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Abstract 

Background:  Plants undergo programmed chromatin changes in response to envi-
ronment, influencing heritable phenotypic plasticity. The RNA-directed DNA methyla-
tion (RdDM) pathway is an essential component of this reprogramming process. The 
relationship of epigenomic changes to gene networks on a genome-wide basis has 
been elusive, particularly for intragenic DNA methylation repatterning.

Results:  Epigenomic reprogramming is tractable to detailed study and cross-species 
modeling in the MSH1 system, where perturbation of the plant-specific gene MSH1 
triggers at least four distinct nongenetic states to impact plant stress response and 
growth vigor. Within this system, we have defined RdDM target loci toward decoding 
phenotype-relevant methylome data. We analyze intragenic methylome repatterning 
associated with phenotype transitions, identifying state-specific cytosine methylation 
changes in pivotal growth-versus-stress, chromatin remodeling, and RNA spliceosome 
gene networks that encompass 871 genes. Over 77% of these genes, and 81% of their 
central network hubs, are functionally confirmed as RdDM targets based on analy-
sis of mutant datasets and sRNA cluster associations. These dcl2/dcl3/dcl4-sensitive 
gene methylation sites, many present as singular cytosines, reside within identifiable 
sequence motifs. These data reflect intragenic methylation repatterning that is tar-
geted and amenable to prediction.

Conclusions:  A prevailing assumption that biologically relevant DNA methylation 
variation occurs predominantly in density-defined differentially methylated regions 
overlooks behavioral features of intragenic, single-site cytosine methylation variation. 
RdDM-dependent methylation changes within identifiable sequence motifs reveal 
gene hubs within networks discriminating stress response and growth vigor epigenetic 
phenotypes. This study uncovers components of a methylome “code” for de novo intra-
genic methylation repatterning during plant phenotype transitions.

Keywords:  DNA methylation, Epigenetic, sRNA, Vigor, Stress response, Phenotypic 
plasticity
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Background
Plants deploy a range of seed dispersal mechanisms that can span significant distance 
and environmental variation [1], necessitating robust environmental adaptation strat-
egies. Successful germination and seedling establishment in a new location favors 
inducible and sustainable resilience mechanisms to facilitate survival under diverse envi-
ronmental conditions. Modeling heritable phenotypic response assumes a plant’s abil-
ity to manage internal metabolic stochasticity in a manner that provides for phenotype 
stability (canalization) together with the requisite plasticity to respond to environmen-
tal change [2, 3]. It is thought that plants persist in new and changing environments 
through epigenetic processes [4, 5], but directional targeting of specific gene networks 
for enhanced phenotypic resilience in plants has not been previously defined.

Targeted epigenetic changes in plants take place, in part, through the RNA-directed 
DNA methylation (RdDM) pathway. This process effects de novo DNA methylation 
within transposable element and heterochromatic regions of the genome [6, 7], with less 
clear influence on genic methylation. Small RNAs (sRNA) associated with the RdDM 
pathway establish target sites and are generated by the activity of DCL3 in the canonical 
pathway [6], and DCL2 and DCL4 in associated pathways [7]. Site-specific DNA meth-
ylation is directed by the methyltransferase DRM2 [8] in a process that links to histone 
modifications influencing local chromatin architecture. These effects involve the histone 
deacetylase HDA6 [9]. HDA6 is a component of chromatin-mediated stress response 
[10, 11], presumably participating in re-establishment of chromatin homeostasis follow-
ing environmental or developmental changes [12].

MSH1 is a plant-specific, nuclear-encoded gene for a DNA-binding protein [13] that 
maintains mitochondrial [14] and plastid [15] genome stability. Disruption of the plas-
tid-targeted MSH1 protein causes plant developmental and epigenetic reprogramming 
[16, 17] and a variable, stress-responsive, daylength-sensitive growth phenotype (state 1) 
(Fig. 1). The msh1 reprogramming process is HDA6-dependent, such that an msh1,hda6 
double mutant is lethal under standard (12-h daylength) growth conditions [18]. RNAi 
knockdown of MSH1 and subsequent transgene segregation leads to recurrently herita-
ble, nongenetic msh1 “memory” (state 2). The msh1 memory state is a DRM2-dependent 
condition of reduced growth, delayed maturity, and chronic abiotic stress response [18].

Grafting an isogenic wild type scion to msh1 rootstock produces progeny with meas-
urably enhanced growth vigor, seed production, and resilience (state 3). This pheno-
type is markedly different from msh1(state 1) and derived memory (state 2). The graft 
progeny growth vigor, referred to as heritable enhancement through grafting (HEG), is 
sustained over multiple successive generations [17]. HEG effects depend on transgen-
erational sRNA transmission. Progeny growth and differential methylation outcomes are 
obviated by including dcl2/dcl3/dcl4 triple mutations with msh1 in the rootstock [19]. 
A fourth msh1-derived nongenetic state exists, detailed in this report. This state arises 
from crossing of msh1 to isogenic wild type, leading to a range of enhanced growth vigor 
in the epi-line progeny. In epi-lines, these effects are more variable and diminish after 5 
to 6 generations, with evidence of sporadic reversion to a condition resembling state 2 
memory as shown in this study.

Here, we exploit the MSH1 system as a model to address two fundamental ques-
tions of plant phenotypic plasticity: What are the criteria for identifying plant de novo 
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RdDM gene targets that influence directional phenotype adjustment, and do these epi-
genomic effects lend themselves to prediction? We integrated nongenetic plant pheno-
type variation, DNA methylation, sRNA, mutant, and gene expression datasets from 
the four msh1-derived nongenetic states, to home in on putative target pathways that 
participate in msh1 developmental reprogramming. With a methylation analysis proce-
dure enhanced for sensitivity, we discriminated gene networks undergoing directional 
changes in methylation and transcription. These networks appeared to underpin plant 
phenotype transitions. The DNA methylation analysis incorporated signal detection, 
machine learning, and sRNA and RdDM mutant datasets to classify candidate RdDM 
target loci that participate in msh1 effects without regard to cytosine context or numbers 
of proximal methylation changes at a site. High-resolution analysis of these putative tar-
gets pinpointed differential methylation positions within identifiable sequence motifs to 
discriminate the four msh1-derived states. These observations support a model of msh1-
triggered epigenetic effects as targeted, programmed actions that may serve to promote 
phenotype plasticity in a manner far more precise than has been previously reported.

Results
msh1 epi‑lines comprise a distinct nongenetic state based on phenotype

Manipulation of the msh1 mutant leads to four distinct phenotypes, with states 1 and 
2 characterized by slowed growth, delayed flowering, and persistent stress response, 
and states 3 and 4 producing enhanced growth vigor and greater seed set over wild type 
(WT) (Fig. 1). State 4 results from direct or reciprocal crossing of Col-0 msh1 mutant 
(state 1) or memory line (state 2) x Col-0 WT and generation of epi-F2 and epi-F3 

Fig. 1  The msh1 system is composed of four msh1-derived epigenetic states. In Arabidopsis, four distinct 
plant states originate from MSH1 knockdown or knockout. States 1 and 2 derive directly from msh1 
disruption, resulting in highly stress-responsive phenotypes. State 1 at short daylength is variable, including a 
low-frequency “perennial-like” phenotype [16]. States 3 and 4 involve interaction of msh1-modified and naïve 
(wild type) genomes through grafting or crossing, resulting in growth vigor phenotypes. Genetic evidence of 
RdDM dependence is indicated at relevant transitions in gray shading
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families in Arabidopsis. Similar results were obtained regardless of the direction of the 
cross, which indicates that these progeny phenotype changes do not derive from altered 
plastid genome effects. Regardless, we used Col-0 WT as female in crosses presented in 
this study to retain wild type cytoplasm. Progeny populations showed more variable dis-
tribution of growth-enhanced phenotypes within the F2 generation than occurs in state 
3 graft progeny [19], and individual epi-line populations could be categorized with either 
enhanced vegetative growth, greater seed set, or both (Fig. 2; Additional file 1: Fig. S1).

We followed 4 F3 populations of cross-derived epi-lines. Epi 8 and Epi 24 were sibling 
lines from one WT x msh1 cross event, and Epi 10 and Epi 19 were sibling lines from a 
second WT x msh1 cross. All four F3 epi-lines showed uniform phenotypes within each 
population, but significant variation between the four populations (Fig.  2; Additional 
file  1: Fig. S1). Epi-line populations were increased in aboveground vegetative growth 
and underground root development (Fig. 2a, e). Three of the populations, Epi 8, 10, and 
19, had significantly higher total leaf area than the WT control (Fig. 2b, f ), and all four 
populations had higher dry leaf weight than WT (Fig.  2g). The four populations also 
showed higher dry root weight than WT (Fig. 2h).

Enhanced reproductive growth occurred in the three epi-lines, Epi 8, 10, and 19, while 
Epi 8 showed early flowering (Fig. 2c). Importantly, Epi 8 and Epi 24, full-sib populations 
from the same original cross, showed distinct phenotypes. Epi 24 was highest in seed 
weight and lowest in leaf area among the epi-lines, while Epi 8 was highest in leaf area 
and lowest in seed weight. These observations suggest that nongenetic growth vigor can 
vary in vegetative versus reproductive allocations within closely related populations, and 
we focused on Epi 8 versus Epi 24 for more detailed studies.

The epi-line phenotype receded back to wild type by the fifth or sixth (S5, S6) gen-
eration. On occasion, we observed sporadic, low-frequency incidence of reversion to 

Fig 2  Characteristics of epi-lines derived by crossing msh1 T-DNA mutant with isogenic wild type. a The 
phenotypes of different epi-line F3 populations at 34 DAP. The lines derive from WT x msh1 crosses, with 
Epi 24 and Epi 8 from one parental cross, and Epi 10 and Epi 19 from a second parental cross. b Total leaf 
area (34 DAP), c, days to bolting, and d, seed weight (mg) are shown for the four populations along with WT 
control. b–d Bars represent means ± SE. The Mann–Whitney U-test with two-sided alternative hypothesis 
was used to test significance of the difference of mean between each Epi F3 population and WT control. e 
Root phenotype of the four different Epi F3 populations grown in sand (33 DAP). f Total leaf area (33 DAP), 
dry leaf weight (mg), and dry root weight (mg) are shown for the four populations grown on sand along with 
WT control. f–h Bars represent means ± SE. The Mann–Whitney U-test with two-sided alternative hypothesis 
was used to test significance of the difference of mean between each Epi F3 population and WT control. 
Significance codes: *p < 0.05, **p < 0.01, ***p < 0.001, ns – not significant
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a condition resembling memory (state 2) phenotype (Fig.  3a). Putative revertants dis-
played reduced growth rate, altered leaf morphology, and enhanced stress response. 
Frequency of these putative reversion events ranged from 15 to 19% in Arabidopsis 
(Table 1). We have not observed this type of reversion phenomenon in graft progeny to 
date, with all graft progeny outcomes resulting in either enhanced growth or wild type 
growth phenotypes [17, 19].

The reversion phenomenon implies that the epi-line state 4 and memory state 2 condi-
tions are closely related. Reversion occurred in only epi-line populations deriving from 
crosses to an msh1 memory line (state 2) pollen parent, but not with msh1 null mutant 
(state 1) as pollen parent (Table 1). We interpret this observation to indicate that msh1 

Fig. 3  Reversion phenotype in Arabidopsis. a Plant growth phenotype of three F3 epi-line populations, 
Epi 10 derived by crossing to msh1 T-DNA mutant, and Epi 6 and Epi 9 derived by crossing to msh1 
memory line. Dashed circles indicate putative revertants. Col-0 wild type and msh1 memory are shown as 
controls. b Principal component analysis-linear discriminant analysis of methylome data from three epi-line 
(non-revertant) and three revertant full-sib F3 (state 4) progeny compared to three independently derived 
msh1 memory (state 2) plants

Table 1  Reversion frequencies within epi-lines

* In Lines tested, T-DNA refers to msh1 T-DNA insertion mutant used in cross as control

Lines tested* Population Reversion frequency

 Epi 9 (memory) epi-F3 20/106 (18.87%)

Epi 6 (memory) epi-F3 17/111 (15.32%)

Epi 10 (T-DNA) epi-F3 0/77

msh1 memory Gen 4 35/35 (control)

WT Col-0 0/55 (control)
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signal is weaker in the memory line than null mutant, leading to a less stable epi-line 
outcome. This interpretation would be consistent with the relatively weaker methylome 
repatterning effects reported in msh1 memory (state 2) relative to msh1 (state 1) [18].

The msh1 states 1 to 4 comprise discrete epigenetic phases by whole‑genome methylome 

analysis

Significant changes in DNA methylation were detected in the four Arabidopsis epi-lines 
(F3), with gene-associated changes predominantly in CG context (Additional file 1: Fig. 
S2) and variable hyper and hypomethylation in CHH context within and between epi-
lines (Additional file 1: Fig. S3). To estimate the relationship of intragenic methylation 
changes with plant phenotype, we used high-resolution methylome analysis. The pro-
cedure incorporates signal detection and machine learning to discriminate high-proba-
bility, treatment-associated methylation changes within gene regions. We consider three 
features of this analysis to be vital to this study: (1) The analysis focused on intragenic 
methylation repatterning without exclusion of single cytosine methylation changes. (2) 
DNA methylation variation within wild type samples was measured and subtracted to 
allow discrimination of treatment-associated (msh1-derived) methylation changes; and 
(3) individual cytosine methylation status, reflecting the outcome of pooled cell types, 
was analyzed as probability distributions using Hellinger divergence [20] rather than 
binary classification. The resulting datasets of treatment-associated differentially meth-
ylated positions (DMPs) could then be used for unbiased comparative analysis in all sub-
sequent steps.

Hierarchical clustering of methylome data for individual plants from all four states in 
Arabidopsis used methylation level changes (computed as Hellinger divergence) at intra-
genic DMPs. The result produced clustering of individual plants (biological replicates) 
from the same population, with plants from different states separating to 6 branches dis-
tinct from WT control groups (Fig. 4). Despite originating from the same cross, Epi 8 
and Epi 24 separated to two subgroups (Fig. 4a), in agreement with their distinct phe-
notypes (Fig.  2). The data suggested that Epi 24 genic DNA methylation repatterning 
was more closely related to that of graft progeny (HEG; state 3) than to its full-sib Epi 8 
(Fig. 4a). Epi 10 and Epi 19 also formed two closely related clusters consistent with their 
phenotypic similarity. In contrast, hierarchical clustering of transposable element-asso-
ciated DMPs in the four epi-lines produced outcomes in keeping with lineage, so that 
Epi 8 and Epi 24 now clustered together, as did Epi 10 and Epi 19 within a single sub-
cluster, and both clusters separated from the graft progeny (HEG) state 3 (Fig. 4b). Thus, 
gene-associated methylation repatterning could be discerned to reflect plant phenotype 
among lines that are genetically uniform.

Methylome data support epi‑line revertants as closely related to msh1 memory state 2

We included Epi-line (state 4) revertant samples in Arabidopsis in methylome analy-
ses to test for evidence of methylation repatterning in revertants versus epi-line full-sib 
samples. Principal component with linear discriminant analysis (PCA-LDA) of these 
datasets using Hellinger divergence produced distinct clustering of epi-line (non-rever-
tant) from revertant individuals deriving from the same progeny population. The epig-
enomic features that distinguished revertant from epi-line full-sib progeny presumably 
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reflect inherent epigenomic stochasticity. Revertant methylome datasets showed a closer 
relationship with data from msh1 memory state 2 (Fig. 3b). Specifically, of 2192 differ-
entially methylated genes (DMGs) identified in the memory state 2 dataset, 1536 (70%) 
were shared with the revertant dataset, where overlap with a non-revertant epi-line was 
1227 (55%) DMGs.

Fig. 4  Discrimination of methylation repatterning among different msh1 states. a Hierarchical clustering 
results with genic methylome data from three different msh1 states in Arabidopsis: msh1 null mutant (state 1), 
Col-0/Col-0msh1 graft progeny (state 3), Epi F3 populations (state 4), and relevant Col-0 controls. b Hierarchical 
clustering results with TE DMP data from the same Arabidopsis datasets presented in panel a. Individuals 
were represented as vectors of the sum of Hellinger divergences (HD) at DMP positions within gene regions 
(a) or TE regions (b). The hierarchical clustering was built using Ward agglomeration method, and Hellinger 
divergence (HD) was computed by using the centroid of corresponding wild type samples. HD formula is 
reported elsewhere [21]
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The msh1 memory plants were derived from an independent population, so the simi-
larity detected is expected to be meaningful rather than merely the consequence of lin-
eage. A relationship of the revertant methylome profile with msh1 memory would be 
consistent with their demonstrated similarity in plant phenotype (Fig. 3). These results 
support previous indications of msh1 memory as distinctive in methylome features [18] 
and confirm low-frequency conversion of epigenetic state 4, enhanced in growth vigor, 
to something resembling the state 2 persistent stress response phenotype.

Epi‑line methylome datasets are altered in growth‑related gene networks

To investigate the relationship of intragenic differential methylation to emergent phe-
notypes, we focused on the identification of differentially methylated genes (DMGs). 
DMGs for each epi-line population were identified by applying generalized linear regres-
sion analysis (GLM) to test significance of the difference between group DMP counts 
(WT vs. epi-lines) in genes. This analysis identified 3204, 2860, 3208, and 2797 DMGs in 
Epi 8, Epi 10, Epi 19, and Epi 24, respectively (Additional file 2), with significant overlap 
between the epi-line datasets (Fig. S4). To investigate coincidence of DMG functional 
relationships in each population, we conducted a gene network-based enrichment anal-
ysis. DMGs from the different epi-lines shared enrichment for specific functional net-
works, particularly epigenetic-related processes (blue arrows) and plant developmental 
pathways (red arrows) (Fig. 5a; Additional file 2). For example, we detected enrichment 
for pathways involved in covalent chromatin modifications, DNA repair, maintenance of 
DNA methylation, RNA splicing and processing, and production of miRNAs involved 
in gene silencing. Toward plant development, we identified pathways for vegetative to 
reproductive phase transition, sugar metabolism and signaling, response to strigolac-
tone, root development, auxin transport, and red/far-red light phototransduction. These 
outcomes reflect a non-random quality of DMP datasets, implying that methylation 
machinery-targeted gene loci and their respective networks can be identified based on 
methylome signal.

We analyzed methylome data previously reported for the Arabidopsis F1 heterotic 
cross of ecotypes C24 and Ler [22] with the methylome analysis methods that were 
applied to the msh1 datasets (Additional file 3). The enriched networks emerging from 
F1 hybrid (C24 x Ler, and Ler x C24) data showed partial conformity to what was identi-
fied in msh1-derived epi-line data, emphasizing many of the same developmental path-
ways (Fig 5a). DMG overlap between hybrid data and epi-lines ranged from 47% overlap 
with Epi 10 to 54% overlap with Epi 8. This apparent alignment of methylome-identified 
gene pathways between the heterotic hybrids and msh1 epi-lines supports linkage of 
phenotype with methylome repatterning.

Examination of gene transcript changes in Arabidopsis epi-line populations 
involved sampling floral stem tissues, where MSH1-expression is enriched [13, 24]. 
Epi 8 and Epi 24, selected as full-sib lines differing in plant phenotype, were compared 
by RNAseq analysis of floral stem tissues. Our primary purpose in deriving gene tran-
script abundance data was to derive differentially expressed gene (DEG) datasets that 
could be integrated with methylome data for more robust gene network analysis. We 
have shown in previous studies that the direct overlap between DEG and DMG data-
sets is limited, with DMGs emphasized in upstream regulatory components and DEG 
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data often identified in downstream components of a pathway [18, 19]. Epi 8 and Epi 
24 analysis revealed 1375 DEGs from floral stem in Epi 8 and 1033 for Epi24 (p < 0.05; 
FDR < 0.05; Additional file 4).

To assess the impact of tissue type in gene expression changes, we also compared 
Epi 8 and Epi 24 root DEG datasets and included Epi 8 leaf DEG data to compare Epi 
8 leaf, root, and floral datasets (Additional file 1: Fig. S5, Additional file 4). GO path-
ways identified in Epi 8 and Epi 24 root samples were consistent with those identified 
in floral stem samples and showed relatively few differences between the two lines 
except for notable enrichment in defense response-related pathways evident in Epi 8. 
Comparison of Epi 8 root and leaf samples showed enrichment for root morphogen-
esis and development pathways in the root DEG dataset, and differential representa-
tion of circadian and light response pathways. These tissue comparisons suggested 
that a feature distinguishing the Epi 8 and Epi 24 DEG datasets was Epi 24 enrichment 
in defense pathways in root tissues, whereas Epi 8 showed this enrichment in leaf tis-
sues. Greatest DEG overlap occurred between root samples or between leaf and flo-
ral stem samples (Additional file 1: Fig. S5b), with DMG datasets overlapping to the 
greatest extent with floral stem DEG data (Additional file 1: Fig. S5c).

Network enrichment analysis of derived floral stem DEG datasets revealed 
that potential pathways that are altered in response to msh1 effects in floral stem 

Fig. 5  Significant enriched GO pathways by DMG and DEG analysis in epi-lines. a Enriched GO pathways 
shared by the four epi-lines in Arabidopsis as well as by F1 hybrid DMGs from the C24 x Ler cross by our 
analysis. Original methylation data for the F1 hybrid were previously reported [22]. Heat map was generated 
using the fold enrichment of GO terms (FDR < 0.05) common between all four epi-lines. Blue arrows indicate 
pathways likely contributing to epigenetic change and red arrows indicate pathways likely associated with 
plant developmental changes. Complete list of GO terms is available in   Extended Data 2 and 3. b Enriched 
GO pathways from DEGs (FDR<0.05) shared by Epi 8 and Epi 24 floral stem tissues. Heat map displays the 
fold enrichment of GO terms (FDR < 0.05) common between both the epi-lines. Complete list of GO terms is 
available in Extended Data 4. DAVID GO (version 6.8) [23] was used for GO enrichment analysis. GO terms with 
EASE score (a modified Fisher exact P-value) < 0.05 were used for FDR calculation. FDR was calculated using 
package stats (version 3.6.0; p.adjust method = FDR) in R. Package ggplot2 (version 3.3.3) in R was used to 
generate heatmap



Page 10 of 27Kundariya et al. Genome Biology          (2022) 23:167 

emphasize environmental responsiveness (Fig. 5b). Several of the pathways identified 
in DEG data appear to reside downstream to those identified by methylome data for 
gene regulation and development. These DEG-associated pathways involved abiotic 
and biotic stress responses, circadian rhythm- and phytohormone response-related 
networks. Regulation of transcription was also prominent. Integration of DEG and 
DMG datasets served to amplify the msh1-associated network enrichments relative to 
either dataset alone.

Differential methylation and expression analysis identified putative central gene hubs 

for the epi‑line state

To investigate the interaction of DMG and DEG datasets in epi-lines involved inputting 
DMG and DEG data to Cytoscape (3.8.2) to construct protein-protein interaction (PPI) 
maps, followed by k-means cluster analysis to identify putative core networks carrying 
central gene hubs. A k-means cluster machine learning algorithm uses betweenness cen-
trality, closeness centrality, average shortest path length, clustering coefficient, degree, 
and eccentricity as parameters, allowing the identification of clusters that contain the 
most centralized nodes (proteins) in the PPI network.

In Arabidopsis Epi 8, a total of 3647 unique loci from DMGs and DEGs were used in 
the analysis to yield a PPI network formed by 430 genes. Functional enrichment analy-
sis (FDR < 0.05) of these putative hub genes with the STRING [25] database functional 
enrichment tool revealed a PPI network of 153 hub genes and associated functional 
networks (Fig.  6a). These core networks included developmental process, response to 
hormone (particularly auxin), response to cold, chromosome organization, mRNA 
processing, spliceosome, and ribosome biogenesis. Comparison to Epi 24, with a total 
of 3523 unique loci from DMGs and DEGs forming a much larger PPI network of 346 
genes, showed that several of these same processes were represented (Fig. 6b). However, 

Fig. 6  PPI hubs derived from subsets of network-related DMGs and DEGs in Epi 8 and Epi 24. Epi 8 and Epi 
24 represent progeny lines derived from the same cross, with Epi 8 displaying enhanced vegetative growth 
rate and Epi 24 significantly enhanced seed yield. The main subnetwork of hubs was obtained with the 
application of machine learning k-means clustering on the set of 3647 (Epi 8, panel a) and 3523 (Epi 24, panel 
b) network-related DMGs and DEGs (p < 0.1) identified in the Arabidopsis epi-line vs WT comparison. The 
analyses yielded 153 (a) and 346 (b) hub genes to form a closely related subnetwork. GO network enrichment 
analysis from the string application in Cytoscape [27] was used to identify enriched gene function pathways 
(FDR < 0.05) within the network. Blue represents DMGs, green represents DEGs, and magenta represents 
both DMGs and DEGs. Size of each node is proportional to its value of node degree and label font size is 
proportional to its betweenness centrality
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Epi 24 analysis revealed more prominent changes in development-related gene expres-
sion and, most notably, a robust and overlapping effect in ribosome biogenesis-related 
gene expression (Fig.  6b). Ribosome biogenesis is integral to growth response [26]. 
Because Epi 8 and Epi 24 are full-sib populations from the same cross, these differing 
features are predicted to relate to their distinct phenotypes, with Epi 8 enhanced in veg-
etative growth and Epi 24 showing significantly increased reproductive vigor (Fig. 2).

Epi‑state comparisons in Arabidopsis reveal conserved msh1 epigenome targets 

within biologically meaningful gene networks

We attempted to better define the relationship of genic methylation repatterning among 
the four distinct msh1-derived states by first assessing DMG overlap. Figure 7a shows 
that 871 DMGs were shared among the four msh1 states (Additional file 5), comprising 
17.6% of msh1 (state 1), 39.7% of memory (state 2), 31.6% of graft progeny (HEG, state 
3), and 31.1% of epi-line (state 4, Epi 24) DMGs. The overlap established a conserved 
msh1 “core” DMG dataset for further analysis (Fig. 7a). Each state was also classified by 
state-specific DMGs, accounting for 33.8% in state 1, 15.4% in state 2, 10.2% in state 3, 
and 15.2 % in state 4 (Fig. 7a). Of the 871 “core” msh1-associated DMGs, 531 (61%) could 
be placed within known networks (Fig. 7b).

Fig. 7  The relationship of 871 core hub genes to msh1-derived states and biologically meaningful core 
networks. a Venn diagram of Arabidopsis DMGs identified from four different msh1-derived states (Col-0 
genetic background): msh1 mutant (state 1), msh1 memory (state 2), graft progeny (HEG, state 3), and epi-line 
(Epi 24, state 4). b An overview of the PPI networks and individual 871 core hub genes. Blue represents 
DMGs, orange represents the DMGs that are dcl2/dcl3/dcl4-sensitive in graft progeny contrasting mutant 
rootstock analyses. c Hierarchical clustering of individual plant datasets from four different msh1-derived 
states based on the sum of Bayesian methylation level difference of DMPs over the 871 core genes from 
panel a. The hierarchical clustering was built using Ward agglomeration method. The Bayesian methylation 
level difference was computed as described previously [18]. d Main subnetwork of hubs obtained with 
the application of a machine learning k-means clustering algorithm on the set of 871 core genes from 
panel a. GO network enrichment analysis from the string application in Cytoscape [27] was used to identify 
enriched gene function pathways (FDR < 0.05) within the network. In total, 67 genes involved in enriched 
networks were identified. Blue nodes represent DMGs, with orange representing the DMGs that are dcl2/dcl3/
dcl4-dependent in graft progeny contrasting mutant rootstock analysis. This 67-gene set supplied the RdDM 
candidate target genes for further study. Blue gene text represents DMGs proximal to only TE sequences, red 
text designates genes that are proximal to only sRNA clusters, and black text represents genes proximal to 
both TE and sRNA clusters. For both b and d, the size of each node is proportional to its value of node degree 
and the label font size is proportional to its betweenness centrality
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We previously showed that components of the RdDM pathway were necessary for 
induction of msh1 state 1, transition from state 1 to state 2, and generation of state 3 
following grafting [18, 19]. Therefore, we incorporated RdDM mutants to function-
ally identify RdDM-targeted DMGs within this core dataset. We contrasted methy-
lome datasets for msh1 (state 1) versus dcl2/dcl3/dcl4/msh1 quadruple mutant and 
graft progeny from Col-0/Col-0msh1 (state 3) versus Col-0/Col-0dcl1/dcl3/dcl4/msh1 
grafts to catalog DMGs that were RdDM (sRNA)-dependent [19]. These subtractive 
datasets confirmed that 674 (77%) of the 871 core DMG loci were predicted to be 
DCL2,DCL3,DCL4-dependent by obtaining the overlap between the 871 DMG core 
dataset and the msh1 vs dcl2/dcl3/dcl4/msh1 and graft datasets (Additional file  5). 
Figure 7b shows the PPI core hub network of DMGs with DCL2,DCL3,DCL4-depend-
ent colored orange. These outcomes are evidence of a relationship between msh1-
directed epigenetic effects and RdDM pathway influence on targeted methylome 
repatterning.

Whereas 871 core DMGs were shared among the four msh1 states, the methylation 
changes within these 871 loci also served to discriminate the four states. Figure  7c 
shows the results of hierarchical clustering for individual plants from the four epi-
genetic states with separation to four distinct clades by using only DMP methylation 
information over the 871 msh1 core genes. This clustering relationship helped validate 
our selection of a single memory (state 2), graft progeny (state 3), and epi-line (Epi 
24, state 4) dataset for the identification of the overlap. The four epi-lines produced 
highly related datasets (Additional file 1: Fig. S4). Based on the PPI network derived 
for the 871 DMGs, we conducted k-means clustering to identify putative central hubs 
and conduct functional enrichment analysis. Figure 7d shows the resulting network 
of 67 candidate hubs (Additional file 7) involved in response to stress, developmental 
(growth) process, gene expression, spliceosome function, histone modification, and 
chromosome organization networks. Over 80% of the 67 hubs were predicted to be 
RdDM targets, shown in orange, with several central players in plant development 
and environmental stress response, including the cell growth regulator TARGET OF 
RAPAMYCIN (TOR), the SWI2/SNF2-like, meristem identity gene SPLAYED (SYD), 
its close homolog BRAHMA (BRM), and the chromatin remodelers PICKLE (PKL) 
and PICKLE-RELATED 1 (PKR1/CHR4).

Network-based analysis outcomes can be influenced by the available gene annotation 
and gene relationship information for any given species. To independently evaluate gene 
associations identified in these network-based studies, we performed weighted correla-
tion network analysis [28, 29] with the 871 core msh1-associated DMGs. This alterna-
tive approach used pairwise comparisons within a multi-dimensional dataset to define 
clusters that could be assessed for network features in the absence of gene annotation 
data. At a correlation coefficient of 0.5, we identified 300 connected genes, with 44 (66%) 
overlapping with the 67 hub loci identified by k-means clustering (p-value = 0.01015 
Fisher exact test). At a correlation coefficient of 0.6, we identified 166 genes, with 33 
(49%) overlapping with the 67 hub loci (p-value = 0.000333 Fisher exact test) (Addi-
tional file 1: Fig. S5). These data reflect meaningful associations between the identified 
67 hub loci for their methylation content and the discriminatory power of such informa-
tion to distinguish phenotype among the four states.
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Transposable elements and sRNAs associate with candidate RdDM target loci 

among the 871 msh1 DMGs

The RdDM pathway actively targets transposable element (TE) sequences [6, 7], prompt-
ing investigation of TE association with msh1-responsive loci. Looking at the 871 DMGs 
common among msh1 states, we detected association of these loci with TEs and sRNA 
(20-24 nt) clusters that was higher than genome-wide levels (61% DMGs within 2 kb of 
TE vs. 47% genome-wide; 77% DMGs within 2 kb of an sRNA cluster vs. 46% genome-
wide). This enrichment for TE and sRNA cluster proximity increased further when we 
subset the dcl2,dcl3,dcl4-sensitive DMGs (65% DMGs within 2 kb of TE; 81% DMGs 
within 2 kb of an sRNA cluster). Yet, when we focused on the 67 hub DMGs derived by 
k-means clustering, only sRNA cluster enrichment was seen (49% of DMGs within 2 kb 
of TE; 72% DMGs within 2 kb of an sRNA cluster) (Additional file 6). Figure 7d shows 
only TE-associated genes (7) in blue text, only sRNA-associated genes (22) in red text, 
and genes associated with both TE and sRNA (26) in black text. Hence, although TEs 
may influence the methylation status of proximal genes and act as RdDM targets, sRNA 
cluster association regardless of TE proximity could define RdDM targets for the msh1 
effect.

We found possible evidence of association between TE family and DMG proximity 
(Additional file 6). Comparing the number of members in TE families between observed 
and expected revealed significant overrepresentation in L1 and Gypsy families and 
underrepresentation in the Helitron family, both in the 871 DMGs common between 
msh1 states and 674 DMGs sensitive to dcl2,dcl3,dcl4 (Additional file 6). Further investi-
gation is needed to reveal any biological significance of these associations. Based on the 
various analyses, four criteria served to classify RdDM target loci in our study (Fig. 7d): 
Positive loci were (1) confirmed DMGs in all four msh1 states that (2) comprised puta-
tive network hubs based on k-means cluster analysis, with genetic evidence for (3) 
dcl2,dcl3,dcl4-sensitivity, and/or (4) association with sRNA clusters (Additional file 6).

Detailed methylation analysis of selected RdDM target genes in the four different 

nongenetic states reveals sequence motifs encompassing dcl2/3/4‑sensitive DMPs

Annotations of the 67 candidate hub loci supported their relevance to phenotype 
effects observed in the four msh1 states. In addition to gene networks for altered gene 
expression and chromatin behavior, major overlapping networks appeared to reflect the 
transition between stress response (Fig.  7d) that underpins msh1 and memory stress 
phenotypes versus growth vigor in HEG and epi-line states. Methylation features of the 
67 candidate hub loci that discriminate the four msh1 states support a model of precisely 
targeted repatterning (Fig. 7c). Therefore, we investigated these loci for evidence of site-
specific methylation changes.

Figure  8 and Table  2 show results of analysis for seven selected candidate RdDM 
target loci: TARGET OF RAPAMYCIN (TOR), a regulator of cell growth, SPLAYED 
(SYD), a chromatin remodeling component, UBIQUITIN-SPECIFIC PROTEASE 
26 (UBP26), required for heterochromatin silencing, NUCLEAR RNA POLYMER-
ASE D1A (NRPD1), the largest subunit of RNA polymerase IV, RNA POLYMERASE 
II LARGE SUBUNIT (NRPB1) involved in transcription, SU(VAR)3-9-RELATED 
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PROTEIN 5 (SUVR5), a gene involved in H3K9me2 deposition and gene silencing, 
and UP-FRAMESHIFT1 (UPF1), a gene involved in RNA interference and nonsense-
mediated RNA decay. These loci were selected to represent the various gene networks 
identified.

Differential methylation analysis within the seven loci revealed evidence of state-spe-
cific repatterning (Table 2; Additional file 7). Changes in methylation at each locus were 
associated with identifiable sequence motifs that spanned approximately 14 nucleotides. 
Two sample composite motifs are shown in Fig. 8a, with examples of UBP26 and UPF1 
state-specific methylation repatterning within cluster 11 shown in Fig. 8, panels b and 
c. Systematic analysis of all 67 loci revealed similar state-specific changes (Additional 
file  8). DMPs were assayed individually, although multiple DMPs could be detected 
within a single identified motif domain. DMPs were discriminated among replicated 
datasets, with several sites shown to be dcl2/dcl3/dcl4-sensitive in state 1 and state 3 
(Fig.  8c; Table  2; Additional file  7). It was feasible to test dcl2/dcl3/dcl4 sensitivity in 
just the two states that encompass the msh1 rootstock [19], although these data confirm 
RdDM influence at single cytosine resolution. Table 2 summarizes scoring outcomes for 
cluster 11 and 18 motifs within the seven selected genes.

Fig. 8  Investigation of methylation repatterning within candidate RdDM target genes that discriminate 
msh1-derived states. a Two of the putative cluster motifs identified based on differential gene methylation 
across four msh1-derived states. Hierarchical clustering on a set of 14-bp regions encompassing DMPs 
from seven (TOR, SYD, NRPB1, NRPD1, UBP26, SUVR5, UPF1) of the 67 core hub loci followed by DNA multiple 
sequence alignment of each cluster permitted the identification of methylation motifs (see “Methods” 
for more detail). b Difference of methylation levels on gene body DMPs within motif cluster 11 in the 
putative RdDM target gene UBP26. Variations on motif methylation repatterning at DMPs are shown with 
chromosome and position. Individual detected methylation changes are shown as color-coded dots for each 
plant assayed in each msh1 state, with positive (orange) indicating DMP and negative (blue) for no detected 
methylation change. Each line represents a single plant dataset. c Sample DMPs within motif cluster 11 in 
UBP26 and UPF1 that show dcl2/dcl3/dcl4-sensitivity in graft rootstock (state 1) and graft progeny (state 3) 
from contrasted mutant rootstock experiments. Note that dcl2/dcl3/dcl4 effects can only be assayed for msh1 
and graft progeny data. All data associated with the seven genes in this figure are shown in Extended data 7. 
d Sample putative cluster motifs identified based on differential gene methylation across four msh1-derived 
states in analyses of the 67 core hub loci followed by DNA multiple sequence alignment of each cluster for 
methylation motifs. A complete data report for motifs identified based on all 67 genes is shown in Additional 
file 8
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Identified DMPs did not show an obvious pattern of exon, intron or junction locali-
zation, and each gene contained multiple motif sites (Additional file  8). Evaluation of 
cluster motifs that encompass DMPs within the 67 msh1 core hub loci revealed, in 
many cases, evidence of high-order dependencies (Fig.  8d; Additional file  8). Multiple 
sequence alignment (MSA) of a given DNA motif can reveal a dependence relationship 
between two nucleotides located at different positions within the motif, reflected in 
their frequencies of simultaneous occurrence. First-order dependence refers to adjacent 
nucleotides, typically found in CG methylation context, second-order to nucleotides 
spaced two nucleotides apart, and high-order to nucleotides with intervening distance of 
more than two nucleotides. The relationships derive from the study of Markov depend-
ence in DNA sequences, the basis for application of hidden Markov modeling of motif 
findings [30].

For the motifs identified, individual consensus nucleotides were evident at variable 
distance from the target cytosine, positioned at nucleotide 7 on plus or minus strand 
within each motif. For example, the motif from cluster 65 showed invariant T at position 
14 and a consensus A at position 12, while the motif from cluster 66 showed invariant G 
at position 14 and an AG pair consensus at positions 2 and 3, respectively (Fig. 8d; Addi-
tional file 8). In motif 76, only G resides at positions 6 and 9 with consensus T at position 
5, while motifs 82 and 86 showed consensus or invariant T at position 2. These observa-
tions support the hypothesis that target methylation sites within the genes are character-
ized by invariant or nearly invariant sequence features.

Discussion
MSH1 disruption or knockdown in plants leads to aberrant recombination in both mito-
chondrial [14] and plastid genomes [15], with the latter triggering nuclear epigenetic 
changes [13, 17] that are the focus of this study. Information from these investigations, 
integrated with earlier data, show that msh1, its memory lineage, graft-derived prog-
eny and crossing-derived epi-lines comprise distinct de novo nongenetic states. These 
heritable states differ phenotypically from WT, consistently displaying nascent stress 
response (msh1/memory) or growth vigor (HEG/epi-line) phenotype changes across 
multiple plant species. Integrating carefully designed datasets confirmed RdDM influ-
ence on dynamic and potentially adaptive phenotype plasticity in plants.

In an earlier study, we speculated that msh1 epi-line variation in Arabidopsis was likely 
to be indistinguishable from graft progeny (HEG) outcomes [17]. This misinterpretation 
appears to be a consequence of insufficient sampling from only a single msh1 epi-line 
population. In fact, DNA methylation and gene expression analysis in this study pro-
vided unambiguous discrimination of the four msh1-derived states on a uniform Col-0 
genetic background. Yet, it was possible to identify a subset of 871 DMGs shared among 
the four distinct states. We interpret this finding to indicate that reprogramming events 
in the original msh1 mutant are foundational to the other derived states.

The condition of msh1 memory, and its apparent relationship to epi-line reversion, 
raises important questions about stable transgenerational retention of a memory state. 
To date, we have not observed diminishment of msh1 memory as a whole-plant or 
methylome phenotype over seven sequential generations of self-pollination in Arabi-
dopsis [18]. However, each memory generation shows evidence of DNA methylation 
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repatterning at conserved sites [18]. This dynamic feature, together with dependence of 
memory induction on RdDM methyltransferase DRM2 and sRNA variation [18], suggest 
that transgenerational stability involves re-establishment of de novo methylation sites by 
inherited sRNAs each generation. Recurrent inheritance of epigenetic memory states in 
C. elegans points to small RNAs as the most likely epigenetic vector for stable transmis-
sion [31, 32] and to direct chromatin modification [33]. In C. elegans, two features of 
sRNAs facilitate their inheritance: the ability to circumvent sRNA degradation processes 
and to amplify by templating their own synthesis [34–36]. The extent to which sRNA 
transgenerational stability is sustained similarly in plants is unclear, but parental sRNA 
activity occurs in gametes and developing embryo [37, 38]. Epi-line (state 4) reversion 
back to a condition resembling msh1 memory (state 2) implies that interaction of the 
msh1 memory genome with naïve (WT) through reciprocal crossing does not impede 
reformation, at low frequency, of intact memory in subsequent generations. These sus-
tained memory epigenomic features are presumed to be sRNA-directed.

Incorporation of analysis methods that discriminate treatment-associated intragenic 
DMP variation [21] provided sufficient resolution to conduct gene network-based anal-
ysis. A similar application of these methods to contrasting datasets from msh1, dcl2/
dcl3/dcl4/msh1, and the corresponding graft-derived progeny functionally identified 
candidate RdDM target genes. Target loci were derived based on their classification 
as network hubs, differential methylation in all four msh1 states, DCL2/DCL3/DCL4-
dependent effects, and/or association with sRNA clusters. Data from this analysis, which 
could not be accomplished using traditional DMR-based methods [18, 21, 28], opens the 
door to investigation of plant environmental or heterotic response as a precise and pre-
dictable epigenomic phenomenon.

Candidate RdDM targets identified in the study represent prominent members 
within pathways relevant to epigenetic regulation and plant adjustment to environ-
mental change. The known function of these loci aligned with observed msh1-derived 
phenotypes. msh1 and its memory lineage display complex stress phenotypes, altered 
expression of abiotic and biotic stress pathways and circadian clock components, and 
suppressed growth rate and delayed flowering [16, 18, 39]. Graft [19] and epi-line prog-
eny effects include changes in phytohormone and environmental response pathways and 
heterosis-like gene expression.

As anticipated, we found only modest overlap between the 67 core hub loci associ-
ated with msh1 effects and DEG data; this outcome is common to such studies. RNAseq 
analysis was conducted with samples from pooled cell types, which confounds detec-
tion of spatio-temporal expression, and does not reveal changes in transcription rate 
or splicing activity. Of the 67 core hub loci, at least 43% (29) show cell-specific differ-
ential expression in the absence of MSH 1 [24], and 66% (44) exhibit cell-type specific 
expression in the inflorescence [40]. Instead, our analysis focused on integration of gene 
pathways identified in common by DMG and DEG data, permitting greater resolution 
of these pathways than was achieved by either dataset alone. We have shown previously 
with this type of integrated pathway analysis that DMGs tend to represent upstream reg-
ulators with DEGs more abundant as downstream pathway components [18, 19]. In this 
study, our analysis permitted detection of the more robust ribosome biogenesis pathway 
component within datasets from epi-lines with greater growth vigor. A majority of this 
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enhanced pathway was comprised of DEGs, several essential to plant growth and devel-
opment (e.g., ROOT INITIATION DEFECTIVE 3 (RID3)), organ size control and cell 
proliferation (e.g. OLIGOCELLULA2 (OLI2)), mitotic division cycles and gametogenesis 
(e.g., SLOW WALKER 1 (SWA1)), and active cell division (e.g., BLOCK OF CELL PRO-
LIFERATION 1 (BOP1)). We suspect that these DEGS operate downstream to central 
growth regulators.

Methylome-derived gene network information revealed a surprising number of genes 
likely to be integral to the observed msh1-triggered “pivot” from stress to growth vigor 
phenotypes. For example, TARGET OF RAPAMYCIN (TOR), SPLAYED (SYD), and 
BRAHMA (BRM) emerged as putative RdDM target loci that undergo differential meth-
ylation in msh1-derived states. TOR kinase serves as a key developmental regulator in 
the plant that directs growth by integrating nutrient and environmental signals [41–43]. 
TOR functions antagonistically to stress response pathways and is postulated to serve 
as a decision point in the plant’s energy allocation for defense versus growth [43]. TOR 
influences plant growth and yield and acts to regulate the circadian clock in plants [44, 
45]. In animal systems, TOR is known to also function within the nucleus, where it trig-
gers chromatin and epigenomic responses [46]. These features suggest that TOR may be 
intrinsic to msh1 developmental reprogramming.

SPLAYED is a SWI2/SNF2-like protein in the SNF2 subclass that acts to regulate shoot 
apical meristem identity. SYD functions in meristem maintenance and regulates several 
early developmental processes [47–49]. BRAHMA is also a SWI2/SNF2 ATP-depend-
ent chromatin remodeler and a SYD homolog; both mutants display pleiotropic pheno-
types. BRM and SYD appear, based on mutant phenotypes and genome-wide occupancy 
studies, to carry out both redundant and distinct functions [48]. Further, SYD and BRM 
can act antagonistically with Polycomb-group (PcG) proteins [49]. For example, BRM 
promotes vegetative growth by suppressing PcG-associated H3K27me to upregulate 
the SHORT VEGETATIVE PHASE flowering repressor [50]. Likewise, BRM is required 
to establish epigenetic heat stress memory in association with FORGETTER 1  [51]. In 
genome-wide occupancy studies, SYD directly targets nearly 6000 mainly developmen-
tal and stress-responsive genes in Arabidopsis, influencing H3K27me3 levels at several 
target loci [49]. Consequently, these genes serve as innate regulators of plant vegetative 
and reproductive growth.

In the context of the msh1 system, modulation of these msh1 RdDM targets could 
influence the plant growth program for heightened stress response versus growth vigor, 
as well as epi-line vegetative growth vigor versus reproductive growth variation. A fourth 
chromatin remodeling component, PICKLE (PKL), similarly identified as an RdDM tar-
get in msh1, functions to maintain RdDM-targeted methylation [52]. PKL acts synergis-
tically with RdDM pathways to influence plant development [53].

Transition from msh1 “stress” to “growth” state entails interaction of the msh1-modi-
fied nuclear genome with naïve (WT) achieved through crossing or grafting. Similar epi-
genomic interaction between epigenetically modified and native states is implicated in 
heterosis [54, 55]. Manipulation of the msh1 system leads to a condition that resembles 
classic F1 heterosis, but differs in its subsequent heritability.

What is striking about a majority of msh1 RdDM target genes is their broad regula-
tory capacity in stress response and development, interpreted to reflect the vital role 
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of integrated signaling and metabolic networks to calibrate environmental response in 
plants [56]. In this study, TE methylation data aligned according to lineage relationships, 
whereas gene methylation agreed with phenotype changes in epi-line comparisons. This 
observation further links RdDM effects on intragenic methylation with possible plant 
phenotype modulation. Identification of loci based on site-specific methylation suggests 
that adjustments in chromatin poise, or amenability to expression, can involve precise 
methylation changes. These gene methylation effects can facilitate alternative transcript 
splicing behavior in response to cellular cues [57] that would not likely be detectable 
in DEG datasets. The 871 DMGs shared across msh1 states, and their 67 core hub loci, 
include significant RNA spliceosome pathway components (Fig. 7d).

The ability to predict sites of differential gene methylation within major regulatory and 
chromatin remodeling genes serves to mark these loci during environmental response 
or growth changes in the plant. Results suggest the existence of methylation motifs with 
variable order interdependency of specific motif nucleotide positions. Overall, motif 
consensus sequences showed statistically significant departure from randomness, sup-
porting the participation of DNA features in local epigenomic behavior [58]. We expect 
that the high-order dependencies observed within methylation motifs reported here can 
be captured by future deep neural network machine learning models [59, 60]. Moreover, 
the MSH1 system, as a biological model, can generate sufficiently robust methylation 
motif libraries to feed such machine learning predictive models. We consider the system 
of intragenic DMP motifs described in this study to reflect a previously uncharacterized 
fine-tuning mechanism of epigenomic regulation, in contrast to the high-density DMR 
changes that characterize RdDM-mediated TE and promoter silencing [61]. Epigenomic 
effects reported here should prove valuable to deciphering environmentally influenced 
complex trait expression.

Conclusions
The dynamic nature of DNA methylation during developmental and environmental 
changes renders elusive the essential features of methylome variation. Analyses based on 
changes in methylation density and magnitude are less informative for phenotype-asso-
ciated methylome interpretation than are studies of low-density, intragenic methylation 
repatterning. The MSH1 system provides unique materials for these initial efforts toward 
methylome decoding, identifying, and confirming RdDM gene targets within networks 
that undergo epigenomic reprogramming during growth-versus-stress response transi-
tions. The extent that information from this study extrapolates across plant species will 
have important implications for understanding genotype x environment influences on 
plant fitness.

Methods
Plant materials and growth conditions

For Arabidopsis thaliana material used in the study, seeds (Col-0 genetic background) 
were sown on peat mix in square pots, with stratification at 4 °C for 2 days before trans-
fer to growth chambers (22 °C, 12 h DL, 120−150 μmol m−2 s−1 light). To generate epi-
lines, two third-generation msh1 T-DNA mutant (SAIL_877_F01) plants were used to 
pollinate Col-0 to generate two independent F1 populations. Derived F1 progenies were 
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self-pollinated to generate F2 populations that were genotyped for the msh1 T-DNA 
mutation. MSH1 F2 plants were self-pollinated to produce F3 families that were used in 
the study.

Phenotypic data

For leaf area, photos of trays containing randomly placed treatment and control plants 
were taken at 33–34 DAP using a Canon EOS DIGITAL REBEL XSi camera. Total leaf 
area was measured using ImageJ (v1.51j8; https://​imagej.​nih.​gov/​ij/​index.​html) software. 
For root-related analysis, seeds were sown in square pots containing sand media topped 
with standard peat mix to allow seed germination. At 33 DAP, roots were cleaned under 
running water to remove sand particles and allowed to dry at room temperature for at 
least 3 weeks before measuring dry weight. At the same time, aboveground rosettes were 
also preserved, cleaned, and dried for dry leaf weight measurements.

Whole‑genome bisulfite sequencing and DNA methylation analysis

In Arabidopsis, Col-0 WT, Epi 8, Epi 10, Epi 19, and Epi 24 plants were grown together 
as one experiment, and WT, epi-line revertant, and epi-line non-revertant plants were 
grown together as a second experiment, with three plants from each line selected for 
sequencing. For the reversion experiment, an F3 population obtained through Col-0 
WT x msh1 memory was selected based on evidence of reversion activity. From this 
population, revertant and non-revertant full-sibs and a 4th generation memory sample 
in triplicate were used for bisulfite sequencing. Whole rosettes at the bolting stage from 
three biological replicates were flash frozen and ground in liquid nitrogen.

Tissues were ground and processed with the DNeasy Plant Kit (Qiagen, Germany) for 
genomic DNA with RNA removal according to the manufacturer’s protocol for subse-
quent bisulfite sequencing. Whole-genome bisulfite sequencing was conducted on the 
Hiseq 4000 (Illumina, USA) at BGI-Tech (Shenzhen, China) and Novogene (Beijing, 
China), according to the manufacturer’s instructions. Then, 150 bp read length and at 
least 4 Gb data per sample were derived for Arabidopsis samples and at least 20 Gb per 
sample was collected for tomato samples. Raw sequencing reads were quality-controlled 
with FastQC (version 0.11.5), trimmed with TrimGalore (version 0.4.1) and Cutadapt 
(version 1.15), then aligned to the reference genome using Bismark (version 0.19.0) with 
bowtie2 (version 2.3.3.1). DMPs were identified using Methyl-IT (version 0.3.2) R pack-
age as described previously [18, 19, 21]. Briefly, Hellinger Divergence (HD) was calcu-
lated with a pool of control (wild type) samples as reference as described previously [21]. 
Cytosines with methylation level difference >20% in the treatment vs. reference compari-
son were selected and further filtered by estimating the optimal cutoff for HD based on a 
machine learning approach to obtain DMPs (https://​genom​aths.​github.​io/​methy​lit/). To 
identify the DMGs, we selected loci with at least seven DMPs and minimum DMP den-
sity of 3 per 10 kbp, followed by group comparison using likelihood ratio test (LRT) to 
select loci with log2fold change >1 and adjusted p-value < 0.05 (Benjamini and Hochberg 
method). TAIR10 version 38 GTF was used for Arabidopsis annotation. DAVID Bioin-
formatics Resources 6.8 was used for GO function enrichment analysis. GO terms with 
EASE score (a modified Fisher exact P-value) < 0.05 were selected and further used for 

https://imagej.nih.gov/ij/index.html
https://genomaths.github.io/methylit/
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FDR calculation. FDR was calculated using package stats (version 3.6.0; p.adjust method 
= FDR) in R. Package ggplot2 (version 3.3.3) in R was used to generate heatmap.

For hierarchical clustering, we used the hclust from the R package stats (version 3.6.0). 
Either sum of Hellinger divergence (HD) or sum of methylation level over a given locus 
was used for analysis. A complete documentation and package (with Methyl-IT) is avail-
able at https://​genom​aths.​github.​io/.

RNA sequencing and analysis

For the Arabidopsis WT and epi-lines, floral stem tissues from 3 individual 6-week-old 
plants of epi24, epi8, and WT; root tissue from 3 individual 10-day-old plants of epi24, 
epi8, and WT; leaf tissues from 3 individual 4-week-old plants of epi8 and WT were flash 
frozen and ground in liquid nitrogen. Tissues were subjected to RNA extraction, includ-
ing DNA removal, using the NucleoSpin RNA Plant Kit (Macherey-Nagel, Germany). 
sRNA extraction used the NucleoSpin miRNA Plant Kit (Macherey-Nagel, Germany) 
following the manufacturer’s protocol. RNA libraries were constructed as described 
in the TruSeq RNA Sample Preparation v2 Guide and were sequenced with the 150 bp 
read, paired-end option, in the Novaseq analyzer (Illumina, USA) at Novogene (Bei-
jing, China). Raw sequencing reads were quality-controlled, trimmed with TrimGalore 
(version 0.4.1), and then aligned to the TAIR10 reference genome using STAR (version 
2.7.3a) with –twopassMode = Basic and –outFilterMultimapNmax = 1 parameters, 
retaining only uniquely mapped reads. QoRTs software package (version v1.3.0) with –
minMAPQ = 25 option were used to generate BAM files. edgeR package (version 3.26.8) 
was used for gene count normalization and to identify DEGs (p < 0.05, FDR < 0.05, 
|log2FC| ≥ 0.5). DAVID Bioinformatics Resources 6.8 was used for GO function enrich-
ment analysis. GO terms with EASE score (a modified Fisher exact P-value) < 0.05 were 
selected and further used for FDR calculation. FDR was calculated using package stats 
(version 3.6.0; p.adjust method = FDR) in R. Package ggplot2 (version 3.3.3) in R was 
used to generate heatmap.

Core hub PPI networks, functional enrichment, and weighted correlation networks

Cytoscape (ver. 3.8.2), and the built-in application STRING, clusterMaker was used to 
construct the core hub PPI network. The input DMGs and DEGs were placed into the 
STRING data network by Analyze Network function, and then classified into 3 clus-
ters by using k-means cluster function, with Euclidean distance as the distance metric, 
betweenness centrality, closeness centrality, average shortest path length, clustering 
coefficient, degree and eccentricity as node attributes, and 300 iterations were carried 
out. Genes in the cluster highest overall centrality were selected as core hubs and subject 
to functional enrichment analysis using the string enrichment function (FDR < 0.05).

To confirm network associations, we conducted weighted correlation network analysis. 
Individuals were represented as vector of genes of 600 (67)-dimensional space of DMGs, 
where each gene was represented by the sum of Hellinger divergence at each DMP on 
the gene body. Next, principal component analysis (PCA) was applied to identify the 
genes with the highest contributions to the discrimination between the four msh1 states 
and controls. PCA is a standard statistical procedure to reduce data dimensionality, to 
represent the set of DMGs by new orthogonal (uncorrelated) variables, the principal 

https://genomaths.github.io/
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components (PCs) [62], and to identify the variables with the main contribution to the 
PCs carrying most of the whole sample variance. In the current case, components car-
rying 1% of the sample variance (Guttman-Kaiser criterion [63]) and accumulating at 
least 95% of the whole sample variance were selected. Next, genes were represented as 
vectors of principal components, where vector (gene) coordinates are PC loadings. A PC 
score (genes-core) was computed as the Euclidean norm of the vector of principal com-
ponents. Since the sum of the squared of variable loadings over a principal component is 
equal to 1, the squared loadings tell us the proportion of variance of the given principal 
components explained by the gene. Thus, the greater the PC score value, the greater the 
fraction of cumulative variance from the whole sample variance is carried by the gene 
and, consequently, the greater the discriminatory power carried by the gene.

The sum of HD on the gene body was computed with Methyl-IT function getGRegions-
Stat and the principal component with function pcaLDA, which applies the PCA calling 
function prcomp from the R package “stats.”

Motif clustering

Small regions (14 bp) encompassing DMPs in at least three samples were identified and 
considered as DNA methylation motif candidates in the 67 identified msh1 core hub 
genes. A distance matrix was estimated on the set of selected regions using function dist.
dna from ape R package (version 5.5). Hierarchical cluster analysis on the set of selected 
regions (using the previous estimated distance matrix) was accomplished with func-
tion hclust from stats R package (version 4.1.1) and grouped to 100 clusters. UPGMA 
approach was applied as agglomeration algorithm. Clusters with fewer than 10 regions 
where discarded. A DNA multiple sequence alignment on each cluster of sequences was 
accomplished with MUSCLE algorithm implemented on Bioconductor R package mus-
cle (version 3.14). The sample motifs presented in Fig. 8 resulted from the specific analy-
sis of genes TOR, SYD, NRPB1, NRPD1, UBP26, SUVR5, and UPF1.

Motif score

We defined the motif score sjkof the aligned sequences j and k of length N as the loga-
rithm base 2 of the number of matched bases found in the alignment. Formally:

where Ijk =

{

1 if bij = bik
0 otherwise

 for every base position i on sequences j and k. The maximum 

motif score is then: Max{sjk} = log2N. The motif score in a MSA is, thus, defined as:

For a MSA with M sequences of length N each, the number of pairwise compari-
sons is: m =

M×(M−1)
2  . For a fixed value of motif length N, the perfect MSA of DNA 

sequence motifs would have the maximum score: Max{S} = log2N. In other words, the 
maximum amount of information carried on an MSA in this modeling is Imax = log2N, 

(1)sjk = log2

N

i=1

I ijk

(2)S =
1

m

M−1
∑

j=1

M
∑

k=j+1

sjk
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and the amount of information (the uncertainty change) carried by a MSA is given by 
the expression:

The same result is obtained if the letter frequencies in the MSA and Shannon entro-
pies, before (perfect alignment) and after, are estimated instead of the number of 
matches. Then, the alignment information is computed as: I =  − (Hafter − Hbefore) [64].

Monte Carlo testing of MSA randomness

A Monte Carlo test (MCT) of how a given DNA multiple sequence alignment differs 
from randomly generated MSAs was accomplished assuming:

(1)	 The count vectors nk summarizing the observed DNA base frequencies in N col-
umn (k = A, C, G, T) are distributed according to the multinomial distribution 
with parameters pk.

(2)	 In Bayesian framework, since Dirichlet distribution is the conjugate prior distribu-
tion of the multinomial distribution, the parameter vector P = (pA, pC, pG , pT) is 
drawn from a Dirichlet distribution DαP with parameter vectors 𝛼 = (𝛼1, 𝛼2, 𝛼3, 𝛼4) 
and Q = (qA, qC, qG , qT).

A N × 4 matrix of counts was computed from the entire set of identified DNA motif 
candidates as indicated by Sjolander et al. [65], and the parameter vector 𝛼 = (𝛼1, 𝛼2, 
𝛼3, 𝛼4) from a Dirichlet distribution was estimated applying function estimateDirichDist 
from the R package usefr available at GitHub: https://​github.​com/​genom​aths/​usefr (ver-
sion 0.1). As shown by Sjolander et al. [65], the posterior probabilities p̂i are given by the 
expression:

where 
∣

∣

−→n
∣

∣ and 
∣

∣

−→
α
∣

∣ are the total number of counts and pseudo-counts (sum of αi), 
respectively. Random DNA MSA sequences were generated according to the estimated 
Dirichlet distribution with function rdirichlet from the R package usefr.

For MSAs of fixed length N, the log2N is a constant. Thus, for the purposes of MCT, 
we could consider the score statistic given in Eq. 2 and evaluate how much an observed 
aligned motif differs statistically from Monte Carlo simulated aligned sequences. The 
Monte Carlo p-value was estimated as:

where S0 is the motif score from the observed MSA to be tested, Si is the motif score for 

the ith Monte Carlo simulated MSA (including S0) and δi(Si, S0) =
{

1 if Si ≥ S0
0 otherwise

 (i = 0, 

1, 2, …).
Preserved methylation motifs were identified (visualized) with function seqLogo 

from Bioconductor R package seqLogo (version 4.1). The final visualization of DNA 

(3)I = −
(

S − log2N
)

(4)p̂i =
ni + αi

∣

∣

−→n
∣

∣+
∣

∣

−→
α
∣

∣

(5)pvalue =
1

NS + 1

Ns
∑

i=0

δi(Si, S0)
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methylation sequence motifs was accomplished with function ggseqlogo from the 
CRAN R package ggseqlogo (version 0.1) [66]. DNA sequence motifs (Additional 
file 8) were selected based on their motif scores, all of which differed statistically from 
random MSA.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​022-​02731-w.

Additional file 1: Figure S1. Phenotype of four selected F3 epi-lines and wild type used for methylome sequencing. 
Photo was taken at 27 days after planting. Epi24 and Epi8 are sister lines derived from the same crossing event; Epi10 
and Epi19 are sister lines derived from a second crossing event. Figure S2. Relative DMP frequencies among different 
Arabidopsis epi-lines. DMPs were assigned to genic (blue), TE-related (red) and other genomic regions (green). The 
centroid of the wild type samples was used as reference. Relative DMP frequencies in each genomic feature were 
estimated as number of DMPs divided by number of total genomic cytosine positions in each genomic feature. 
A DMP was defined as ‘hyper’ if cytosine methylation level difference was greater than 0 and defined as ‘hypo’ if 
methylation level difference was less than 0. Figure S3. Total hyper- and hypo-DMP counts in epi-lines. Arabidopsis 
epi-lines vs WT. Each bar graph represents a single plant in each population. Cytosine context (CG, CHG, CHH) is 
shown separately for each plant. A DMP was defined as ‘hyper’ if cytosine methylation level difference was greater 
than 0 and defined as ‘hypo’ if methylation level difference was less than 0. Control centroid was used a reference. 
Figure S4. Upset plot showing the intersection of DMGs between different msh1 states. The horizontal bar graph on 
the right (set size) shows the total number of DMGs in each dataset. The upper bar graph (intersection size) shows 
the number of DMGs shared by different datasets represented by black connected dots. Package ComplexHeatmap 
(version 2.0.0) in R was used to make graphs. Red arrows indicate relationship among the four epi-lines (state 4) 
and between selected Epi 24 (state 4) and other individual datasets representing states l-3 in our study. Figure S5. 
Significant enriched GO pathways by DEG analysis in Epi 8 and Epi 24. a, Enriched GO pathways shared by epi-lines 
Epi 8 and Epi 24 root RNA (DEG) datasets and Epi 8 leaf sample DEG dataset in Arabidopsis. Heat map was generated 
using the fold enrichment of GO terms (FDR < 0.05) common between the datasets. GO terms with EASE score (a 
modified Fisher Exact P-value) < 0.05 were used for FDR calculation. FDR was calculated using package stats (version 
3.6.0; p.adjust method = FDR) in R. Package ggplot2 (version 3.3.3) in R was used to generate heatmap. b, Upset plot 
showing the intersection of DEGs between different Epi 8 and Epi 24 tissues. The horizontal bar graph on the right 
(set size) shows the total number of DEGs in each dataset. The upper bar graph (intersection size) shows the number 
of DEGs shared by Epi 8 and Epi 24 datasets represented by black connected dots. c, Upset plots showing the 
intersection of DMG and DEG datasets in Epi 8 or Epi 24. The horizontal bar graphs on the right (set size) shows the 
total number of DMGs or DEGs in each dataset. The upper bar graphs (intersection size) shows the number of DMGs 
or DEGs shared by Epi 8 datasets or Epi 24 datasets represented by black connected dots. Package ComplexHeatmap 
(version 2.0.0) in R was used to make graphs. Figure S6. Results of weighted correlation network analysis. Network 
derived from the 871 core msh1-associated DMGs resulted in 166 DMGs with Spearman’s correlation coefficient 
of 0.6. Loci shown in red are 33 DMGs that overlap (49%) with the 67 core hub loci from k-means cluster analysis 
(p-value = 0.000333 Fisher’s Exact Test). The node and label sizes are in correspondence with the node degree (from 
40 to 105). That is, a large node indicates a significant correlation with a large number of other genes for its/their 
epigenetic effect on phenotype. Node color represents the gene score (PC-score), from light-green (small value/
contribution) to dark maroon (large value/contribution). The greater the PC-score value, the greater the fraction 
of cumulative variance from the whole sample variance is carried by the gene and, consequently, the greater the 
discriminatory power carried by the gene. The pairwise correlation between genes was computed as described in 
Methods.

Additional file 2. Epi-line state 4 DMGs and GO enrichment.

Additional file 3. Arabidopsis C24 and Ler F1 DMGs and network enrichments.

Additional file 4. Arabidopsis msh1 epi-line state 4 DEG and GO enrichment.

Additional file 5. 871 DMGs shared between four msh1 states.

Additional file 6. TE and sRNA associations with 871 DMGs shared between four msh1 states.

Additional file 7. Cluster 11 and 18 with dcl2/3/4-sensitive DMPs.

Additional file 8. Cluster motifs within 67 core hub loci.
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