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DNA replication is an extremely risky process that cells have to endure in order to correctly
duplicate and segregate their genome. This task is particularly sensitive to DNA damage
and multiple mechanisms have evolved to protect DNA replication as a block to the
replication fork could lead to genomic instability and possibly cell death. The DNA in
the genome folds, for the most part, into the canonical B-form but in some instances
can form complex secondary structures such as G-quadruplexes (G4). These G rich
regions are thermodynamically stable and can constitute an obstacle to DNA and RNA
metabolism. The human genome contains more than 350,000 sequences potentially
capable to form G-quadruplexes and these structures are involved in a variety of cellular
processes such as initiation of DNA replication, telomeremaintenance and control of gene
expression. Only recently, we started to understand how G4 DNA poses a problem to
DNA replication and how its successful bypass requires the coordinated activity of ssDNA
binding proteins, helicases and specialized DNA polymerases. Their role in the resolution
and replication of structured DNA crucially prevents both genetic and epigenetic instability
across the genome.
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Introduction

DNA replication is a central process in cellular life. Its completion requires both the propagation of
the genetic material and the correct transmission of the epigenetic information (Groth et al., 2007;
Corpet and Almouzni, 2009). These two activities need to be tightly regulated and coordinated.
During fork progression the epigenetic modifications carried by histones are distributed by the
histone chaperones Asf1 andCaf1 between parental and daughter strands of theDNA (Gurard-Levin
et al., 2014). This mechanism allows local recycling of modified parental histones and incorporation
of new histones that are devoid of parental modifications but instead carry pre-deposition marks.
This process needs stable and ongoing DNA replication and it could be affected by any event able
to perturb DNA duplication. Indeed, acute replication stress affects histone dynamics and alters
binding to histone chaperones (Jasencakova et al., 2010). The vertebrate genome is scattered with
sequences that can fold in secondary structures and that are for this reason difficult to replicate.
Among such sequences, G-quadruplexes are one of the most studied (Maizels and Gray, 2013).
A G-rich sequence (G+3N1−7G+3N1−7G+3N1−7G+3) has the ability to form a quadruplex (G4)
stabilized by Hoogsteen hydrogen bonds at physiological salt concentration (Figure 1A, inset; Sen
and Gilbert, 1988). This occurs especially during DNA transitions (replication and transcription)
that use ssDNA as an intermediate (Phan and Mergny, 2002; Maizels and Gray, 2013). In such
conditions, four guanines can arrange in a quadruplex that is thermodynamically more stable than
B-form DNA and it can block DNA replication and transcription both in vitro and in vivo (Maizels
and Gray, 2013). It is estimated that in the genome over 350,000 sequences have the potential
to fold in G-quadruplexes that can act as a replication barrier even in unchallenged conditions
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FIGURE 1 | Model of replication across structured DNA. During
replication, polymerases ε and δ stall in presence of a G4 quadruplex (inset),
respectively on the leading (A) or lagging strand (B). Parental histone
recycling (dashed blue lines) continues on the opposing strand
supplemented by newly synthetized histone carrying pre-deposition marks
(green dashed line). FANCJ coordinates two independent pathway in order
to allow G4 bypass. On the leading strand (C) FANCJ and Rev1 destabilize
the quadruplex from opposing directions; on the lagging strand FANCJ is
supported by the action of WRN and BLM (D) that may also play a minor role

on the leading strand. In presence of the activity of the FANCJ, Rev1, WRN,
and BLM (C,D) the quadruplex is efficiently replicated without perturbing the
recycling and deposition of histones. In absence of these proteins an
un-replicated gap, either on the leading or lagging strand, is left behind the
fork (E). The gap may be the result of a re-priming event and in this case it
will be replicated by a different mechanism, such as Post Replication Repair
(not shown). This form of bypass will lead to the loss of epigenetic
information since only new histones, without parental post translational
modifications, will be available.
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(Huppert and Balasubramanian, 2005; Todd et al., 2005). While
G4 formation was studied in vitro for a number of years, their
occurrence in vivo has only been observed recently. Data collected
with G4 recognizing molecules or antibodies (Rodriguez et al.,
2012; Biffi et al., 2013; Henderson et al., 2014) show that G4s are
present in cells and they increase during S phase. G-quadruplexes
have been involved in a variety of biological processes including
maintenance of the telomeric regions, control of gene expression,
immune response and initiation of DNA replication (Maizels
and Gray, 2013). Out of the 250,000 putative replication origins
identified in human over 67% are in proximity of a G-quadruplex
(Besnard et al., 2012). Recent studies suggest that structured DNA
requires replication to form (Biffi et al., 2013) and its presence
could hinder DNA duplication. G4 DNA is able to block primer
extension in vitro (Kamath-Loeb et al., 2001) and it can lead to
genomic instability and to the formation of G4 fragile sites in
both S. cerevisiae and C. elegans (Kruisselbrink et al., 2008; Lopes
et al., 2011).

Historically a number of helicases have been involved in the
resolution of G4 DNA: Pif1 (Sanders, 2010; Schuldt, 2011), the
RecQ helicases BLM and WRN (Brosh et al., 2001; Johnson et al.,
2010; Indig et al., 2012) and the Fanconi Anemia protein FANCJ
(Wu et al., 2008; Bharti et al., 2013). More recently, specialized
DNA polymerases have been uncovered to play a new role in
replicating past structured DNA (Sarkies et al., 2010).

This review focuses on how G4 DNA is resolved during
replication. We will first concentrate on how ssDNA binding
proteins can destabilize the formation of G4s and then analyze
the helicases that can resolve such secondary structures. We will
then investigate the involvement of DNApolymerases that can use
G4s as a template during replication and the repercussion of the
timing of G4 bypass on maintenance of the genetic and epigenetic
information.

Prevention and Resolution of the G4
Problem

Hoogsteen bond formation is favored in the presence of single
stranded DNA. In cells, single strand binding proteins, such as
RPA (Replication Protein A) and the telomeric protein POT1,
readily bind ssDNA (Wold, 1997; Palm and de Lange, 2008)
preventing the formation of structured DNA.

Additionally, these proteins could help to disrupt folded G4s.
RPA is the most abundant of the ssDNA binding proteins and it
can initially bind a G4 on a three nucleotide loop/overhang via
one of its ssDNA binding domains (DBD-A; Qureshi et al., 2012;
Ray et al., 2013). The G4 starts to destabilize when the DBD-B
interacts with the loop and it is unfolded after the final binding of
the DBD-C and DBD-D domains.

The telomeres, ending with a short 50–200 nt long 3′ overhang
of ssDNA (Makarov et al., 1997), are regions of tandem repeats
prone to form G-quadruplexes. POT1 and TPP1 protect the
telomeres and prevent the activation of theDNAdamage response
mediated by RPA and ATR (d’Adda di Fagagna et al., 2003). The
presence of quadruplexes favors the binding of the less abundant
POT1/TPP1 complex and protects the overhangs from RPA
recognition. Biochemical evidence suggests that POT1, enhanced

by TPP1, binds the 3′ end of the telomeric overhang and it
unfolds the G4 preventing at the same time RPA access (Ray et al.,
2014). The binding of POT1/TPP1 appears to be dynamic and the
complex exhibits amovement on ssDNA similar to a sliding clamp
(Hwang et al., 2012).

RPA and POT1 may prevent the formation of G-quadruplexes,
but once structured regions of DNA are established other proteins
need to process them. A group of helicases is involved in the
resolution of G4 intermediates: among them two members of
the RecQ family, BLM and WRN, the Fanconi Anemia protein J
(FANCJ), CHL1 and PIF1. A deficiency in either BLM or WRN
is the cause of two genetic diseases called respectively Bloom
and Werner Syndrome (Monnat, 2010). They have very different
clinical presentations but they are both extremely cancer prone.
BLM and WRN work in different DNA repair pathways and they
can resolve a number ofDNA intermediates likeHoliday Junctions
or D-loops. Moreover, they can stabilize the replication fork in
presence of genotoxic reagents such as Hydroxyurea (Sidorova
et al., 2008). WRN can bind its substrates with high affinity
while BLM, at least in vitro, shows a reduced binding capability.
G-quadruplexes are the only exception where BLM binds more
efficiently than WRN (Kamath-Loeb et al., 2012). Regardless of
these differences, both helicases can resolve all the mentioned
structures in vitro. BLM and WRN, in addition to the helicase (3′
to 5′) domain, possess two additional distinctive domains called
RQC (RecQ C-terminal) and HRDC (Helicase and RNase-D
C-terminal; Monnat, 2010). The RQC shows a strong affinity for
G4 DNA and the HRDC facilitates substrate recognition (Huber
et al., 2006; Chatterjee et al., 2014). In addition, the HRDC
domain of BLM is required for binding and resolution of Holiday
Junctions (Wu et al., 2005). Initial observations suggested that
WRN and BLM could unwind G4s in vitro (Sun et al., 1998;
Kamath-Loeb et al., 2012). New single molecule studies revealed
that this unfolding activity was ATP independent and it relied
on specific characteristics of the G4 to be resolved (Budhathoki
et al., 2014). In particular BLM activity required a 3′ overhang
longer than seven nucleotides and a spacer region, between the
G4 and dsDNA, greatly enhanced unfolding of the quadruplex
(Chatterjee et al., 2014).

Sequences predicted to form G4s are found often near the
transcriptional start site (TSS) of a gene. Interestingly, changes in
transcription profiles of such genes have been detected in BLM
andWRN cell lines (Johnson et al., 2010; Nguyen et al., 2014), due
to transcriptional regulation near the G4.

FANCJ is another helicase involved in G4 resolution. FANCJ
is an iron sulfur (Fe-S) DNA helicase involved in Intra-strand
Crosslink repair (ICL) as part of the Fanconi Anemia repair
pathway (Brosh and Cantor, 2014). Fanconi Anemia (FA), a
disease that presents congenital defects, bone marrow failure and
predisposition to tumors, affects patients carrying mutations in
FANCJ. Differently from other members of the Fe-S helicase
family (XPD, RTEL, and DDX11) FANCJ is the only one capable
of unwinding G4 DNA in vitro (Wu et al., 2008; Bharti et al.,
2013). In vivo, the quadruplex stabilizing drug telomestatin causes
DNA damage in FANCJ deficient cells leading to DSBs and
accumulation of γH2AX (Bharti et al., 2013). In Xenopus Laevis
egg extracts, FANCJ promotes bypass on a plasmid carrying a

Frontiers in Genetics | www.frontiersin.org June 2015 | Volume 6 | Article 2093

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Cea et al. G4 DNA and epigenetic transmission

G4 and it prevents replication stalling (Castillo Bosch et al.,
2014) in a manner independent from the other Fanconi proteins.
In C. elegans, DOG-1, the FANCJ homolog, appears to protect
cells from genome instability at G4 DNA sites. Worms mutated
in DOG-1 show instability near G4 forming sequences and
accumulation of small deletions (Kruisselbrink et al., 2008;
Maizels, 2008). These deletions are generated by an end-joining
repair pathway mediated by the DNA polymerase theta (Koole
et al., 2014; van Kregten and Tijsterman, 2014). Indeed deletion of
POLQ exacerbates G4 instability in a dog-1 background. Overall,
we can conclude that helicases and ssDNA binding proteins
protect the cells from accumulation of structuredDNA that would
be detrimental for their metabolism.

Replicating Across G-quadruplexes via
DNA Translesion Synthesis

While the role of ssDNA binding proteins and helicases suggests
that unfolding is essential to allow replication of the structured
region, recent experimental evidence indicates that specialized
DNA polymerases could also be involved in structured DNA
bypass. The Y family polymerases polη, polι, polκ, Rev1, and
the B family dimer Rev3-Rev7 are already known to be involved
in the bypass of distorted templates caused by DNA damage.
Together they are part of a DNA damage tolerance pathway
called DNA Translesion synthesis (TLS; Sale et al., 2012). TLS
polymerases, by virtue of a larger catalytic site, can accommodate
damaged templates and they can incorporate nucleotides both in
an error free and in an error prone manner. Upon encountering
DNA damage the replication fork stalls and the replicative clamp
PCNA (Proliferating Cell Nuclear Antigen), ubiquitylated by
Rad6-Rad18, promotes a switch between replicative and TLS
polymerases. Ubiquitylated PCNA (Ubi-PCNA) shows increased
affinity for Ubiquitin binding motifs present on TLS polymerases
(Kannouche et al., 2004; Bienko et al., 2005, 2010). The timing
of damage bypass is still not understood completely. In different
model systems, the bypass has been observed either early at the
fork (Edmunds et al., 2008; Jansen et al., 2009) or at a later
time following re-priming of the replisome (Lehmann, 1972;
Lopes et al., 2006). The temporal choice of TLS appears to
have different genetic requirements: post-replicative bypass in
mammalian cells and S. cerevisiae requires Ubi-PCNA and polη
but their role at the replication fork is still unclear. In contrast,
in chicken DT40 cells the second type of bypass relies on Rev1
(Edmunds et al., 2008). In MEFs, Rev1 was proposed to have
a role in both early and late types of bypass (Jansen et al.,
2009).

Rev1 is a dCTP transferase (Lin et al., 1999; Haracska et al.,
2002) and in DT40 its catalytic activity is dispensable for damage
bypass at the fork that instead requires the protein C-terminus
(Edmunds et al., 2008). This domainmediates the interactionwith
other TLS polymerases and for this reason Rev1 is speculated
to coordinate the TLS response (Guo et al., 2003; D’Souza
and Walker, 2006; Pustovalova et al., 2012). TLS has been
studied mostly in the context of DNA damage bypass but recent
evidences suggest a more widespread role of these specialized
DNA polymerases.

RNAi silencing of polη and polκ can sensitize human cells to
telomestatin and it results in double strand breaks formation near
a Guanine rich sequence in the c-MYC promoter (Betous et al.,
2009). Knock-down of both polymerases increases G4 instability
in dog-1 deficient strains inC. elegans (Youds et al., 2006) but their
role is currently under debate since null alleles of polh-1 and polk-1
failed to recapitulate such phenotype (Koole et al., 2014). A recent
paper suggests that polη can bind a G4 substrate in vitro (Eddy
et al., 2015) and it is capable to replicate across quadruplexes with
higher efficiency and fidelity than the catalytic domain of polε.

In addition, polη appears to be involved in the replication
of common fragile sites (CFS), specific regions of the genome
that, in some cell types, are characterized by an increased chance
of breakage during replicative stress (Rey et al., 2009; Bergoglio
et al., 2013). A subset of CFS replicates late during S phase and it
shows a low density of replication origins. The slower replication
across CFS could lead to polymerase pausing and accumulation
of ssDNA ahead of the fork. This substrate, if not annealed
correctly, could form non-canonical DNA intermediates similar
to G-quadruplexes.

The structure of polη gives some insights on how the
polymerase could bypassG4DNAandother secondary structures.
When it was crystallized in presence of a cyclobutane pyrimidine
dimer (CPD), the polymerase was able to interact with the
incomingDNA via the back of its little finger, using this domain to
open secondary structures on the distorted template (Biertumpfel
et al., 2010). In such conformation, polη could form a molecular
splint capable of forcing the distorted DNA toward B-form. Thus,
it is tempting to speculate that a similar mechanism could allow
replication across a G-quadruplex.

Rev1 was shown to bind preferentially G4 DNA in vitro and
to disrupt its formation (Eddy et al., 2014). Analysis of Rev1
structure revealed the presence of a protein side chain (N-digit)
that can displace the incoming template base from its active site.
Then the displaced template is stabilized by repeated domains
within Rev1 (G-loop), ultimately unfolding the G-quadruplex.
Altogether, this suggests that TLS could bypassG4s and structured
DNA directly or it could be required for repairing the damage
caused by sequences difficult to replicate. Regardless of the
molecular mechanism, the involvement of TLS, with its distinct
temporal requirements, suggests that G4 bypass could have
serious repercussion on the stability of the epigenetic information
of the regions neighboring the quadruplex.

G4 Replication and Epigenetic Instability

Histone deposition needs to be synchronized with replication
fork progression. During replication, the MCM helicase complex
displaces the parental histones that are promptly recycled by
the coordinated action of the histone chaperones Asf1 and
Caf1. Parental histones, carrying epigenetic information, are
distributed between the two daughter strands in addition to being
supplemented by the stock of free naïve histones (Figures 1A,B).
As a result, each of the two newly synthetized strands of
DNA folds on chromatin carrying only part of the epigenetic
modifications on their histone tails. Such modifications are
copied by chromatin modifying complexes ensuring maintenance
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of epigenetic memory (Margueron and Reinberg, 2010). The
re-deposition of parental histones is local and it is possible only
within the time window between histone eviction and recycling.
Ultimately, uncoupling histone deposition and DNA replication
could alter epigenetic transmission (Jasencakova et al., 2010).

Bypass of G-quadruplexes during active replication would
maintain the original epigenetic status (Figures 1C,D) while
delayed gap filling by post replicative repair (PRR) would lead to
the preferential incorporation of new histones (Sarkies et al., 2010;
Figure 1E). Rev1 in chicken DT40 cells appears to coordinate the
first type of bypass and its absence affects the epigenetic status of
the chromatin (Sarkies et al., 2010).

In rev1 cells, we can observe both activation and repression of
a large number of genes harboring G4 DNA sequences in their
proximity. Exemplary for the first case was the activation of the
β-globin locus, normally silent in DT40, with loss of H3K9me2,
a modification associated with low gene transcription (Sarkies
et al., 2010). Remarkably, an increase in acetylation of H3K9/14
or trimethylation of H3K4 was not observed indicating that the
transcriptional state was influenced by the loss of the repressive
markermore than the acquisition of an activating one. Conversely,
it was possible to appreciate the silencing of CD72 and Bu1a,
normally two active genes, with the loss of H3K9/14Ac and
H3K4me3, not followed by an increase of H3K9me2 (Sarkies and
Sale, 2012). Microarray analysis revealed that 71% of the altered
gene expression in rev1 correlated with the presence of DNA
sequences prone to form G-quadruplex structures. Alterations
in the histone post-translational modifications could be detected
only when the quadruplex was on the leading strandwithin 4.5 Kb
of the TSS, hinting that the epigenetic information around the TSS
influenced the expression state of a gene (Schiavone et al., 2014).
Mutants of Rev1 lacking its C-terminus could not maintain the
chromatin status but the absence of Rev1 catalytic activity had a
smaller effect.

The partial dependency on the active site suggests that Rev1
could de-stabilize the G4 by adding a dCTP to the structured
template, as observed in vitro. On the other hand, the involvement
of its C-terminus indicates that Rev1 could coordinate the
recruitment of other factors. The other TLS polymerases play
a minor role in the DT40 system and only small epigenetic
alterations at the β-globin and at the Bu1a loci are observed
in single polη and polκ knockouts. Furthermore, even the triple
polη/polκ/rev3 mutant does not show changes comparable to the
one observed in rev1 (Wickramasinghe et al., 2015). Thus, the
role of Rev1 appears to be independent from the other TLS
polymerases and its C-terminus might interact with additional
factors involved in DNA replication such helicases and possibly
even replicative polymerases.

An analysis of epigenetic instability excluded the involvement
of other repair factors with the exception of FANCJ, WRN, and
BLM (Sarkies et al., 2012). WRN and BLM appeared to work
together, since loss of transcription of Bu1a could be appreciated
only in the absence of both genes. The expression changes
observed in thewrn/blmmutant weremore complex than the ones
previously reported in Werner and Bloom cell lines derived from
patients. The DT40 system showed an even increase of both up-
regulated and down-regulated genes (Sarkies et al., 2012) while

the human cell lines predominantly up-regulated transcription
(Johnson et al., 2010). Furthermore, the number of transcripts
altered in the DT40 double mutant was higher than the single
wrn and blm possibly indicating more than a transcriptional
regulation.

Transcription profiling revealed overlaps between the
expression changes of the fancjmutant with the rev1 and wrn/blm
cell lines respectively.

Alterations of gene expression correlated with the presence of
G4 DNA near the transcribed loci, pointing to a central role of
FANCJ in G4 bypass. FANCJwas also shown to block spreading of
irreversible heterochromatisation in the presence of telomestatin
(Schwab et al., 2013). In this case, FANCJ was proposed to prevent
fork stalling on the lagging strand. Indeed FANCJ deficient cells
accumulated stretches of ssDNA of 250–3000 nucleotides, a size
compatible with Okazaki fragments. Interestingly, gap filling by
PRR results in fragments of 800-1600 nucleotides in mouse cells
(Lehmann, 1972) and gaps of similar size (2–3 Kb) are observed
on the leading strand behind the fork in yeast (Lopes et al., 2006).
Thus, it is difficult to discriminate if FANCJ can prevent fork
stalling only on the lagging strand or it could work on both
strands. WRN and BLM have been shown previously to help in
replicating telomeres formed by lagging strand synthesis (Crabbe
et al., 2004; Zimmermann et al., 2014). Nevertheless Sarkies et al.
(2012) showed that a plasmid carrying a G4 on the leading strand
was not efficiently replicated in a wrn/blm double mutant.

It is tempting to speculate that FANCJ could control two
bypass pathways mediated respectively by Rev1 and BLM/WRN
(Figures 1C,D). FANCJ and BLM/WRN show different helicase
directionality and their convergence from opposite sides could
unfold the quadruplex (Figures 1C,D). Interestingly BLM and
WRN, but not FANCJ, can unfold an intramolecular G4 by simply
binding its 3′ overhang in absence of ATP or catalytic activity
(Budhathoki et al., 2014; Chatterjee et al., 2014). This suggests
that while a 5′ to 3′ activity may be required, WRN and BLM
could help FANCJ by interacting with the G4 from the opposite
end (Figure 1C).

In the case of Rev1, the polymerase could destabilize the
quadruplex by binding it or by inserting a dCTP, before resolution
by the incoming FANCJ helicase (Figure 1D). Rev1 activity may
be confined to the leading strand while WRN/BLM could act as a
backup on the leading but exert amajor role on the lagging strand.
Overall, both processes would ensure the continuation of DNA
replication and the formation of chromatin carrying the parental
epigenetic information.

Concluding Remarks

G4 duplex formation has been detected in vitro for a number
of years but their presence in vivo has always been source of
much speculation. Only recent experimental evidence unveiled
the existence of G-quadruplexes in vivo particularly during the
S phase of the cell cycle, with all the consequences that their
presence entails. In this short review, we tried to present the latest
experimental details showing how G4 structures are bypassed
and what proteins are involved in the process. A combination
of helicases, including FANCJ, WRN and BLM, is proposed to
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act on the structured DNA with the help of TLS polymerases.
Together these proteins ensure the progression of the replication
fork and allow the correct deposition of histones with their
epigenetic information. In their absence, part of the epigenetic
memory is lost with far reaching consequences at the level of the
transcriptional program of the cells.
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