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Abstract: Host-induced gene silencing (HIGS) based on trans-kingdom RNA interference (RNAi) has
been successfully exploited to engineer host resistance to pests and pathogens, including fungi and
oomycetes. However, revealing the mechanisms underlying trans-kingdom RNAi between hosts and
pathogens lags behind applications. The effectiveness and durability of trans-kingdom silencing of
pathogenic genes are uncharacterized. In this study, using our transgenic 35S-VdH1i cotton plants in
which dsVdH1-derived small RNAs (siVdH1) accumulated, small RNA sequencing analysis revealed
that siVdH1s exclusively occur within the double-stranded (ds)VdH1 region, and no transitive
siRNAs were produced beyond this region in recovered hyphae of Verticillium dahliae (V. dahliae).
Accordingly, we found that VdH1 silencing was reduced over time in recovered hyphae cultured
in vitro, inferring that once the fungus got rid of the 35S-VdH1i cotton plants would gradually regain
their pathogenicity. To explore whether continually exporting dsRNAs/siRNAs from transgenic
plants into recipient fungal cells guaranteed the effectiveness and stability of HIGS, we created
GFP/RFP double-labeled V. dahliae and transgenic Arabidopsis expressing dsGFP (35S-GFPi plants).
Confocal images visually demonstrate the efficient silencing of GFP in V. dahliae that colonized host
vascular tissues. Taken together, our results demonstrate that HIGS effectively triggers long-lasting
trans-kingdom RNAi during plant vasculature V. dahliae interactions, despite no amplification or
transitivity of RNAi being noted in this soil-borne fungal pathogen.

Keywords: host-induced gene silencing; trans-kingdom RNA interference; Verticillium dahliae

1. Introduction

RNA interference (RNAi, or RNA silencing) is universal in eukaryotes, including
animals, plants, and fungi. Compared with RNAi in animals and plants, the mechanisms
of fungal RNAi are diverse based on studies in the model fungus, Neurospora crassa [1–3].
The existence of RNAi in plant phytopathogenic fungi is largely unknown [4–6]. In a few
studies on V. dahliae [7], Botrytis cinerea [8,9], Fusarium [10–12], Magnaporthe oryzae [13–18],
Puccinia [19,20], and Valsa mali [21–23], small RNAs (sRNAs) and microRNA (miRNA)-like
sRNAs have been sequenced, and RNA silencing-related genes have been cloned. However,
the function and mechanism of the regulation process have not been completely determined.
RNAi in fungi is significantly diversified, and the numbers of RNA silencing proteins differ
considerably among fungal species [24]. This diversification may lead to reduced efficacy
of RNAi in some fungal species, such as Ustilago maydis, in which the entire RNA silencing
machinery appears to have been lost [25].

Phytopathogenic fungi cause huge yield losses to crops worldwide. In addition to
fungicides, which represent current approaches to control phytopathogenic fungi, alterna-
tive approaches based on RNAi named HIGS or spray-induced gene silencing (SIGS) are
designated as in vivo approaches and in vitro approaches, respectively [26–31]. dsRNA or
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hairpin RNA (hpRNA) are introduced into host plants or through exogenous application
to produce siRNAs targeting the essential genes of phytopathogens. In contrast to the
few studies on the RNA silencing pathways of fungi, it has been demonstrated that this
trans-kingdom RNAi approach is efficient in defending against many phytopathogenic
fungi, such as Blumeria graminis [32] V. dahliae [33,34], B. cinerea [35], and M. oryzae [36].
Nevertheless, there is still an exception that transient HIGS is inefficient in inducing si-
lencing in Zymoseptoria tritici, which is unable to take up dsRNA; however, this species
encodes the core components of RNA silencing proteins [37,38]. Hence, for better applica-
tion in crop protection, the mechanism and efficiency of these trans-kingdom siRNAs in
fungal cells need to be investigated. Plants send miRNAs to fungal pathogens to silence
virulence genes, indicating that natural trans-kingdom RNAi exists in host–pathogen inter-
actions [39,40]. Further studies revealed that plants send sRNAs in extracellular vesicles to
fungal pathogens to silence virulence genes [41]. Recently, endocytosis appeared to facilitate
the uptake of dsRNA, as demonstrated in B. cinerea [40] and Sclerotinia sclerotiorum [42].

For soil-borne vascular fungi, the uptake of in vitro synthesized dsRNA seems invalid
or less efficient due to the instability of naked RNA in the soil. However, pretreatment
of Arabidopsis roots with dsRNA potentially inhibits the infection of V. dahliae [43]. HIGS,
which is laborious but more stable, is still an efficient and competitive approach. There-
fore, understanding the mechanisms of HIGS, for instance, in planta-delivered dsRNA or
siRNAs concerning the spreading and efficient location of siRNAs, is critical in applying
this profound approach for controlling pathogenic fungi, especially soil-borne fungi. We
previously created transgenic cotton 35S-VdH1i expressing hairpin RNA specific to the
hydrophobin (VdH1) gene of V. dahliae, a soil-borne vascular fungal pathogen [33]. These
35S-VdH1i cotton plants exhibited highly effective resistance to V. dahliae. The degradation
of VdH1 mRNA and the accumulation of VdH1-derived siRNAs in hyphae recovered from
infected transgenic cotton indicated plant-delivered siRNAs entered into and induced
silencing in fungal cells [33]. Later, in tomato and Arabidopsis, HIGS was also demonstrated
to be effective in defending against Verticillium wilt [34]. These results demonstrate the ef-
fectiveness of HIGS on V. dahliae, thereby conferring resistance to wilt disease in host plants.
Three RNA-dependent RNA polymerases proteins (RDRs) are predicted in V. dahliae [7].
This prompted us to investigate whether these fungal RDRs would induce siRNA amplifica-
tion of VdH1-derived siRNAs. In this study, through small RNA sequencing and Northern
blot analysis, we found that fungal RDRs were not involved in the amplification of trans-
kingdom RNAi signaling. By creating a visible silencing system, we further demonstrated
that the highly effective trans-kingdom silencing of fungal targets took place inside the
infected plants. All these results indicate that without amplification of RNAi, the efficacy
of trans-kingdom silencing relies on persistent transporting dsRNA/siRNA in vascular
tissues where V. dahliae colonized.

2. Results
2.1. Transitive Silencing of the Trans-Kingdom Does Not Occur in Recipient V. dahliae

In plants, sRNA-mediated cleaved mRNAs may recruit RDRs to generate more dsR-
NAs and produce secondary siRNAs from regions surrounding the primary silencing
trigger sequence, a silencing phenomenon termed silencing transitivity [44,45]. We have
recently identified three RDRs in V. dahliae [7]. To investigate whether three fungal RDRs
were involved in trans-kingdom RNAi for secondary siRNAs production in recipient cells,
we utilized 35S-VdH1i-cotton line 3, which produces VdH1-derived siRNAs (siVdH1) [33]
for infection with V. dahliae V592 and fungal recovery. The fungal hyphae recovered from
wild-type and 35S-VdH1i cotton plants were named VdWT−1st and VdVdH1i−1st, respec-
tively. Small RNAs isolated from VdWT−1st and VdVdH1i−1st colonies as well as 35S-VdH1i
transgenic cotton plants were sequenced. siRNAs mapped to VdH1 were included in
our analysis.

The sequencing data revealed significant amounts of siVdH1s of different lengths
from 18 to 29 nucleotides (nt) produced in 35S-VdH1i transgenic cotton. A small amount of
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siVdH1s was detected in VdVdH1i−1st colonies but barely in VdWT−1st colonies (Figure 1a).
Similar results were obtained in three individual sequencing libraries of each genotype
of the colony (Supplementary Figure S1). The distribution of siVdH1s obtained from
35S-VdH1i transgenic cotton and VdVdH1i−1st colonies was aligned with VdH1 to the re-
gion used in designing hairpin RNA for creating 35S-VdH1i cotton plants [33]. siVdH1s
were located alongside both strands of the VdH1i region (Figure 1a,b, and Supplementary
Figure S1) but not beyond the VdH1i region, indicating that no transitive siRNAs beyond
the RNAi trigger region were generated in recipient hyphae (Figure 1a). Interestingly, the
length of siVdH1s was mainly 20 to 23 nt, especially 20 nt, in 35S-VdH1i transgenic cotton
plants and VdVdH1i−1st colonies, and 24 nt siVdH1s were minimally detected (Figure 1b).
This result prompted us to analyze endogenous known miRNAs in plants from sRNA
sequencing libraries. As expected, the length of cotton endogenous known miRNAs from
35S-VdH1i transgenic cotton plants was mainly 21 and 22 nt (Figure 1c), indicating that the
preparation and sequencing processes of sRNAs were appropriate. Our data suggest the
possible existence of special DCL or relevant protein(s) implemented in processing exoge-
nous RNAi constructs in cotton plants, resulting in the production of 20 to 23 nt siRNAs.
Nevertheless, our data confirm that 35S-VdH1i transgene-derived siRNAs produced in
cotton plants were exported to fungal hyphae to induce VdH1 gene silencing but did not
trigger transitive target gene silencing in recipient V. dahliae.

2.2. Target Gene Silencing Is Reduced over Time in In Vitro Cultured Hyphae Recovered from
Infected Plants

Given that no transitive silencing occurred in recipient fungal cells, we thus inves-
tigated whether target gene silencing in fungal cells would be lastingly maintained or
transitorily after recovery from the infected host plants. The sixth generation of trans-
genic 35S-VdH1i cotton line 3 was used for V592 infection. Compared to the typical leaf
wilt disease symptoms observed for wild-type cotton plants at 20 days postinoculation
(dpi) (Figure 2a), transgenic 35S-VdH1i cotton plants exhibited significantly reduced dis-
ease grade in inoculated seedlings (Figure 2a). Consistent with our previous finding [33],
VdH1 mRNA degradation in hyphae recovered from infected 35S-VdH1i cotton but not
wild-type cotton plants was detected (Figure 2b). No significant difference in control
VdGARP1 mRNA was detected in any of the recovered colonies (Figure 2b). The colony
that grew from infected wild-type cotton plants (VdWT−1st) produced normal melanized
microsclerotia (Figure 2c). In contrast, colonies that grew from 35S-VdH1i cotton plants
(VdVdH1i−1st) developed VdH1 knockout mutant-like morphology that lacked or exhibited
reduced development of melanized microsclerotia in 20-day-old plate cultures (Figure 2c).

To examine the maintenance of VdH1 silencing in recovered hyphae, we selected a
patch of the first generational colonies from VdWT−1st and VdVdH1i−1st and transferred
them to new plates for culture for 20 additional days. Intensive melanized microsclerotium
growth was observed for VdWT−2nd. However, VdVdH1i−2nd colonies exhibited various
degrees of melanized microsclerotium growth, and the morphologies differed from those
of wild-type V592 (Figure 2c). Weak but clear signals of VdH1 mRNA were detected in
VdVdH1i−2nd colonies (Figure 2b), which is consistent with the observation of the devel-
opment of melanized microsclerotia in the VdVdH1i−2nd colonies. Furthermore, siVdH1s
signals were observed in VdVdH1i−1st colonies but not in VdVdH1i−2nd colonies (Figure 2d)
in accordance with VdH1 mRNA accumulation in VdVdH1i−1st and VdVdH1i−2nd colonies
(Figure 2b). Taken together, our data demonstrate that target gene silencing may be main-
tained transitorily after fungal hyphae depart from host plants. As a result, we speculate
that the sustained host-exported dsVdH1/siVdH1s were required and sufficient for silenc-
ing VdH1 in fungal cells inside the host plants, which maintained effective resistance of
transgenic 35S-VdH1i cotton plants.
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Figure 1. Small RNA analysis of 35S-VdH1i transgenic cotton, VdVdH1i−1st, and VdWT−1st colonies.
(a) RPM (reads per million sequences) and distribution of siVdH1s obtained by deep sequencing. The
5′-terminal 380bp VdH1i region is indicated. The y-axes represent the RPM of siVdH1s in small RNA
libraries of 35S-VdH1i cotton, VdVdH1i−1st colonies, and VdWT−1st colonies related to positions along
the VdH1 gene indicated in x-axes. siVdH1s (in red vertical lines) above and below the 0 value of
y-axes indicate the sense and antisense orientation, respectively. (b) Length distribution of siVdH1s
in 35S-VdH1i cotton and VdVdH1i−1st colony. (c) Length distribution of cotton endogenous known
miRNAs from 35S-VdH1i transgenic plants. The repeats are provided in Supplementary data.

2.3. Vascular Tissue Is the Most Efficient Location for Trans-Kingdom RNAi between Plants and
Vascular Fungi

To test our speculation on the efficient trans-kingdom silencing in fungal cells inside
the infected plants, we first created a visible HIGS system. GFP-labeled V592 (V592-
GFP1) [46] was retransformed with pSulPH-RFP, producing V592-GFP/RFP with similar
growth morphology to V592-GFP1 (Figure 3a). Similar disease severity in Arabidopsis was
caused by V592-GFP1 and V592-GFP/RFP. Leaf wilt was observed at 10 dpi (Figure 3b),
revealing the normal infectivity of V592-GFP/RFP. To achieve visible HIGS of GFP in the
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hyphae, 35S-GFPi transgenic Arabidopsis was created. The production of GFP-derived
siRNAs (siGFP) in 35S-GFPi transgenic Arabidopsis was confirmed (Figure 3c). Wild-type
and 35S-GFPi transgenic Arabidopsis were inoculated with spores from V592-GFP/RFP
by unimpaired root-dip inoculation [46]. Confocal laser scanning microscopy (CLSM)
revealed that both GFP and RFP signals were observed in hyphae within the root cortical
tissue in wild-type Arabidopsis by 5 dpi (Figure 4a). Both green and red fluorescence were
also observed within the root cortical tissue in 35S-GFPi plants by 5 dpi; however, the
GFP signal was obviously reduced, resulting in stronger red fluorescence in the merged
images than that noted in wild-type Arabidopsis (Figure 4b). Similarly, while stronger
GFP signals relative to RFP signals were observed in the hyphal net within the vascular
tissue in wild-type Arabidopsis by 7 dpi (Figure 4a), stronger RFP relative to GFP signals
in the hyphal net within the vascular tissue were observed in 35S-GFPi plants by 7 dpi
(Figure 4b). Two signals overlapping in some hyphae were still observed in 35S-GFPi plants
(Figure 4b, arrows). Again, intense GFP signals were observed in rapidly proliferating
hyphae within the xylem vessel in wild-type Arabidopsis by 10 dpi (Figure 4a). In contrast,
intense RFP signals were observed in most hyphae within the xylem vessel in 35S-GFPi
plants (Figure 4b); only a few hyphae outside or around the vascular bundle maintained
a clear GFP signal and overlapped with the RFP signal, as shown in the merged image
(Figure 4b, arrows). Consistently, reduced levels of GFP mRNA but not RFP mRNA were
detected by qRT–PCR of total RNAs extracted from the roots of the ten inoculated 35S-GFPi
plants at various time points (Figure 3d). Taken together, our results clearly demonstrate
that hyphae in 35S-GFPi plants were effectively and specifically triggered for GFP silencing,
and GFP silencing was effectively sustained in the rapid proliferation of hyphae within
the vascular tissue but possibly less effective within the cortical tissue of Arabidopsis roots
where hyphae intercellularly crossed to reach the vascular tissue to realize colonization [46].

Figure 2. Examination of VdH1 mRNA and siVdH1 in hyphae recovered from infected cotton. (a) Dis-
ease symptoms of V592 infection on wild-type and transgenic cotton plants. (b) Detection of VdH1
mRNA in colonies recovered from wild-type and 35S-VdH1i transgenic cotton plants. The numbers
below represent relative signal intensities. Hyphae grown from stems at 5 days post-culture were
transferred to PDA medium to continue growth, named VdVdH1−1st colonies. Subculture colonies
propagated from hyphae of VdVdH1−1st colonies were named VdVdH1−2nd colonies. (c) Morphologies
of VdVdH1−1st colonies and VdVdH1−2nd colonies. Photographs were taken 20 days post-culture.
(d) Small RNA hybridization of siVdH1 in VdVdH1i−1st colonies and VdVdH1i−2nd colonies.
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Figure 3. Examination of V592-GFP/RFP in 35S-GFPi transgenic Arabidopsis. (a) Colony morphologies
and confocal microscopy images of hyphae of V592-GFP1 and V592-GFP/RFP. (b) Similar infectivity
of V592-GFP1 and V592-GFP/RFP in Arabidopsis. Photographs were taken at 10 days postinoculation.
(c) Detection of GFP-derived siRNAs (siGFP) in 35S-GFPi transgenic Arabidopsis. Total RNAs isolated
from wild-type Col-0 and 4 individual transformants were loaded. The GFP-specific sequence was
used as a probe. The upper unspecific bands visible in the top blot serve as the loading control.
Positions of 17, 21, and 25 nt siRNAs are indicated. (d) Expression of GFP and RFP mRNAs in infected
Col-0 and 35S-GFPi Arabidopsis. Total RNAs isolated from roots of ten infected plants at indicated
time points were quantified by qRT–PCR and normalized with the corresponding input RNA and
VdELF1 (as the internal standard) levels. The value of GFP mRNA in V592-GFP/RFP-infected Col-0
was arbitrarily designated as 1. Error bars represent SD for three replicates. Reduced levels of GFP
mRNA but not RFP mRNAs were detected in 35S-GFPi.
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Figure 4. Confocal laser scanning microscopy observation of GFP silencing in V. dahliae within
infected Arabidopsis roots. (a,b) Confocal laser scanning microscopy images of GFP and RFP signals
in hyphae within wild-type (Col-0) (a) and 35S-GFPi transgenic (b) Arabidopsis roots infected by
double-labeled V. dahliae isolate V592-GFP/RFP. The merged images are compound micrographs
of bright field transmission and the corresponding GFP and RFP fluorescence images. Examples of
hyphae overlapped with both GFP and RFP signals are indicated by arrows. Six images for each root
sample were observed and similar results were obtained.
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3. Discussion

The control strategy of fungal pathogens relies on the use of fungicides that are harmful
to the environment. The newly developed HIGS is based on a sequence-specific RNAi
mechanism that is friendly to the environment. Although considerable progress has been
achieved in utilizing the HIGS strategy to protect against plant fungal pathogens, further
research evaluating the efficiency, stability, and durability of resistance is needed in the
field, thereby improving our understanding and application of this new approach.

In this study, small RNA sequencing results showed that siVdH1s from hyphae recov-
ered from V. dahliae-infected 35S-VdH1i cotton matched but not beyond the VdH1i region
(Figure 1a). Additionally, we showed that trans-kingdom VdH1i-derived siVdH1s-mediated
degradation of VdH1 exists in hyphae fresh recovered from infected 35S-VdH1i cotton
plants, given that the colonies of the VdVdH1i−2nd passages from recovered VdVdH1i−1st

resumed normal VdH1 accumulation (Figure 2b). These data suggest the lack of transitive
silencing in V. dahliae and indicate that three fungal RDR proteins are not involved in the
trans-kingdom siRNA-induced silencing in V. dahlia [7]. This is partly similar to that in
Rosellinia necatrix, a plant pathogenic fungus, in which systemic RNAi is not triggered by
locally induced RNAi [47]. It has also been reported in F. asiaticum that siRNAs were only
matched to the exogenous dsRNA triggers but not the target mRNA beyond the dsRNA
trigger regions, indicating that RDR-dependent secondary siRNA amplification does not
occur. Moreover, exogenous dsRNA exhibited a similar silencing efficiency in RDR mutants
compared with that in wild-type [48]. These findings provide clues to explain the lack
of secondary siRNA amplification as a divergent function of RDRs in fungi. Although
there seems to be no RNAi amplification in V. dahliae, the siVdH1s generated persistently
in transgenic 35S-VdH1i cotton are sufficient to silence the VdH1 gene to impart durable
resistance. This finding differs from that noted for exogenously applied dsRNA or siRNAs,
for which RNA amounts represent a limiting factor.

In plants, RNAi signals are transmitted locally from cell to cell through plasmodesmata
(PD) and over long distances through the phloem [49,50]. The plant phloem may represent
a site of accumulation of mobile sRNAs, the levels of which are modulated by stress
conditions [51]. It is worth noting that the vascular fungal pathogen V. dahliae can efficiently
take up host-derived sRNAs during infection [39], which may be due to the location of
pathogen colonization. Hence, the plant vasculature might represent a target site for
effective trans-kingdom RNAi. Notably, in V592-GFP/RFP-infected 35S-GFPi Arabidopsis
roots, we observed strong GFP silencing of V592-GFP/RFP in vascular tissues, where
strong red fluorescent hyphae were noted, but a lesser silencing effect in cortical tissues,
where green/red fluorescent hyphae were present (Figure 4b). This finding is consistent
with the role of mobile siRNAs in long-distance silencing through the plant vascular system.
This result again suggests that silencing in hyphae is attributed to host-delivered siRNAs
in fungal cells. Remarkably, whereas strong green hyphal proliferation was noted in
wild-type Arabidopsis roots (Figure 4a), red hyphae were observed in the vascular tissue
of 35S-GFPi Arabidopsis roots (Figure 4b). These results indicate that once GFP silencing
in hyphae was established, it was maintained during hyphal growth and proliferation
in vascular tissue. The formidable proliferation of V. dahliae hyphae in plant vascular
tissue [46] together with the driving force of phloem flow underlying the long-distance
transport of the silencing signal endows HIGS with high efficiency in cotton protection
against the vascular pathogen V. dahliae.

In recent years, SIGS, or exogenously applied dsRNA or siRNAs in host plant pro-
tection, has become popular. A few studies revealed that SIGS for disease control was
dependent on the efficiency of pathogen RNA uptake [43] and different dsRNA applica-
tion approaches [52]. Additionally, an increasing number of studies have focused on
improving strategies for prolonged dsRNA stability, efficacy, and scalability, such as
Escherichia coli-derived anucleated minicells for dsRNA production and encapsulation [53],
laser-assisted delivery of dsRNA [54], and nanoparticles for potential delivery of siRNA [54].
Although these GMO-free RNAi strategies are convenient and unlabored, the application
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frequency and amounts are factors that need to be considered and evaluated. Transgene-
based HIGS possesses a distinctive advantage, such as constant delivery of siRNAs from
plants to pathogens, ensuring the siRNA supply needed to trigger trans-kingdom RNAi.
Nevertheless, exogenous application or constitutive expression of dsRNA or siRNAs is
worthy of development for crop protection. Our study demonstrates that HIGS effectively
triggers long-lasting trans-kingdom RNAi during interactions between transgenic cotton
plants and V. dahliae, despite no amplification of RNAi being noted in this soil-borne fungal
pathogen. Exploring the fungal endogenous RNAi pathways is needed to further reveal the
molecular basis for this trans-kingdom RNAi, thus helping for better utilization of HIGS
in crops. On the other hand, more pathogenic genes need to be tested for ideal targets in
trans-kingdom RNAi. In all, our work provides further understanding of the efficacy of
HIGS in defending against plant soil-borne vascular pathogens. In the future, fundamental
knowledge on the molecular mechanisms of HIGS and SIGS will lead to novel integrative
approaches or tailor-made solutions for controlling plant diseases [55].

4. Materials and Methods
4.1. Fungal Isolates, Culture Conditions, and Fungal Recovery and Infection Assays

A virulent defoliating V. dahliae isolate V592 from cotton was used in this study. The
culture conditions of V592, the conidia production for infection assays, and the fungal
recovery assay in cotton were described previously [33,56]. For plant infection assays
in the laboratory, the “laboratory unimpaired root-dip inoculation method” described
previously [56] was used for cotton and Arabidopsis root inoculation.

4.2. Cloning and Constructs

For the 35S-GFPi RNAi constructs, the sense and antisense sequences of the 3′-terminal
500 bp of GFP were amplified by PCR using sequence-specific primers as follows: forward
primer, 5′-GGATCCATGCCGTGAGTGATCCCG-3′ (underlined letters: BamHI site); reverse
primer, 5′-GAATTCGTGCTTCAGCCGCTACCC-3′ (underlined letters: EcoRI site). The anti-
sense sequence was amplified using forward primer, 5′-GAGCTCATGCCGTGAGTGATCCCG-3′

(underlined letters: SacI site); reverse primer, 5′-AGATCTGTGCTTCAGCCGCTACCC-3′

(underlined letters: BglII site). Each of the PCR fragments was ligated into the pGEM-T
vector (Tiangen). Sense and antisense sequences were inserted into an intron-containing
intermediate construct (pSK-int) [57] to obtain sequence cassettes containing the inverted-
repeat RNAi constructs as previously described [57], producing pSK-GFPi. A fragment
of BamHI-SacI from pSK-GFPi was inserted into the binary vector pBI121 under the 35S
promoter to generate 35S-GFPi for plant transformation.

To create double-labeled GFP and RFP of the V. dahliae isolate, pSulPH-RFP-NEO, which
contains a neomycin (neo) resistance cassette, was generated as follows: the neo resistance cassette
was amplified from pKOV21 [58] with primers 5′-GCTCTAGACAGCCGCCTTCGCAAGCGCT-
3′ and 5′-GCTCTAGAGGCCAGCAGTAGACACTTGG-3′ (underlined letters: XbaI site). The
PCR fragment was ligated into the pGEM-T easy vector, and the XbaI-digested fragment
was inserted into XbaI-digested pSulPH, conferring the resulting pSulPH-NEO resistance
to geneticin. The RFP fragment was amplified from the pGDR vector [59] with primers
5′-GCGGATCCATGGCCTCCTCCGAGAACGT-3′ (underlined letters: BamHI site) and
5′-GAATTCGCGATGTCCTTGTCCACCACCG-3′ (underlined letters: EcoRI site). The
PCR fragment was inserted into pSulPH-NEO, resulting in pSulPH-RFP-NEO, which
was retransformed to V592-GFP1 [46], producing the double-labeled V. dahliae isolate
V592-GFP/RFP.

4.3. Fungal and Plant Transformation

The 35S-GFPi constructs were transformed into the Agrobacterium strain EHA105 for
plant transformation. Arabidopsis (Columbia ecotype) was transformed according to the
standard floral dip method [60]. The fungal transformation was performed as previously
described [61].
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4.4. RNA Extraction, RNA Gel Blotting, and Quantitative Real-Time PCR Analysis

Fungal isolates were grown in liquid Czapek–Dox medium for 3 days with shaking
at 200 rpm and 26 ◦C in the dark, and the resulting mycelium was harvested for RNA
isolation using TRIzol reagent (Invitrogen) according to the manufacturer’s instructions.
For high molecular weight RNA gel blots, 20 µg of total RNA was separated on 1.2%
agarose gels containing 6% formaldehyde and transferred to nylon N+ membranes. DNA
probes were labeled with [a-32P] dCTP using the Rediprime II system (Amersham). For
low molecular weight RNA gel blots, 40 µg of total RNA was separated by electrophoresis
on 17% PAGE gels and electrically transferred to nylon N+ membranes. Then, [α-32P]
UTP-labeled gene-specific transcript sequences were used (New England Biolabs). For
detection of the silencing of VdH1 in recovered hyphae, colonies recovered from the same
infected plant at 20 days postinoculation were mixed for RNA isolation. For qRT–PCR,
2 µg of total RNA was reverse transcribed into cDNA using HiScript II Q RT SuperMix for
qPCR (Vazyme). qRT–PCR analysis was performed with a 1000 series Thermal Cycling
Platform (Bio-Rad) using SYBR qPCR Master Mix (Vazyme). The constitutively expressed
elongation factor 1-α of V. dahliae (VdELF1) was used as an internal control. Gene-specific
primers are listed below: VdELF1-qRT-F, CCATTGATATCGCACTGTGG and VdELF-qRT-R,
TGGAGATACCAGCCTCGAAC; RFP-qRT-F, AGGACGGCTGCTTCATCTAC and RFP-
qRT-R, CTTCAGGGCCTTGTGGGT; GFP-qRT-F, ATGGTGAGCAAGGGCGAGGAG and
GFP-qRT-R, TAGGTCAGGGTGGTCACGAGG. At least three biological replicates and
three technical replicates were performed in each experiment for each sample.

4.5. Confocal Laser Scanning Microscopy

A. thaliana roots were immersed in a conidial suspension (~105 conidia/mL in water
solution) for 10 min and then transferred onto a 0.75% agar plate at 25 ◦C in the dark. Images
were obtained under a confocal laser microscope (Leica TCS SP8; Leica Microsystems) with
100× oil immersion objective lenses. The excitation wavelengths and emission filters were
as follows: 488 nm/bandpass 500 to 550 nm for GFP and 561 nm/bandpass 570 to 670 nm
for RFP. Confocal images were captured with a Leica hybrid detector and analyzed with
Leica LAS AF software.

4.6. Small RNA Sequencing

V. dahliae recovered from V592-infected cotton (VdWT−1st) and V592-infected 35S-VdH1i
cotton (VdVdH1i−1st) were grown in liquid Czapek–Dox medium and harvested as described
above for RNA extraction. 35S-VdH1i transgenic cotton plants grown at 26 ◦C with a 16 h
light (8000 lux)/8 h dark cycle for approximately 3 weeks were subject to RNA extraction.
RNA isolation, sRNA library construction, and sRNA sequencing were performed by BGI
(http://www.bgitechsolutions.com/, accessed on 11 February 2022). The raw data were
filtered to remove low-quality reads to obtain clean sequences. The sRNAs were aligned
with VdH1 to the region used in designing hairpin RNA for creating 35S-VdH1i cotton
plants. A Perl script was used to search for known miRNAs in cotton [62,63] with 18–30 nt
clean sequences. The expression level of miRNAs was normalized by RPM.
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