)
$C_0 = C_1$	1.463(3)	C_{22} H_{22}	0.9300
$C/-\pi/A$	0.9072	C23—H23	0.9300
C = H B	0.9955	C24—H24A	0.9600
$C_8 = C_1^2$	1.3/1(3)	C24—H24B	0.9600
	1.383 (3)		0.9600
C9—C10	1.392 (3)	C26—H26A	0.9600
C9—H9	0.9300	С26—Н26В	0.9600
C10—C11	1.378 (3)	С26—Н26С	0.9600
С10—Н10	0.9300		
03 51 03	110.46(0)	C9 C12 1112	120.1
03 - 51 - 02	119.46 (9)		120.1
03 - SI - NI	100.81(8) 10(.18(7))	C11—C14—H14A	109.5
02—S1—N1	106.18 (7)		109.5
03-51-68	108.18 (9)	HI4A—CI4—HI4B	109.5
02-51-68	108.44 (9)	CII—CI4—HI4C	109.5
N1—S1—C8	107.16 (7)	H14A—C14—H14C	109.5
C21—O4—C24	117.95 (16)	H14B—C14—H14C	109.5
C25—O6—C26	116.06 (14)	N1—C15—C16	110.86 (12)
C1—N1—C15	116.00 (11)	N1—C15—H15A	109.5
C1—N1—S1	116.79 (10)	C16—C15—H15A	109.5
C15—N1—S1	115.48 (10)	N1—C15—H15B	109.5
C2—C1—C6	119.77 (16)	C16—C15—H15B	109.5
C2-C1-N1	120.41 (14)	H15A—C15—H15B	108.1
C6-C1-N1	119.79 (14)	C17—C16—C25	115.34 (14)
C1—C2—C3	120.25 (18)	C17—C16—C15	126.06 (14)
C1—C2—H2	119.9	C25—C16—C15	118.56 (14)
С3—С2—Н2	119.9	C16—C17—C18	132.06 (14)
C4—C3—C2	120.22 (18)	C16—C17—H17	114.0
С4—С3—Н3	110.0	C18 C17 H17	114.0
C^{2} C^{2} U^{2}	119.9	$C10-C1/\pi1/$	114.0
С2—С3—П3	119.9	C13-C19-C19	116.85 (15)
C2C5	119.9 119.9 119.86 (19)	C13-C17-H17 C23-C18-C19 C23-C18-C17	116.85 (15) 125.39 (15)

С5—С4—Н4	120.1	C20—C19—C18	121.79 (16)
C4—C5—C6	121.33 (19)	C20—C19—H19	119.1
С4—С5—Н5	119.3	C18—C19—H19	119.1
С6—С5—Н5	119.3	C19—C20—C21	120.10 (17)
C5—C6—C1	118.57 (16)	С19—С20—Н20	119.9
C5—C6—C7	119.11 (17)	C21—C20—H20	119.9
C1—C6—C7	122.31 (16)	O4—C21—C22	124.42 (17)
O1A—C7—C6	121.8 (2)	O4—C21—C20	115.99 (17)
O1B—C7—C6	117.2 (4)	C22—C21—C20	119.57 (16)
O1A—C7—H7A	118.0	C21—C22—C23	119.62 (16)
С6—С7—Н7А	120.0	C21—C22—H22	120.2
O1B—C7—H7B	123.3	C23—C22—H22	120.2
С6—С7—Н7В	114.0	C22—C23—C18	122.03 (16)
C9—C8—C13	120.62 (18)	C22—C23—H23	119.0
C9—C8—S1	119.52 (15)	C18—C23—H23	119.0
C13—C8—S1	119.85 (16)	O4—C24—H24A	109.5
C8—C9—C10	118.4 (2)	O4—C24—H24B	109.5
С8—С9—Н9	120.8	H24A—C24—H24B	109.5
С10—С9—Н9	120.8	O4—C24—H24C	109.5
C11—C10—C9	121.3 (2)	H24A—C24—H24C	109.5
C11—C10—H10	119.4	H24B—C24—H24C	109.5
С9—С10—Н10	119.4	O5—C25—O6	122.00 (15)
C12—C11—C10	118.6 (2)	O5—C25—C16	125.15 (16)
C12—C11—C14	121.0 (2)	O6—C25—C16	112.85 (13)
C10—C11—C14	120.4 (3)	O6—C26—H26A	109.5
C13—C12—C11	121.3 (2)	O6—C26—H26B	109.5
C13—C12—H12	119.4	H26A—C26—H26B	109.5
C11—C12—H12	119.4	O6—C26—H26C	109.5
C12—C13—C8	119.7 (2)	H26A—C26—H26C	109.5
C12—C13—H13	120.1	H26B—C26—H26C	109.5
O3—S1—N1—C1	-43.28 (13)	C9—C10—C11—C12	-0.7 (3)
O2—S1—N1—C1	-171.79 (11)	C9—C10—C11—C14	-179.89 (19)
C8—S1—N1—C1	72.47 (13)	C10-C11-C12-C13	1.5 (3)
O3—S1—N1—C15	175.04 (11)	C14—C11—C12—C13	-179.3 (2)
O2—S1—N1—C15	46.53 (13)	C11—C12—C13—C8	-1.1 (3)
C8—S1—N1—C15	-69.21 (13)	C9—C8—C13—C12	-0.1 (3)
C15—N1—C1—C2	45.8 (2)	S1—C8—C13—C12	178.51 (16)
S1—N1—C1—C2	-95.71 (16)	C1—N1—C15—C16	54.01 (17)
C15—N1—C1—C6	-132.35 (15)	S1—N1—C15—C16	-164.00 (11)
S1—N1—C1—C6	86.17 (16)	N1-C15-C16-C17	58.9 (2)
C6—C1—C2—C3	0.0 (3)	N1-C15-C16-C25	-118.85 (15)
N1—C1—C2—C3	-178.15 (16)	C25—C16—C17—C18	179.51 (16)
C1—C2—C3—C4	-0.6 (3)	C15—C16—C17—C18	1.7 (3)
C2—C3—C4—C5	0.6 (4)	C16—C17—C18—C23	19.7 (3)
C3—C4—C5—C6	0.0 (4)	C16—C17—C18—C19	-162.71 (17)
C4—C5—C6—C1	-0.6 (3)	C23—C18—C19—C20	-2.0 (3)
C4—C5—C6—C7	178.0 (2)	C17—C18—C19—C20	-179.77 (17)
			× /

$178.73 (16) \\ -177.97 (18) \\ 0.2 (3) \\ 3.6 (4) \\ -177.9 (3) \\ 66.3 (5) \\ -115.1 (5) \\ -161.09 (14) \\ -30.16 (15) \\ 84.07 (15) $	C24—O4—C21—C22 C24—O4—C21—C20 C19—C20—C21—O4 C19—C20—C21—C22 O4—C21—C22—C23 C20—C21—C22—C23 C21—C22—C23—C18 C19—C18—C23—C22 C17—C18—C23—C22 C26—O6—C25—O5	1.3 (3) -177.5 (2) 179.36 (18) 0.5 (3) -179.51 (17) -0.7 (3) -0.4 (3) 1.7 (3) 179.32 (16) -2.3 (3)
-177.9 (3)	O4—C21—C22—C23	-179.51 (17)
66.3 (5)	C20—C21—C22—C23	-0.7 (3)
-115.1 (5)	C21—C22—C23—C18	-0.4 (3)
-161.09 (14)	C19—C18—C23—C22	1.7 (3)
-30.16 (15)	C17—C18—C23—C22	179.32 (16)
84.07 (15)	C26—O6—C25—O5	-2.3 (3)
20.28 (17)	C26—O6—C25—C16	177.19 (15)
151.21 (15)	C17—C16—C25—O5	-4.8 (3)
-94.56 (15)	C15—C16—C25—O5	173.22 (17)
0.9(3)	C17 - C16 - C25 - O6	175.70 (14)
0.7 (3)	01, 010 020 00	
-177.74 (13)	C15—C16—C25—O6	-6.3 (2)
	$\begin{array}{c} 178.73 (16) \\ -177.97 (18) \\ 0.2 (3) \\ 3.6 (4) \\ -177.9 (3) \\ 66.3 (5) \\ -115.1 (5) \\ -161.09 (14) \\ -30.16 (15) \\ 84.07 (15) \\ 20.28 (17) \\ 151.21 (15) \\ -94.56 (15) \end{array}$	178.73 (16) $C24-O4-C21-C22$ $-177.97 (18)$ $C24-O4-C21-C20$ $0.2 (3)$ $C19-C20-C21-O4$ $3.6 (4)$ $C19-C20-C21-C22$ $-177.9 (3)$ $O4-C21-C22-C23$ $66.3 (5)$ $C20-C21-C22-C23$ $-15.1 (5)$ $C21-C22-C23-C18$ $-161.09 (14)$ $C19-C18-C23-C22$ $-30.16 (15)$ $C17-C18-C23-C22$ $84.07 (15)$ $C26-O6-C25-O5$ $20.28 (17)$ $C26-O6-C25-O5$ $-94.56 (15)$ $C15-C16-C25-O5$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C9—H9····O1 <i>B</i> ⁱ	0.93	2.50	3.397 (7)	162
C15—H15A···O6	0.97	2.24	2.7322 (19)	111
C24—H24A····O4 ⁱⁱ	0.96	2.52	3.341 (3)	143

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+3, -*y*, -*z*.