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SUMMARY

Because aberrant network-level functional connectivity underlies a variety of
neural disorders, the ability to induce targeted functional reorganization would
be a profound development toward therapies for neural disorders. Brain stimula-
tion has been shown to induce large-scale network-wide functional connectivity
changes (FCC), but the mapping from stimulation to the induced changes is un-
clear. Here, we develop a model which jointly considers the stimulation protocol
and the cortical network structure to accurately predict network-wide FCC in
response to optogenetic stimulation of non-human primate primary sensorimotor
cortex. We observe that the network structure has a much stronger effect than
the stimulation protocol on the resulting FCC.We also observe that themappings
from these input features to the FCC diverge over frequency bands and succes-
sive stimulations. Our framework represents a paradigm shift for targeted neural
stimulation and can be used to interrogate, improve, and develop stimulation-
based interventions for neural disorders.

INTRODUCTION

From schizophrenia to epilepsy, aberrant network-level functional connectivity underlies a variety of neural

disorders (Garrity et al., 2007; Nakai et al., 2021; Stam et al., 2007). As such, the ability to modify network-

level functional connectivity would be a profound development toward therapies for neural disorders.

Brain stimulation has demonstrated promise as a means for modifying large-scale functional connectivity

(M. D. Fox et al., 2012a; Sehm et al., 2012; Edwardson et al., 2013), but the mapping from stimulation to the

resulting modification remains unclear.

The prevalent approach for inducing targeted connectivity change is neural stimulation informed by Spike-

Timing Dependent Plasticity (STDP). STDP is a phenomenon in which synaptic strengths are modified as a

function of the delay between the firing times of the pre- and post-synaptic neurons (Bliss and Collingridge,

1993; Markram et al., 1997; Bi and Poo, 1998). Although STDP was initially observed in monosynaptic con-

nectivity strength between isolated neuron pairs in vitro, its application was eventually translated to larger-

scale, less isolated connections in vivo (Seeman et al., 2017; Bloch et al., 2019; Yazdan-Shahmorad et al.,

2018a; Jackson et al., 2006; Rebesco et al., 2010; Rebesco Miller, 2011; W. Song et al., 2013). In response

to the more challenging in vivo setting, this translation coincided with stimulation of a larger set of neurons

instead of monosynaptic connections of isolated neuron pairs and the measurement of functional connec-

tivity changes (FCC) instead of direct synaptic strength changes. In line with the original in vitro studies,

these experiments hypothesized that pairwise stimulation would drive FCC only between the stimulation

targets. Some reported successful induction of targeted FCC (Jackson et al., 2006; Song et al., 2013; Re-

besco et al., 2010; Rebesco andMiller 2011) whereas others reported inconsistent results across stimulation

targets (Seeman et al., 2017; Bloch et al., 2019). Notably, these studies also reported that stimulation-

induced FCC were found to extend beyond the stimulation sites to other recorded regions (Seeman

et al., 2017; Bloch et al., 2019; Rebesco et al., 2010; Rebesco and Miller, 2011; W. Song et al., 2013). Follow

up studies investigated the extent of this phenomenon in primates (Yazdan-Shahmorad et al., 2018a; Keller

et al., 2018; Huang et al., 2019) and found that paired stimulation reliably results in FCC extending over a

large-scale surrounding network. These results highlight the need for an updated framework which accu-

rately predicts network-wide stimulation-induced FCC in vivo.
iScience 25, 104285, May 20, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:azadehy@uw.edu
https://doi.org/10.1016/j.isci.2022.104285
https://doi.org/10.1016/j.isci.2022.104285
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104285&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


ll
OPEN ACCESS

iScience
Article
Recent research indicates that network-level functional connectivity is not only affected by stimulation but

also is involved in shaping the response to stimulation. For example, underlying functional connectivity has

been shown to shape stimulation-induced neural activity propagation (Momi et al., 2021; Solomon et al.,

2018; Fox et al., 2020; Huang et al., 2019; Keller et al., 2011) as well as influence the therapeutic outcome

of neural stimulation interventions for Parkinson’s disease (Horn et al., 2017; Younce et al., 2021) and

depression (Fox et al., 2012b). Early results have also indicated that network-level FCC induced by stimu-

lation are correlated to baseline functional connectivity (Bloch et al., 2019; Khambhati et al., 2019; Keller

et al., 2018). Despite the demonstrated relevance of the underlying network for shaping the response to

stimulation, the question of how to effectively parse and analyze a brain network to inform stimulation re-

mains unanswered. The answer to this question could be used to arrive at an updated framework for

network-level stimulation induced FCC.

Here, we leverage advances in neural interfaces and computational modeling to develop a model which

jointly considers characteristics of the stimulation protocol and the underlying network-level functional

connectivity for prediction of network-wide stimulation-induced FCC. We use optogenetics, a stimulation

technology in which neurons are rendered light-sensitive by viral-mediated expression of opsins and thus

able to be activated by incident light (Boyden et al., 2005), to activate target neural regions whereas simul-

taneously recording without electrical artifact. We measure FCC at the network level by recording neural

activity via a micro-electrocorticography (mECoG) array covering � 1cm2 of the primary sensorimotor cor-

tex. We then parse underlying network-level functional connectivity with summarizing metrics borrowed

from and inspired by graph theory. Finally, we employ a nonparametric hierarchical additive model (Haris

et al., 2019) to predict network-level FCC whereas allowing maximal interpretability of identified feature

mappings. We develop and test the model in the sensorimotor cortex of two non-human primates

(NHPs) to ensure maximal clinical translation.

We interrogated our model over multiple contexts to identify the relationship between stimulation and

FCC. Characteristics of the stimulation protocol alone poorly predicted stimulation induced FCC, whereas

the characteristics of the underlying network-level functional connectivity contained information which

yielded accurate prediction of the FCC. This trend was true both when protocol and network features

were analyzed as groups and when features were analyzed individually. The mappings from input features

to FCC were similar between the stimulated-state and resting-state changes. Continuous stimulation

modified the mapping from input features to resulting FCC. Our methods represent a promising new

framework for parsing network-level FCC to predict the effects of stimulation, whereas our model and in-

sights can be leveraged toward novel therapies of neural disorders.
RESULTS

Large-scale stimulation and recording of non-human primate sensorimotor cortex

We performed a series of experimental sessions consisting of stimulating and recording rhesus macaque

cortex. To stimulate neurons without causing a recording artifact we used optogenetic stimulation. We

chose to express the C1V1 opsin as it is a red-shifted excitatory opsin and thus allows for greater light pene-

tration and subsequent neural activation (Prakashet al., 2012). To record over a large-scale (� 1cm2) area of

the cortex whereas allowing light to pass through the recording hardware, we used a transparent mECoG

array which recorded local-field potentials (LFP) from the surface of the primary sensorimotor cortex (Yaz-

dan-Shahmorad et al., 2016).

For each experimental session we randomly chose two locations corresponding to two electrodes of the

mECoG array to be stimulated. The stimulation consisted of alternating 5 ms laser pulses delivered to

the stimulation sites, temporally offset by a session-specific delay (Figure 1) and repeated every 200 ms

for 10 min. The session-specific delays were randomly chosen at the beginning of each experimental ses-

sion to be 10 ms, 30 ms, or 100 ms. These values were chosen because 10 ms and 30 ms have been shown to

be in the effective range for connectivity change while 100 ms is outside the effective range according to

STDP (Bi and Poo, 1998; Jackson et al., 2006). Locations of stimulation, the delay between the stimulation of

the first and second sites, and the location and orientation of the mECoG array placement varied between

experimental sessions but were consistent over individual sessions.

The set of experimental sessions spanned multiple days and two rhesus macaques. We recorded neural

activity during 10-min stimulation periods, which we refer to as ‘‘stimulation blocks,’’ as well as during
2 iScience 25, 104285, May 20, 2022



Figure 1. Schematic of the experimental setup and basic modeling pipeline

(A) Depiction of the transparent 96-electrode mECoG array which we used to record from macaque primary sensorimotor cortex, and the approximate

location of the array on the cortex. Optogenetic stimulation was applied via laser light.

(B) We recorded traces of neural LFP during the resting-state and stimulation blocks making up our experimental sessions. During the stimulation blocks,

stimulation was applied in a paired pulse protocol whereby the stimulation at the second site followed the first by a session-specific delay. Network

coherences were constructed for each individual recording block by calculating pairwise LFP coherences over the network. Network coherence from resting-

state recordings were parameterized to generate a set of network features. Details of the protocol was parameterized to generate a set of protocol features.

The sets of network and protocol features were fed to a nonparametric model to predict network-wide FCC. See Figure S4 for optogenetic expression.
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5-min periods before and after each stimulation period, which we refer to as ‘‘resting-state blocks.’’ Each

experimental session consisted of alternating resting-state blocks and stimulation blocks, with 6 total

resting-state blocks and 5 total stimulation blocks.

From the neural data recordings we calculated the FCC for each pairwise connection between recorded

electrodes of an experimental session. We quantified FCC with the coherence metric for the Theta (4–

7 Hz), Beta (12–30 Hz), Gamma (30–70 Hz), and High-gamma (70–200 Hz) bands.

As the effects of stimulation in both the stimulated-state and in the resting-state are relevant for neural dis-

orders therapies (Lozano and Lipsman 2013; Levy et al., 2016), we estimate and model the FCC in both

states. We calculated the change from a resting-state block to the following stimulation block which we

refer to as SS-FCC, and calculated the change from a resting-state block to the following resting-state

block which we refer to as RS-FCC.

Stimulation delay is a poor predictor of resting-state functional connectivity change between

stimulation sites

Studies have shown that change in anatomical connectivity between twomonosynaptically connected neu-

rons is a function of activation times, or stimulation delay, between the neurons (Blissand Collingridge,

1993; Markram et al., 1997; Bi and Poo, 1998), a phenomenon termed STDP. As STDP relates delay to struc-

tural changes in connectivity but not real-time modulation of neural activity, we evaluated how well stim-

ulation delay could predict RS-FCC between the sites of stimulation.

The standard function relating stimulation delay to corresponding connectivity change according to the

STDP hypothesis is an exponential function (Bi and Poo, 1998; S. Song et al., 2000). However, here we

recognize that our experimental setting bears little resemblance to the controlled monosynaptic studies

yielding such a curve. As such, we did not enforce an exponential delay function but rather tested whether

varying the delay had an effect on RS-FCC by fitting a linear model with delay as categorical input and RS-

FCC as continuous output (Figure 2A). Because STDP is a process governing pairwise connectivity change,

wemodeled only RS-FCC calculated between stimulation sites, and did not model RS-FCC nor connectivity

between unstimulated sites. We observed that delay was a significant predictor of RS-FCC in Theta and

Gamma bands, but not for Beta or High-gamma (p: Theta 0.016, Beta 0.125, Gamma 0.002, High-gamma

0.239; one-sided F-test with 165 observations, 2 degrees of freedom). For all frequencies we observed that

delay had low explanatory power (R2: Theta 0.050, Beta 0.025, Gamma 0.075, High-gamma 0.018). These
iScience 25, 104285, May 20, 2022 3



Figure 2. Local and widespread FCC induced by paired optogenetic stimulation

(A) Delay-based prediction of RS-FCC between stimulation sites has poor explanatory power, and does not achieve

statistical significance in the Beta and High-gamma. Asterisk indicates p< 0:05.

(B) Visualization of the RS-FCC of a single example session over the mECoG array. Black circles correspond to electrodes

whereas the edges indicate the change in coherence relative to the preceding baseline period. Optogenetic stimulation

sites are indicated by light blue circles. The bolded line connecting the stimulation sites indicates the coherence change

between the two sites. Scale bar indicates 1mm.

(C) Distribution of the SS-FCC in each frequency band over all sessions. Internal lines indicate themean, and one standard

deviation below and above the mean.

(D) Scatter plot of SS-FCC versus RS-FCC showing high correlation. See Figure S1 for comparison of SS-FCC between

stimulation and control data, and Figure S5 for the neural activity elicited by stimulation.
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results indicate that although a naive extrapolation of the STDP curve to our large-scale setting would hint

otherwise, delay between paired stimulation of two neural sites minimally controls RS-FCC.

Pairwise stimulation drives functional connectivity changes in the stimulated-state and

resting-state across the entire recorded network

In order to determine whether our stimulation induced FCC only between the stimulation sites or over a

broader area of the recorded network, we examined the network-wide FCC. We plot an example network

of FCC over our recording array in Figure 2B. In this example, we see that the connectivity change between

stimulation sites (bolded) is simply one change among many in the recorded network. To quantify the

network-wide FCC over all experiments we calculated the FCC distributions. We observed that stimulation

generally increased network-level functional connectivity, as SS-FCC had positive mean over all frequency

bands. In addition, we compared the SS-FCC of our stimulation experiments to a set of control experiments

in which no stimulation was applied, and found that stimulation resulted in significantly higher SS-FCC (p<

0:0001 in all frequency bands; Welch’s unequal variances t-test) (Figure S1.)

We then compared the SS-FCC and RS-FCC distributions. We found SS-FCC was highly correlated to RS-

FCC, as the Pearson’s correlation coefficient was above 0.6 in all frequency bands (Figure 2D). Themeans of

RS-FCC distributions were less offset from 0 than the means of SS-FCC distributions of the same frequency

bands, and variances were similar between RS-FCC and SS-FCC distributions of the same frequency bands.
4 iScience 25, 104285, May 20, 2022



Figure 3. Feature generation and predictive modeling

(A) Visualization of the protocol features. From top to bottom, the features are: stimulation delay, anatomical region, block number, distance, stim 1 distance

to closer, stim 2 distance to closer, stim 1 distance to further, stim 2 distance to further.

(B) Visualization of the network characteristics which the network features quantify. From top to bottom, the visualizations correspond to: initial coherence,

phase, length 2 path strength, coherence with network, coherence with stim sites, coherence difference, electrode covariance, and time covariance.

(C and D) The nonparametric model can identify feature mappings of a variety of complexities, such as (C) near-linear fits such as that found for the distance

feature, or (D) higher-order polynomials such as that found for the connectivity difference feature. fjðxÞ indicates the contribution of a feature to the

predicted FCC. Throughout the figure, the gray shadowing indicates the distance feature whereas the light blue shadowing indicates the connectivity

difference feature.

(E) An example of how the feature mappings are additively combined.

(F) Individual feature mappings are represented in a basis of increasingly complex nonlinear functions. The order of this representation is selected

automatically by a penalized estimation procedure, with the y-axis of this figure indicating the polynomial order. The order selection for the distance feature

and coherence difference feature are shadowed in gray and light blue, respectively.
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These widespread FCC raise the question of explaining and predicting the stimulation-induced FCC across

the entirety of the recorded network.

Nonlinear modeling to predict stimulation-induced network-wide functional connectivity

changes

Motivated by the observation of network-wide FCC, we pursued an accurate and interpretable model to

predict FCC over the entire recorded network. Although linear modeling is the standard method for sta-

tistically rigorous interpretable models, the assumption of linearity is scientifically unreasonable for statis-

tical relationships among complex experimental measurements such as neural data (J. Friedman et al.,

2001). We relax this assumption through the use of a nonparametric hierarchical additive model which

can identify complex nonlinear input-output relationships (Haris et al., 2019). As this model retains the

structure of summation over individual features familiar from linear modeling, it permits feature-wise inves-

tigation of the results (Figures 3C–3F). In addition, careful penalization of the estimation objective (Equa-

tion 18) ensures that themodel retains important theoretical guarantees and is encouraged to learn simple,

smooth components (Haris et al., 2019). In the following sections we use such nonparametric hierarchical

models to arrive at our results. These models outperformed linear models uniformly across frequency

bands and prediction tasks (Figure S2).

The stimulation protocol alone is a poor predictor of network-wide functional connectivity

changes

To test the degree to which the factors of the stimulation protocol controlled the network-wide FCC, we

constructed models to predict SS-FCC and RS-FCC from the stimulation protocol. We constructed a set

of 8 features consisting of: stimulation delay, a categorical identifier of the time ordering of the stimulation
iScience 25, 104285, May 20, 2022 5
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block, the distance between a given electrode pair, the distances from the sites of stimulation to the closer

or further electrode of an electrode pair, anatomical region of electrodes (Figure 3A) (see STAR Methods

for more details of how they are calculated). Throughout the paper we refer to this set of predictive features

as ‘‘protocol features.’’ We also include a categorical animal subject indicator in the model in order to cap-

ture differences in mean between the two subjects. With this feature set we trained models with output of

pairwise FCC between all recording electrodes of an experiment, over each block of all experiments. We fit

individual models to predict SS-FCC or RS-FCC over individual frequency bands. We held out 30% of the

data to evaluate the predictive performance of the model on unseen data.

We observed that the protocol-based model of FCC had low predictive power for both SS-FCC (R2: Theta

0.045, Beta 0.026, Gamma 0.057, High-gamma 0.078) and RS-FCC (R2: Theta 0.028, Beta 0.014, Gamma

0.020, High-gamma 0.014). These results indicate that while factors related to the protocol alone explain

some of the variation in the observed coherence change, they are insufficient to generate practically rele-

vant predictions.
Network structure determines stimulated-state and resting-state functional connectivity

changes

Our observations that stimulation induces a change in connectivity over an entire network, in tandem with

the poor predictive power of the protocol-based model, lead us to hypothesize that the effects of stimu-

lation may be mediated by the existing cortical network. We tested this hypothesis by constructing a set of

8 features extracted from the baseline functional connectivity network. These features are: initial coher-

ence, which is the pairwise coherence between an electrode pair; phase, which is the absolute value of dif-

ference between electrode spectral phases; length 2 path strength, which is the average strength of a

connection between an electrode pair passing through another recording site; coherence with network,

which is the average coherence between a given electrode pair and the rest of the network; coherence

with stim sites, which is the average coherence between a given electrode pair and the stimulation sites;

coherence difference, which is the average absolute difference in connection strength between each

element of the electrode pair and the recorded network; electrode covariance, which is the average covari-

ance of an electrode pair’s coherence to the other electrodes in the network over time; and time covari-

ance, which is the average covariance across time series between a given electrode pair’s coherence

and the others in the network (Figure 3B) (see STARMethods for details of how these are calculated). These

features are primarily derived from graph theoretic measures (Barrat et al., 2004; Onnela et al., 2005; Milo

et al., 2002, 2004) which have been used with success in past theoretical neuroscience analyses (Pernice

et al., 2011; Zhao et al., 2011; Hu et al., 2014; Ocker et al., 2017). Throughout this paper we refer to this

set of features as ‘‘network features.’’

We observed that the model predictions on the test set was dramatically improved compared to the pro-

tocol-only model for each frequency band for both SS-FCC (R2: Theta 0.240, Beta 0.130, Gamma 0.221,

High-gamma 0.323) (Figure 4) and RS-FCC (R2: Theta 0.218, Beta 0.087, Gamma 0.138, High-gamma

0.218) (Figure 6A). This improvement in performance across all frequency bands and for both stimu-

lated-state and resting-state contexts suggests that properties of the local network at baseline may be

highly informative with respect to prediction of stimulation-induced changes.
Individual network features are more important than individual stimulation protocol features

for predicting functional connectivity changes

We quantified the relative importance of each feature through the decrease in accuracy of prediction on

the test set when that feature was excluded from the data. The statistical uncertainty associated with the

importance was quantified through a resampling procedure (Meinshausen and Peter, 2010) (see STAR

Methods for details).

Using this procedure, we show the importance of each feature per frequency band in Figure 5A for SS-FCC

and in (Figure S3) for RS-FCC. Four of the five most important features for SS-FCC prediction and each of

the five most important features for RS-FCC prediction were network features. Features appearing in the

top five of both contexts were time covariance, coherence difference, and initial coherence, which were all

network features. Delay and time-ordered block number were the two most important of the protocol fea-

tures for both SS-FCC and RS-FCC prediction.
6 iScience 25, 104285, May 20, 2022



Figure 4. Network structure is needed for accurate prediction of stimulation-induced FCC

Results in this figure correspond to prediction quality for SS-FCC; results are similar but slightly worse for RS-FCC.

(A) Bar graph indicating r-squared accuracy on held-out data. Grayscale bars indicate accuracy of models trained on only protocol features and colored bars

indicate accuracy of models trained on both protocol and network features. Error bars indicate standard deviation.

(B–F) Results of prediction of a representative experimental session from the protocol versus the protocol-and-network models. (B) Scatter plot of the

protocol model’s predictions of network SS-FCC versus the actual changes observed during that experimental session. (C) Scatter plot of the protocol-and-

network model’s predictions of SS-FCC versus the actual changes observed during that experimental session. (D) Example SS-FCC over a cortical network,

visualized over the mECoG array used for recording. Black circles indicate electrodes of the array, whereas lines indicate coherence change between

electrode pairs. Scale bar indicates 1mm. The observed coherence changes correspond to the y-axis of b and c. (E) The protocol model’s SS-FCC prediction,

corresponding to the x-axis of b. (F)The protocol-and-network model’s SS-FCC prediction, corresponding to the x-axis of (C). See Figure S2 for a comparison

of nonparametric to linear models.
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Feature mappings display diverging trends across frequency bands

We decomposed the nonlinear model into feature mappings representing the estimated mapping be-

tween each individual feature and the change in coherence. The statistical uncertainty associated with

the estimated nonlinear mapping from the feature to the response was quantified through a resampling

procedure (Meinshausen and Peter, 2010) and representative feature mappings were obtained through

point-wise interpolation of the resampled feature mappings (see STAR Methods for details).

We plot the SS-FCC featuremappings of some important features as well as others of interest in Figures 5B–5F.

We observed that feature mappings were generally more complicated for network features than for protocol

features. For example, the time covariance feature varies from a near-linear increase in the Beta band to a

high-order polynomial in the High gamma band, whereas the distance feature mapping exhibits a nearly linear

decrease in the high-confidence regions of all frequency bandmodels (Figure 5C). We also observed that in the

higher frequency bands, electrodes which had a higher initial coherence tended to strongly increase their coher-

ence when stimulated (Figure 5F). In addition, we found a small effect of increasing SS-FCC for the first two or

three temporal blocks depending on frequency band, followed by decreasing SS-FCC in later blocks (Figure 5B).

We evaluate the temporal characteristics of the FCC in more detail in a later section.

We summarized the similarity of all features, protocol features, and network features by calculating the

cosine similarity of the feature mappings (Figures 5G–5I). Generally, we observed that the mappings

from protocol features to SS-FCC were fairly consistent across frequency bands whereas the mappings

from network features to SS-FCC varied sharply between frequency bands. Only the network feature map-

pings of Gamma and High-gamma were similar.
iScience 25, 104285, May 20, 2022 7



Figure 5. Feature-wise analysis of the nonlinear additive model

Results in this figure correspond to the SS-FCC model; results were similar for the RS-FCC model (Figure S3).

(A) Feature importances as measured by the decrease in model accuracy when the feature was omitted. Features were

partitioned into the protocol and network categories, then sorted by average importance over all frequency bands. Line

ranges indicate 95% confidence intervals.

(B–F) Feature mappings for the (B) time-ordered block number, c electrode pair distance, (D) time covariance (z-scored), e

coherence difference, and (F) initial coherence features. fjðxÞ indicates the contribution of a feature to the predicted FCC.

Shading indicates 95% confidence intervals.

(G–I) Average cosine similarity of the component functions between each pair of frequency bands, over (G) all features,

(H) protocol features, and (I) graph features.
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Feature mappings are similar for stimulated-state and resting-state functional connectivity

changes

We calculated the similarity of feature mappings between SS-FCC and RS-FCC and observed that they ex-

hibited high similarity in all frequency bands (Figure 6B). Notably, the groups with the highest similarity be-

tween SS-FCC and RS-FCC feature mappings were the network features within the Theta and High-gamma

bands. We plot representative SS-FCC and RS-FCC feature mappings of five features from the Theta and

High-gamma models in Figures 6C–6D.

Repeated stimulation modifies mappings from features to functional connectivity changes

The modeling approach employed thus far constrained the learned feature mappings to be constant

across all temporal blocks of an experimental session. The influence of the block’s temporal location

was thus represented by a learned global shift in the FCC between all electrode pairs measured in that

block.We hypothesized that successive stimulation blocks within an experiment had amore complex effect

on FCC than a simple average shift, and rather modified the actual feature mappings over the time course

of stimulation. We tested this hypothesis by allowing the nonlinear relationship between each feature and

the response to vary across the five stimulation blocks by adding an interaction term between the block
8 iScience 25, 104285, May 20, 2022



Figure 6. SS-FCC versus RS-FCC models

(A) Comparison of the predictive accuracy for nonlinear additive models of SS-FCC prediction versus RS-FCC prediction.

Error bars indicate standard deviation.

(B) Heatmap of average cosine similarity between feature mappings of SS-FCC and RS-FCC over frequencies.

(C–D) Comparison of featuremappings for SS-FCC and RS-FCCmodels for the (C) Theta band and (D) High-gamma band.

The features from left to right are anatomical region of electrodes, electrode pair distance, time covariance (z-scored),

initial coherence, and coherence difference. Shading indicates 95% confidence intervals. See also Figure S6 for model

accuracy of individual subjects.
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number feature and all other features. Rather than averaging over potential heterogeneity in the network

dynamics resulting from the accumulated effects of stimulation, this approach allowed for the investigation

of a time-course of smoothly varying predictors of coherence changes.

In line with the hypothesis that repeated stimulation indeed produces such heterogeneity across blocks

within a session, we found a substantial improvement in prediction quality with the time-varying model

for both SS-FCC (R2 Theta 0.426, Beta 0.247, Gamma 0.415, High-gamma 0.527) (Figure 7A) and RS-FCC

(R2 Theta 0.410, Beta 0.251, Gamma 0.359, High-gamma 0.436) over the static model. We also calculated

the cosine similarities of feature mappings for each block of the time-varying SS-FCCmodel and found that

successive stimulation results in the mappings diverging from each other, as their similarity decreased over

subsequent blocks (Figure 7D). These results indicate that the relationship between features and connec-

tivity change evolved dynamically over the course of repeated stimulation.

DISCUSSION

Here we leverage advances in neural interface technology and interpretable machine learning to induce

and model large-scale FCC. We augment the standard framework of stimulation-induced FCC by consid-

ering the effects of the pre-existing network structure and by analyzing FCC over a large-scale (� 1cm2)

network. We show that stimulation induces widespread FCC in both the stimulated-state and the

resting-state, and that the underlying network structure mediates these effects. Our modeling framework

represents a readily translatable method of characterizing the underlying network structure to predict the

outcome of stimulation. Our findings explain inconsistent results historically reported in vivo (Seeman et al.,

2017; Bloch et al., 2019; Rebesco et al., 2010; Rebesco and Miller 2011; W. Song et al., 2013;
iScience 25, 104285, May 20, 2022 9



Figure 7. Feature mappings mediating FCC over a network are dependent on the stimulation history

Results in this figure correspond to prediction of SS-FCC; results are similar for prediction of RS-FCC.

(A) Bar graphs indicating r-squared accuracy on held-out data of the time-varying and static model predictions. Greyscale

bars indicate the static model whereas colored bars indicate the time-varying model. The time-varying models

outperformed the static model over all frequencies and experiment blocks. Error bars indicate 95% confidence intervals.

(B–C) Example feature mappings of two network features, (B) initial coherence and (C) time covariance (z-scored) used in

the time-varying model. We observed that the feature mappings change over successive experiment blocks. Shading

indicates 95% confidence intervals.

(D) Heatmaps of similarities of feature mappings between models trained for different frequency bands. Similarity was

quantified by feature-averaged cosine similarity of the feature mappings. We observed that although feature mappings

were similar at the onset of the stimulation, they diverged over the time-course of stimulation.
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Yazdan-Shahmorad et al., 2018a; Keller et al., 2018; Huang et al., 2019) and pave the way for increased un-

derstanding and development of neural stimulation interventions.

The influence of the stimulation protocol

Although brain stimulation can be delivered to a local area, the highly interconnected nature of the brain

ensures that any local region tightly modulates and is modulated by other regions. An analysis of the effects

of stimulation which only considers the stimulation protocol thus prioritizes the direct, local effect of stim-

ulation over the mediation of the response by the brain network.

For neural stimulation interventions targeting longer-term FCC in vivo, the protocol-focused approach has

been found lacking. The dominant framework for stimulation-induced targeted connectivity change was
10 iScience 25, 104285, May 20, 2022
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developed in vitro, a setting in which the cortical network is largely nonexistent and the stimulation proto-

col can be extremely precise. Attempts to translate STDP from its native context of monosynaptic connec-

tivity between isolated neuron pairs in vitro to functional connectivity between larger-scale neural struc-

tures in vivo have been largely inconsistent, with some reports of promising results (Jackson et al., 2006)

but also of off-target (unstimulated) connectivity changes (Seeman et al., 2017; Bloch et al., 2019; Rebesco

et al., 2010; Rebesco andMiller, 2011; W. Song et al., 2013) and a lack of response to the protocols (Seeman

et al., 2017; Bloch et al., 2019).

Here, we study real-time network-level FCC as SS-FCC and longer-term FCC as RS-FCC. We found that, in

accordance with existing protocol-focused approaches, the stimulation protocol influences both SS-FCC

and RS-FCC. However, further analysis indicated that this influence is minor, and that a protocol-focused

analysis of stimulation only explains a small fraction of the effects. This represents a substantial departure

from the standard analysis of the effects of stimulation which prioritizes the stimulation protocol.

Our observation that the stimulation delay was able to predict some RS-FCC between stimulation sites, and

that the stimulation delay was one of the top two protocol features for network-wide FCC prediction, is

aligned with the delay-focus of STDP-informed connectivity modification approaches (Bliss and Colling-

ridge 1993; Markram et al., 1997; Bi and Poo, 1998; Jackson et al., 2006; Rebesco et al., 2010; Rebesco

and Miller 2011; W. Song et al., 2013; Seeman et al., 2017). However, the small amount of variance ex-

plained by delay indicates that delay alone is not sufficient for accurate FCC control.
Network-level analysis of neural stimulation

Here, wemodel the cortical network as both themediator and target of the effects of stimulation. Our focus

on the network structure is facilitated by our use of large-scale neurotechnologies for stimulation and

recording. We used a mECoG array to record from a cortical network. This differed from past studies in

which the inclusion of a small set of unstimulated neural sites had primarily been relegated to that of a sta-

tistical control (Rebesco et al., 2010; Rebesco and Miller, 2011; Seeman et al., 2017). In addition, we used

convection-enhanced delivery of the optogenetic virus to obtain widespread opsin expression (Khateeb et

al., 2019; Yazdan-Shahmorad et al., 2016, 2018b), which allowed us to stimulate many distinct sites of the

sensorimotor cortex and to record neural activity during stimulation without artifact.

We estimated a complete network between all recording sites by calculating their pairwise coherences,

which is highly correlated to other functional connectivity metrics (Yazdan-Shahmorad et al., 2018a; Huang

et al., 2019). In addition, unlike metrics such as evoked response, coherence can be calculated in the

absence of stimulation. This had the dual advantage of allowing us to estimate connectivity during

resting-state blocks and between unstimulated sites. We note that the latter point is especially relevant,

as most ‘‘network-level’’ analyses of stimulation only observe a partial network as they do not analyze con-

nectivity between unstimulated regions (Huang et al., 2019; Keller et al., 2011, 2018; Yang et al., 2021).

We then incorporated details of the distributed structure of these networks for prediction of FCC. Recent

studies have indicated that pairwise coherence between two sites is correlated to their change in coher-

ence following stimulation (Bloch et al., 2019; Khambhatiet al., 2019; Keller et al., 2018). However, any pair-

wise analysis treats connections as independent from another and does not capture the distributed struc-

ture of the network. In order to incorporate details of the distributed network structure into our predictive

model, we turned to advances in graph theory and theoretical neuroscience. Graph theory is a branch of

mathematics concerned with the study of graphs, and has developed metrics for summarizing and

comparing graphs, such as clustering coefficients, measurements of centrality, and graph distances (Barrat

et al., 2004; Onnela et al., 2005; Milo et al., 2002, 2004). Theoretical neuroscience has similar measures,

termed ‘‘motifs,’’ which are used to analyze simulated brain networks (Pernice et al., 2011; Zhao et al.,

2011; Hu et al., 2014; Ocker et al., 2017). Just as simple pairwise connectivity between electrodes describes

their first-order connectivity, these measures summarize higher-order, distributed connectivity within a

network (Benson et al., 2016). The network features we developed and used in our model were inspired

by these existing metrics and similarly encode higher order, distributed connectivity information of the

network. For example ‘‘coherence with network’’ and ‘‘length 2 path strength’’ quantify general whole-

network connectivity strength between two sites, while ‘‘electrode covariance’’ and ‘‘coherence difference’’

quantify the similarity of connectivity structure to the entire network between two site. Indeed, our model
iScience 25, 104285, May 20, 2022 11
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confirmed their relevance by identifying ‘‘time covariance’’ and ‘‘coherence difference,’’ two higher-order

connectivity metrics, as the most important features for FCC prediction.

One alternative framework for inducing targeted network-wide FCC is network control theory (Bassett and

Sporns, 2017), which attempts to use control-theoretic methods to control network activity in real-time.

However, it has thus far has been limited to quantifying theoretical controllability of networks (Muldoon

et al., 2016; Khambhatiet al., 2019; Yang et al., 2021) rather than inducing targeted FCC. Here, we validate

our framework on the maximally clinically translatable NHP model and demonstrate that it can accurate

predict network-level stimulation-induced FCC.

The cortical network as the mediator and target of stimulated-state and resting-state

functional connectivity changes

Both real-time and long-term modulation of brain networks are relevant for neural stimulation-based med-

ical interventions. Here, we induced, estimated, and modeled network-level FCC which we observed dur-

ing stimulation as well as after stimulation. The high correlation in FCC and high similarity in feature map-

pings between the two contexts hint at shared processes underlying SS-FCC and RS-FCC. Practically, this

also means that observing stimulation-induced FCC in real-time may lead to more accurate longer-term

FCC.

Interventions targeting real-time neuromodulation often do not consider effects beyond local activity mod-

ulation. However, this neuromodulation has a secondary effect of altering real-time network synchroniza-

tion, observed here as network-level SS-FCC, and which persist after stimulation as RS-FCC. As such, the

complete effects of these interventions can only be fully understood by augmenting their scope of analysis

to include network-level FCC.

Our observation that the underlying network mediates RS-FCC demonstrates that interventions directly

targeting RS-FCC must consider the underlying network for accurate induction of connectivity changes.

The historical neglect of the underlying network structure in mediating RS-FCC could provide an explana-

tion for reports of off-target connectivity changes and inconsistent connectivity changes between stimula-

tion sites (Rebesco et al., 2010; Rebesco and Miller, 2011; W. Song et al., 2013; Seeman et al., 2017; Bloch

et al., 2019; Yazdan-Shahmorad et al., 2018a). We note that although many of these studies use STDP-

informed stimulation which is designed to elicit changes in anatomical connectivity, we cannot pinpoint

the nature of our observed FCC as either solely anatomical or activity-based, as functional connectivity

is related to both (Z. Wang et al., 2013; Waites et al., 2005).

Finally, our results offer a potential explanation for how underlying network-level functional connectivity

shapes the therapeutic response to stimulation. Studies have shown that aberrant functional connectivity

underlies many neural disorders (Stam et al., 2007; Kaiser et al., 2015; Nakai et al., 2021; Garrity et al., 2007),

and that neural stimulation alters network-level functional connectivity (Yazdan-Shahmorad et al., 2018;

Keller et al., 2018; Huang et al., 2019) and can treat neural disorders (Edwardson et al., 2013; Lozano and

Lipsman 2013). As such, therapeutic response to stimulation may be a direct result of a stimulation-induced

change from aberrant to healthy network-level functional connectivity. This change may in turn be deter-

mined by the underlying network-level functional connectivity, as recent work has indicated that underlying

functional connectivity shapes the therapeutic response to stimulation (Hornet al., 2017; Younce et al.,

2021; Fox et al., 2012b), and here we have also shown that it shapes stimulation-induced network-level

FCC. Further work which holistically studies the underlying network, neural stimulation, FCC, and neural

disorders is needed.

The evolving response to successive neural stimulation

Our observation that the time-ordered block number was the most important protocol feature indicates

that the temporal location of repetitive stimulation is important for consideration. This observation is in

accordance with earlier work from our lab (Bloch et al., 2019) in which we reported sharp differences in func-

tional connectivity between an initial stimulation block following stimulation blocks. We further investi-

gated this phenomenon with our time-varying model.

With the time-varying model we observed that feature mappings describing the response to stimulation

evolve in response to repeated stimulation. This result indicates that stimulation interventions likely
12 iScience 25, 104285, May 20, 2022
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need to be adapted over time, as repeatedly stimulating will not repeatedly induce the same response nor

even be governed by the same network rules mediating the response. This is consistent with the increased

success of some closed-loop neural stimulation interventions over open-loop alternatives (Edwardson

et al., 2013), as it acknowledges that the effects of stimulation can be made more accurate when the stim-

ulation is informed by recent neural activity. However, we additionally show that stimulation should be

adapted to characteristics of the whole network, not only to local activity.

Interpretable predictive modeling beyond the linear paradigm

In this study we capitalized on our network-level treatment of FCC by using a data-driven nonlinear

modeling approach. In doing so, we were able to develop an accurate predictive model and estimate

feature mappings displaying the relationships between the protocol and network features and FCC. These

feature mappings have the dual purpose of elucidating underlying mechanisms of network-level response

to stimulation, and informing future stimulation interventions.

Data-driven statistical models often fall into one of two approaches: simplistic linear models or complex

‘‘black-box’’ models. Although the simple relationships identified by linear models ensure that the map-

pings are interpretable, linearity is an assertion, not a property learned from the data, and therefore linear

models may not capture the complexity of the true input-output relationships. At the other extreme, pre-

diction-focused black-box models can learn complex input-output mappings at the expense of interpre-

tative ability such as observation of the mappings. The unique modeling approach we employ in our

study displays advantages of each as it can identify complex mappings between the features and FCC

whereas allowing the features mappings to be observed. As it is a data-driven and generalized additive

model, it retains the ability of identifying linear mappings when such a mapping is supported by the data,

while also being able to identify more complex nonlinear mappings when appropriate.

We found that eliminating the artificial and restrictive assumptions of the linear model yielded dramati-

cally improved predictive performance. In particular, as the complexity of our input features increased

from simple stimulation parameters to the actual structure of the cortical network, their feature mappings

exhibited strong nonlinearities and thus would not be able to be fully represented by a strictly linear

approach.

Finally, in light of recent unsuccessful attempts to model the effects of neural stimulation with nonlinear

models (Yang et al., 2021), our data-driven method for inferring feature mappings of variable complexity

represents a timely contribution for principled and accurate modeling of the effects of brain stimulation.

Neuroscientific and clinical utility of our insights

Here we have shown that the cortical network structure mediates the response to stimulation, both for real-

time and longer-term contexts. Our findings provide a possible explanation for how underlying functional

connectivity shapes the therapeutic response to stimulation, and for previously reported inconsistent re-

sults of neural stimulation. Our framework, only made possible by advances in neural interfaces, interpret-

able machine learning, and graph theory, represents an efficient method for parsing network structure for

accurate prediction of stimulation-induced FCC. It can be readily applied to other network-informed ap-

proaches of neural stimulation, and can be used to interrogate, improve, and develop novel neural stimu-

lation interventions for neural disorders.

Limitations of the study

Although we have shown that FCC induced by stimulation is more positive than FCC observed in the con-

trol condition, it is possible that the modeled FCC in the stimulation condition are composed of a combi-

nation of stimulation-driven changes and natural fluctuations. Regardless, the model represents an accu-

rate method for predicting functional connectivity changes in the presence of stimulation.

Our neural recordings were limited to a mECoG on the primary sensorimotor cortex surface; further work is

needed to verify that our findings are consistent across brain regions, at various cortical depths, and at

larger and smaller scales. In addition, as all stimulation experiments consisted of paired optogenetic stim-

ulation, our observations should be verified with other stimulation modalities and protocols to verify their

generality. Our method for parsing the network structure, along with the hierarchical additive model, can

be easily extended to these cases. If our findings are verified across a broad range of brain regions and
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stimulation modalities, then this would indicate that existing stimulation-based therapies must factor in the

underlying network in order to arrive at a complete understanding of their effects.

Here we have constructed a set of network features which we have shown are relevant for FCC prediction.

Although some interpretable mappings of interest were described in the results section, others which were

more complicated, such as the most-important ‘‘time covariance’’ feature, could not be easily interpreted.

Our features broadly encapsulate various spatiotemporal connectivity motifs present in the network con-

nectivity, and as such can be further dissected and parsed for purposes of interpretation. For example, the

importance of ‘‘time covariance’’ indicates that the temporal relations of pairwise coherence contains infor-

mation relevant for FCC prediction; this knowledge can be used to construct more detailed studies with the

goal of uncovering the underlying processes governing this relation.

Our finding that the network mediates the plastic response to stimulation can guide the development of

stimulation treatments, but does not explicitly offer a prescriptive method for specifying an exact stimula-

tion protocol. Instead, our model acts as an encoder which yields a prediction for the effects of stimulation

given a specific stimulation protocol and network state. The creation of a corresponding decoder could be

used to directly prescribe a stimulation protocol to elicit desired FCC. Such a model could also be de-

ployed in real-time as a network-informed controller for FCC.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Large-scale neural interface

B Verification of optogenetic expression and activation

B Structure of experimental sessions

B Signal preprocessing

B Sig4nal processing to obtain a time-varying coherence network

B Nonlinear modeling of stimulation-induced coherence change

B Feature representation of processed data

B Protocol features

B Network features

B Outlier removal

B Regression designs

B Full data

B Block interactions

B Estimation of the nonlinear additive model

B Automatic order selection via hierarchically penalized estimation

B Cross-validation for model hyperparameters

B Performance measure

B Resampling for feature stability

B A predictive measure of feature importance

B Quantifying feature similarity across frequency bands

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.104285.

ACKNOWLEDGMENTS

We thank Daniel Silversmith for his help with data collection and Philip Sabes for his laboratory in which the

data was collected. This work was supported by the Big Data for Genomics and Neuroscience Training
14 iScience 25, 104285, May 20, 2022

https://doi.org/10.1016/j.isci.2022.104285


ll
OPEN ACCESS

iScience
Article
Grant (NIH 5T32LM012419, JB and AGT), the Center for Neurotechnology (NSFERC 1028725, JB and ESB),

the Washington National Primate Research Center (NIH P51 OD010425, AYS), the Eunice Kennedy Shriver

National Institute of Child Health and Human Development (NIH K12HD073945, AYS), NIH grant

R01NS119395 (AYS and JB), NSF grant DMS-2023239 (ZH), NSF grant DMS-1722246 (AS), NSF grant

DMS-1915855 (AS), and NIH grant R01GM114029 (AS).

AUTHOR CONTRIBUTIONS

JB and AGT drafted the manuscript. JB and AYS conceptualized the study. AYS performed the experi-

ments. JB processed the data. AGT performed the nonparametric modeling. All authors revised and edited

the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

One or more of the authors of this paper self-identifies as an underrepresented ethnic minority in science.

One or more of the authors of this paper self-identifies as living with a disability. One or more of the authors

of this paper received support from a program designed to increase minority representation in science.

While citing references scientifically relevant for this work, we also actively worked to promote gender bal-

ance in our reference list.

Received: November 21, 2021

Revised: March 22, 2022

Accepted: April 19, 2022

Published: May 20, 2022
REFERENCES
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

AAV5-CamKIIa-C1V1(E122T/E162T)-TS-eYFP-WPRE-hGH Penn Vector Core Addgene number: 35499

Software and algorithms

Python 3 Python Software Foundation RRID: SCR 008394

R 3 R Core Team and the R Foundation

for Statistical Computing

RRID: SCR 001905

Deposited data

Dataset This paper Database: https://doi.org/10.6084/m9.figshare.

16625726

Other

Custom developed code for analysis This paper Code repository: bitbucket.org/yazdanlab/network_

level_fcc_modeling/src/master/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Azadeh Yazdan-Shahmorad (azadehy@uw.edu).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d The data supporting the findings of this study can be accessed at the following url: https://doi.org/10.

6084/m9.figshare.16625726.

d The code supporting the findings of this study can be accessed at the following url: bitbucket.org/

yazdanlab/network_level_fcc_modeling/src/master/.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two adult male rhesus macaques (monkey G: 8 years old, 17.5 Kg; monkey J: 7 years old, 16.5 Kg) were used

in this study. All procedures were performed under the approval of the University of California, San Fran-

cisco Institutional Animal Care and Use Committee and were compliant with the Guide for the Care and

Use of Laboratory Animals.
METHOD DETAILS

Large-scale neural interface

Stimulation and recording of the cortex were achieved using our large-scale optogenetic interface consist-

ing of a semi-transparent micro-electrode array, semi-transparent artificial dura, titanium implant, wide-

spread optogenetic expression, and laser-delivered optical stimulation (Yazdan-Shahmorad et al., 2016).

Neurons in the primary sensorimotor cortex were optogenetically photosensitized via viral-mediated

expression of the C1V1 opsin. We injected a viral cocktail of AAV5-CamKIIa-C1V1(E122T/E162T)-TS-

eYFP-WPRE-hGH (2:531012 virus molecules/mL; Penn Vector Core, University of Pennsylvania, PA, USA,

Addgene number: 35499) in the primary sensory (S1) and primary motor (M1) cortices of the left
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hemisphere of the two rhesus macaques using the convection-enhanced delivery technique as described in

(Khateeb et al., 2019; Yazdan-Shahmorad et al., 2016, 2018b). We infused 200 mL of the cocktail was over

four sites in monkey G and 250 mL over five sites in monkey J.

The chronic neural interface was implanted by performing a 25mm craniotomy over the primary sensori-

motor cortices of the left hemisphere of two rhesus macaques, replacing the dura mater beneath the crani-

otomy with a chronic transparent artificial dura, and attaching a titanium cap over the craniotomy. During

experiments we removed the artificial dura and placed a custom 92mm2 micro-electrocorticography array

of 96 electrodes on the cortical surface for recording neural activity. The mECoG arrays consisted of plat-

inum-gold-platinum electrodes and traces encapsulated in Parylene-C (Ledochowitsch et al., 2015).

Neural data was recorded by sampling local-field potentials at 24 kHz from the mECoG array using a Tucker-

Davis Technologies system (FL, USA). We stimulated the cortex by delivering light via a fiber optic (core/

cladding diameter: 62.5/125 mm, Fiber Systems, TX, USA) connected to a 488 nm laser (PhoxX 488-60, Om-

icron-Laserage, Germany) positioned above the array such that the tip of the fiber-optic cable touched the

array. A 488 nm laser was used due to equipment availability and because it is close to the optimal wave-

length of C1V1 activation (Prakash et al., 2012).

The interface used for the subjects in this study is further described in (Yazdan-Shahmorad et al., 2016). Of

the dataset used for this study, a subset overlaps with the dataset used in our previous publication (Yazdan-

Shahmorad et al., 2018b).

Verification of optogenetic expression and activation

We verified expression of the C1V1 opsin by fluorescent imaging of the eYFP marker (Figure S4), and by

recording optogenetically-evoked neural responses (Figure S6), as described in (Yazdan-Shahmorad

et al., 2016). We observed widespread fluorescence in the primary sensorimotor cortices (Figure S4). We

also observed neural activity elicited by illumination site, propagating within the stimulated anatomical re-

gion and across the central sulcus. An example propagation of neural activity from one experiment is

plotted in (Figure S5), after filtering to the high-gamma which reflects more local activity (Ray et al.,

2008). The same effect of activity propagation can be found without filtering, but displays more

spatially-distributed low frequency noise. Also, as detailed in the ‘‘Signal preprocessing’’ section, at the

beginning of each experimental session we verified that recorded activity was not due to photoelectric ar-

tifacts by stimulating at 500 Hz and confirming that we did not see matching LFP traces. We also verified

that the evoked neural responses were due to optogenetic activation and not another light-induced factor

such heating by illuminating outside the sites expressing fluorescence and recording neural activity. We

found that such illumination did not evoke neural activity, confirming that the observed neural activation

from our experimental sessions was due to optogenetic activation.

Structure of experimental sessions

Throughout each experimental session, subjects were watching cartoons while seated in a primate chair

and headfixed. At the beginning of an experiment the chamber was opened, the artificial dura was

removed, and the mECoG array was placed on the cortical surface. Throughout the experiment, the

exposed cortex was irrigated with saline to ensure that it remained moist. At the end of each experiment,

the mECoG array was removed from the cortical surface, the artificial dura was replaced on the brain, and

the chamber was closed.

We performed a total of 36 experimental sessions over multiple days and two subjects. The experimental

sessions consisted of recording while no stimulation took place, which we termed a ‘‘resting-state block,’’

and recording during stimulation, which we termed a ‘‘stimulation block.’’ Each resting-state block was

5 min long and each stimulation block was 10 min long. Each experimental session consisted of alternating

resting-state blocks and stimulation blocks, with 6 total resting-state blocks and 5 total stimulation blocks,

as a resting-state block was completed before the first and after the final stimulation block. The mECoG

array was replaced on the cortex for each experimental session. Additionally, each recording block of an

experimental session had the same stimulation protocol.

We stimulated two locations per experimental session which varied between experimental sessions but re-

mained fixed throughout an experimental session. The locations were randomly chosen across the array.
iScience 25, 104285, May 20, 2022 19
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Optogenetic activation at the chosen stimulation site was verified before beginning the experimental ses-

sion, by stimulating and observing activation in the LFP traces. We ensured that these traces were due to

neural activation and not photoelectric artifact by the method described in the ‘‘Signal preprocessing’’ sec-

tion. We imaged the stimulation locations on the array and subsequently identified the closest recording

electrode to each stimulation location. The distance from stimulation site to the nearest electrode was no

more than 500 mm.

We applied stimulation using a paired-pulse protocol of 5 ms pulses separated by a session-specific delay

(Figure 1). A pulse width of 5 ms was chosen because it elicited reliable responses in M1 and S1, and has a

close duration to previously used targeted plasticity protocols (Jackson et al., 2006). The session-specific

delays were randomly chosen at the beginning of each experimental session to be 10 ms, 30 ms, or

100 ms; once chosen they remained fixed for an experimental session. These values were motivated by pre-

vious studies reporting that 10 ms and 30 ms delays induced reliable connectivity changes while100 ms de-

lays did not induce changes (Jackson et al., 2006; Bi and Poo, 1998). The paired-pulses were repeated every

200 ms for the entirety of each stimulation block; this period was chosen to allow for enough time for the

chosen delays while maximizing the number of paired-pulse stimulations within a conditioning block.

We performed a total of four additional control sessions over 3 days and two subjects. The structure of the

sessions remained identical to the experimental sessions described in this section, except that no stimula-

tion took place.

Signal preprocessing

Before beginning an experimental session, we tested for photoelectric artifact. This was done by stimu-

lating at frequencies faster than C1V1 off-kinetics (eg. 500 Hz) (Prakash et al., 2012) and examining the

LFP traces. If this high frequency stimulation elicited response in the LFP traces then this was deemed to

be photoelectric artifact, and the illumination site was moved to another location (Ledochowitsch et al.,

2015).

Before recording, electrode impedances were measured and those with high impedance were excluded

from further analysis. We also examined the broadband recorded surface potentials and excluded those

with low signal-to-noise ratio. The total amount of data removed constitutes no more than 15% of the

raw time series. We then downsampled the data to 1 kHz after applying a low-pass Chebychev filter for

anti-aliasing.

Sig4nal processing to obtain a time-varying coherence network

Within each stimulation block and each resting-state block, the recorded LFP were partitioned into non-

overlapping 20-second windows. All quantities computed from the raw LFP time series were computed

on a per-window basis, then summarized across all windows in the block.

We computed an estimate of the coherence between all non-faulty electrodes for each 20-second window

in every resting-state block and stimulation block. We denote by E the number of non-faulty electrodes and

denote the multivariate LFP time series for a given window by the two-dimensional array x1:T ˛RE3T , which

consists of the time-ordered concatenation of the LFP recordings xt = ðx1t ;.; xEtÞT for each electrode at

time t. We estimated the multivariate spectral density function SðlÞ˛CE3E for the time series x1:T by

Welch’s method (Welch 1967). The coherence between electrodes i and j at frequency l is denoted as

CijðlÞ and computed from the estimated spectral density via CijðlÞ =
��SijðlÞ��2 =SiiðlÞSjjðlÞ���. We computed

the coherence at 403 linearly spaced frequencies in the interval ð0; 200Þ Hz.

Summaries over four frequency bands, 4–7 Hz (Theta), 12–30 Hz (Beta), 30–70 Hz (Gamma), and 70–199 Hz

(High Gamma), were computed by averaging the coherence estimates within each band. Thus, for each

session, the raw LFP time series was transformed into a sequence of matrix-valued quantities representing

the average band-limited coherence in each 20-second interval. Since the coherence is symmetric and the

diagonal conveys no information on pairwise behavior of the LFP electrode signals, we retained only values

in the upper triangle above the diagonal for modeling and prediction.

We defined SS-FCC as the difference between themean coherence of an electrode pair calculated during a

stimulation block and the preceding resting-state block. We defined RS-FCC as the difference between
20 iScience 25, 104285, May 20, 2022
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themean coherence of an electrode pair calculated during a resting-state block and the preceding resting-

state block. We use FCC as a general term to refer to either SS-FCC or RS-FCC. Let C
ðwÞ
ij ðlkÞ be the coher-

ence between electrodes i and j at frequency lk in the 20-second window w, as estimated by the procedure

described above. The band-limited coherence was obtained by averaging over the indices k ˛ Kb corre-

sponding to frequency band b: C
ðwÞ
bij = jKbj� 1 P

k˛Kb

C
ðwÞ
bij ðlkÞ. Within an experimental session, we denote

by WR[
, [˛ f1; 2; 3; 4; 5; 6g and WS[ , [˛ f1; 2; 3; 4; 5g, the collections of 20-second windows belonging to

resting-state block [ or stimulation block [, respectively. Note that the additional resting-state block cor-

responds to a final recording block after the 5th stimulation block. The electrode coherences were summa-

rized for each of these blocks by their mean values:

~C
ðR[ Þ
bij =

1

jWR[ j
X

w ˛WR[

CðwÞ
bij (Equation 1)

ðS Þ 1 X

~C

[

bij = jWS[ j w ˛WS[

CðwÞ
bij (Equation 2)

The SS-FCC was then computed as

ybij[ = ~C
ðS[ Þ
bij � ~C

ðR[ Þ
bij (Equation 3)

and the RS-FCC was computed as

y 0
bij[ = ~C

ðR[ + 1Þ
bij � ~C

ðR[ Þ
bij (Equation 4)

Nonlinear modeling of stimulation-induced coherence change

Weused a nonlinear additivemodel to explain the observed FCC in terms of features derived from both the

experimental protocol and the information on functional connectivity available in the resting-state block

prior to stimulation. In this framework, a single observation was denoted by the pair ðyn; xnÞ, n = 1;.;

N, with yn ˛R an FCC measurement and xn ˛Rp the corresponding features. In switching to the single in-

dex nwe indicate that the data was aggregated over all unique electrode pairs and all experimental blocks.

The dependence on the band b was subsequently omitted for notational simplicity; the same analysis was

repeated for the data in each frequency band. The FCC was modeled as

yn = b0 +
Xp
j = 1

fj
�
xnj
�
+ εn (Equation 5)

The model consists of an intercept b0, nonlinear functions fj controlling the impact of each feature j =

1;.;p on the response, and an error term εn.

The utility of the model derives from the nonlinearity of the feature mappings and the additive procedure

through which they are combined to yield a prediction for the FCC. The additive structure of the model

allows for the visualization and interpretation of individual feature-response relationships. For each feature

j = 1;.;p, this is represented by the featuremapping fj. Moreover, the predictive impact of feature j can be

measured by the decrease in prediction error on a test set relative to amodel in which the feature is omitted

(or equivalently, a full model is estimated while enforcing fj= 0). The same analysis can be applied to groups

of features. While additivity is essential for model investigation, the nonlinearity of the feature mappings

enables the identification of more complex relationships than can be expressed in a linear model. Linearity

is a strong modeling assumption that is both difficult to justify scientifically and, as demonstrated in the re-

sults, harmful in terms of predictive accuracy.
Feature representation of processed data

A single observation of the FC corresponds to a unique pair of electrodes and a specific recording block.

The corresponding features were constructed to satisfy two objectives: first, that the subsequent analysis

separates the influence of the protocol parameters from that of the network structure of the functional con-

nectivity; second, that all information in the features was available prior to stimulation.

To satisfy the first objective, we partitioned the features into two groups: ‘‘protocol features,’’which sum-

marize aspects of the experimental setting and protocol; and ‘‘network features,’’which summarize
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information in the electrode coherences during baseline recording. The protocol features describe the key

parameters of the experimental framework. The designation ‘‘network features’’ derives from consider-

ation of the estimated band-limited coherence as the adjacency matrix of an undirected, edge-weighted

graph. The network features were intended to serve as simple but informative summaries of the connectiv-

ity information available in recordings of baseline activity prior to stimulation. They correspond to summary

statistics computed over spatial or temporal ranges, basic quantities pertaining to the estimated spectrum

(Brockwell et al. 1991), or network features that have found previous application in graph analysis (Barrat

et al., 2004; Salton and McGill 1983). Finally, a subject-level indicator was included to adjust for potential

global differences in FCC between the two macaque subjects. The adjustment is included in all models, as

the subject is neither an aspect of the stimulation protocol nor a property of the baseline connectivity

network.

Protocol features

The protocol features were comprised of the categorical measurements Anatomical region, Delay, and

Block number, as well as the real-valued features Distance, Stim1 distance to closer, Stim1 distance to

further, Stim2 distance to closer, and Stim2 distance to further. Anatomical region indicates whether the

two electrodes corresponding to a given measurement are both in region M1, both in region S1, or if

one is in each region. Delay encodes three levels of time-delay in the pulse of the paired laser stimulation:

10, 30, or 100 ms. While the delay parameter in the stimulation protocol is real-valued, in the context of our

data it is only measured at three distinct settings. We therefore chose to estimate an effect for each setting

individually rather than to estimate a nonlinear function of the delay given observations at only three points.

Block number indicates the time-order position of the experimental block in which the observation was re-

corded. In the ‘‘block analysis’’ regression design, we removed this feature and instead allowed all feature

mappings to vary with the block number, thus investigating the predictive impact of allowing the entire

model to evolve dynamically over the discrete time-stages of an experimental session. Distance measures

the distance between the two electrodes. Stim1 distance to closer, Stim1 distance to further, Stim2 dis-

tance to closer, and Stim2 distance to further, encode distances between the stimulation sites and the

closer and further electrodes of the electrode pair being predicted.

Network features

The network features were computed from the LFP time series recorded during the resting-state block pre-

ceding the stimulation for which FCC are being predicted. Except for the Phase feature, all of these features

were derived from the tensor obtained by time-concatenation of the coherence matrices across all win-

dows in the resting-state block.

We introduce some tensor notation prior to defining these features. The coherence tensor for a given

resting-state period is a three-dimensional array, denoted as C ˛RE3E3T . Two-dimensional slices through

the array at time t or electrode i are indicated as Ct,, and C,i, respectively. One-dimensional vectors ob-

tained by fixing an electrode i and a time point t are denoted c!ti,; vectors obtained by fixing both elec-

trodes i and j are denoted c!,ij. The scalar coherence value at time t for electrodes i and j is denoted ctij.

The Initial coherence indicates the mean coherence between electrodes i and j at baseline:

1

T

XT
t = 0

ctij = mean

�
c!,ij

�
(Equation 6)

The Coherence with network summarizes the average coherence between electrodes i and j and the re-

maining electrodes in the array. This corresponds to the normalized sum of vertex strengths of nodes i

and j (Barrat et al., 2004):

1

T

XT
t = 0

1

E

XE
k = 0

�
ctik + ctjk

�
= mean

�
Ci + Cj

�
(Equation 7)

The Coherence difference measures the mean absolute difference in coherence between electrodes i and j

to other electrodes in the network:

1

T

XT
t = 0

1

E

XE
k = 0

��ctik � ctjk
�� (Equation 8)
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The Length 2 path strength represents the average strength of length-2 paths connecting electrodes i and

j. This feature is similar to standard graph clustering coefficient metrics quantifying the total edge-weight of

triangle motifs that include a given node (Barrat et al., 2004; Onnela et al., 2005). However, it excludes the

direct edge between electrodes i and j, which reduces correlation with the initial coherence. Alternatively,

the L = 2 path strength can be considered the unnormalized cosine similarity between the network-coher-

ence vectors of electrodes i and j (Salton and McGill 1983):

1

T

XT
t = 0

1

E

XE
k = 0

ctikctjk =
1

T

XT
t = 0

1

E

�
c!ti,

�
�
�
c!tj,

�
(Equation 9)

The Coherence with stim sites is the average coherence between electrodes i and j to the two optogenetic

stimulation sites. Below, the indices a and brefer to the electrode sites corresponding to the laser locations

for a given experiment:

1

4T

XT
t = 0

�
ctia + ctib + ctja + ctjb

�
(Equation 10)

The Electrode covariance and Time covariance capture the variability of the coherence measurements over

the electrode array and over the total number of 20-second time windows in a resting-state block,

respectively.

The Electrode covariance represents a time-average of the covariance between the vectors representing

the connectivity of electrodes i and j to the rest of the network:

1

T

XT
t = 0

Cov

�
c!ti,; c

!
tj,

�
(Equation 11)

The Time covariance is the average across all other electrodes k of the covariance between the time series

of coherence values to electrodes i and j:

1

E

XE
k = 0

Cov

�
c!,ik c

!
,jk

�
(Equation 12)

Finally, the Phase was the only network feature not derived from the coherence tensor, since the coherence

only contains magnitude information from the estimated spectral density. Writing the ði; jÞth cross-spectral
component computed within window w as

SðwÞ
ij ðlkÞ =

���SðwÞ
ij ðlkÞ

������eiq
ðwÞ
ijk (Equation 13)

and denoting by Kb the set of indices k such that lk is in frequency band b, the phase feature qij in block [ is

given by

~q
ðB[ Þ
ij =

1

jWB[ j
X

w ˛WB[

1

jKbj
X
k ˛Kb

q
ðwÞ
ijk (Equation 14)

Outlier removal

Nonlinear regression methods are sensitive to extreme outliers, which can exert highly disproportionate

influence on the model estimate. We wished to achieve robustness against such outliers while minimizing

perturbation of the data and subsequent analysis. Therefore we adopted a highly permissive definition, by

which an observation was considered an outlier if its absolute deviation from the mean exceeded 20 times

the interquartile range along any dimension (i.e. feature). Across all frequency bands and models, the

maximum amount of data excluded by this procedure was less than 0:1% of the total number of

observations.

Regression designs

We investigated two different configurations of the regression designmatrix within our nonlinear modeling

framework. For each design, the data were aggregated across all of the experimental sessions for each sub-

ject. While significant session heterogeneity suggested that even stronger prediction results were possible

for models fit to individual sessions, our objective was to estimate a model that generalized well in the

sense of accurate prediction on data from many sessions.
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Full data

First we investigated the performance of the nonlinear model on the full data, which included all experi-

mental blocks from all sessions of both subjects. This yieldedN = 481; 505 observations of p = 16 features,

which expanded to dimension 21 after dummy-coding of the categorical variables Delay, Region, and Block

number, and to dimension 22 after inclusion of the categorical animal subject indicator.

Block interactions

Under the full data design, the time evolution of the response was limited to global shifts corresponding to

the categorical feature Block number. We subsequently investigated the impact of allowing the shape of

the feature mappings to vary with the block number, thus expanding the model’s capacity to capture time

variation in feature-response relationships over the course of repeated stimulation. This constituted an

interaction design, whereby the categorical feature Block number was removed, and the remaining fea-

tures were each augmented with interaction terms for binary indicators that denoted whether the measure-

ment was made in each of blocks 2, 3, 4, and 5. The number of observations remained N = 481; 505, while

the number of features expanded to p = 94.

Estimation of the nonlinear additive model

We used a train-test paradigm to assess the predictive performance of the nonlinear model on unseen

data. For each frequency band and regression design, the data were split uniformly at random such that

70% of the observations were assigned to the training set and the remaining 30% were assigned to the

test set. All model parameters and hyperparameters were selected using data from the training set only.

Prior to estimation of the model parameters, the real-valued features were standardized such that they

have mean zero and unit standard deviation. Whenever the data were split between train and test sets,

the parameters of the linear transformation corresponding to standardization were computed from the

training data and applied to the test data.

The nonlinear feature mappings fj, j = 1;.;p, in Equation (5) were represented in the basis of polynomial

functions

fjðxÞ = bj1x + bj2x
2 +/+ bjK x

K (Equation 15)

The complete set of parameters to be estimated was thus b = ðb0;b1;.;bpÞ, where bj = ðbj1;.; bjK ÞT ˛
RK . The order of the polynomial representation for fj is defined as the maximum integer value k ˛ 1;.;K

for whichbjk is nonzero. The smoothness of fj is determined by the order k of its polynomial representation

and the magnitude of the coefficients bj1;.;bjk . Numerical implementation requires the specification of an

upper bound K, corresponding to truncation of the infinite basis at some maximum order. We used K = 10

in all experiments; this decision was justified by the fact that the parameter estimates decay either to negli-

gible values or to exactly zero before reaching order K % 10, as a result of the hierarchical penalization of

the model coefficients.

All categorical features were dummy-coded such that the C categories for each feature are represented by

C � 1 indicator variables. Polynomial expansion of these variables generates identical columns and thus

rank-deficiency in the design matrix, which leads to instability in the optimization routine. This problem

was avoided by truncating the polynomial expansion of all categorical variables to order 1 rather than order

K. There is no resulting loss of generality from this truncation. Rather, this expanded the framework to allow

for simultaneous estimation of smooth nonlinear functions of continuous features and discrete functions

(that can be visualized for example, as a step function) of categorical features.

Automatic order selection via hierarchically penalized estimation

Given an observation of the features x, the model prediction of the SS-FCC or RS-FCC is given by

bf ðxÞ = b0 +
Xp
j = 1

fj
�
xj
�

(Equation 16)

We used the standard square loss on the training set Dtrain

LðbÞ =
1��Dtrain
�� X
ðx;yÞ˛Dtrain

ðy � bf ðxÞÞ2 (Equation 17)
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as the model goodness-of-fit criterion. Direct optimization of model fit on a training set over a sufficiently

complex model class is well-known to yield estimates that perform poorly on unseen data, an issue

commonly known as overfitting.We avoided this problemby adoption of a penalized estimation framework

specifically designed to control the magnitude of the parameter estimates and automatically select the or-

der of each feature mapping in the model. This approach augments the standard square loss with a penalty

term Ujðbj;a; lÞ for each feature j, defined as

Uj

�
bj;a; l

�
= al

XK
k = 1

wk

 XN
i = 1

�
bjkx

k
ij

�2
+/+

�
bjK x

K
ij

�2!1
2

+ ð1 � aÞl
 XN

i = 1

�
bj1xij

�2
+/+

�
bjK x

K
ij

�2!1
2

(Equation 18)

with hyperparameters l˛R+ and a˛ ½0; 1�. The weights wk = k3 � ðk � 1Þ3 were chosen to satisfy theoret-

ical criteria that guarantee statistical convergence of the estimator over a class of smooth functions (Haris

et al., 2019).

The model parameters were estimated by solving

bb = arg min
b

LðbÞ+
Xp
j = 1

Uj

�
bj;a; l

�
(Equation 19)

We used a block coordinate descent algorithm as implemented in the R package HierBasis (Haris et al.,

2019).

The first term in the penalty Ujðbj; l;aÞ induces hierarchical sparsity in the estimate of bj = ðbj1;.;bjK ÞT ,
while the second term in (Equation 18) shrinks the magnitudes of the estimated coefficients towards

zero. Hierarchical sparsity guarantees that if an estimated coefficient bb jk = 0, then all higher-order coeffi-

cients for that feature bb jk0 = 0, with k < k0 %K ; this is equivalent to selecting an order k � 1 representation

for the featuremapping fj . The selection procedure is thus automatic and data-driven in that it emerges as a

direct mathematical consequence of the penalized estimation framework, which seeks the best model fit to

the data under the structural constraints imposed by UjðbÞ.
Cross-validation for model hyperparameters

The penalized loss function requires specification of two regularization hyperparameters l˛R+ and a˛
½0; 1�, which control the overall regularization strength and tradeoff between terms inducing hierarchical

and feature-wise sparsity, respectively. The parameter a was selected over the range from 0 to 1, inclusive,

in increments of 0.1. The parameter l was selected over 100 log-linearly-spaced values between lmax and

lmax 3 10� 5.

The value lmax was selected such that all estimated feature mappings are equal to zero for every value of

investigated a; it was obtained by a backtracking line search algorithm (Boyd and Vandenberghe 2004).

This algorithm requires a gross upper bound l0, defined as any value of l> 0 such that bb = 0 for all grid

values of a. It was found manually; we found that l0 = 0:1 sufficed for all designs and frequency bands.

We selected the pair ða�; l�Þ by first finding the ða; lÞ pair minimizing the average R2 on the validation set

over 5-fold cross-validation on the training data. We selected a� as the a-coordinate of this pair, and

selected l� as the largest value of l such that the mean validation R2 of ða�; lÞwas within one standard error

of the mean validation R2 at ða�; l�Þ. This follows the ‘‘one standard error’’ strategy for one-dimensional

cross-validation (J. Friedman et al., 2001) and represents a conservative approach to regularization corre-

sponding to our preference for smoother feature mapping estimates.
Performance measure

We quantified model performance by predictive accuracy on the test set, as measured by the coefficient of

determination,

R2 = 1 �
Pntest

i = 1ðyi � by iÞ2Pntest
i = 1ðyi � yiÞ2

(Equation 20)
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where by i was the model prediction after cross-validation and estimation on the training set and yi was the

mean of the regression target on the test set.
Resampling for feature stability

We took a resampling approach to assess the stability of the estimated feature mappings of the nonlinear

model. Following the subsampling heuristic of (Meinshausen and Peter, 2010), we drew a subsample of size

N=2 from the data without replacement and ran the full estimation procedure, including hyperparameter

selection, on the subsampled data. The procedure was repeated for 100 independent trials, resulting in 100

estimated functions for each feature. The feature-wise variability in the nonlinear additive feature map-

pings was then assessed pointwise, by computing upper and lower quantiles for the range of function

values at each point in a fine grid.
A predictive measure of feature importance

Traditional tests of statistical significance are not available for the coefficients of the nonlinear additive

model as the asymptotic distribution of the penalized estimator is not known. Instead, we assessed impor-

tance of a feature or group of features by evaluating the difference in predictive performance on the test set

between the full model and a model fit without the parameter or parameter group of interest. Removing

the feature or feature group is equivalent to estimating the full model under the constraint that their cor-

responding parameters are all equal to zero. The comparison can thus be viewed as between the full model

and one in which a hypothesis of null response is enforced for the feature or group of interest.

Quantifying feature importance via the step-down procedure accounts for the fact that the explanatory power of

the featureof interestmaypartially overlapwithother included features.Weare thus asking, ‘‘what is themarginal

explanatory power of this feature, beyond what could be explained by the remaining features in the model?’’ In

the context of our work, this is used to understand, for example, whether the network features provide any addi-

tional information over the protocol features. A step-up procedure could not answer such a question.

When estimating the reducedmodel, we used the regularization parameters ða�; l�Þ obtained by cross-vali-

dation on the full data.
Quantifying feature similarity across frequency bands

Let bf aj and bf bj be the estimated feature mappings for feature j on the data corresponding to frequency

bands a andb, respectively. We computed a quantitative measure of their similarity,

sabj =
Cf aj ; f

b
j D������f aj ������f bj ������ (Equation 21)

The quantity sabj is the cosine similarity of the estimated feature mappings, considered as elements of a

common Hilbert space of functions. By definition, sabj ˛ ½ � 1; 1�. Similarity increases as sabj approaches 1

or � 1 (which indicates f aj and � f bj are perfectly similar) and is minimized at 0.

The inner product Cf aj ; f
b
j DD =

R
X j

f aj ðxÞf bj ðxÞdx and norm
����fj���� = Cfj; fjD are given by integrals whose domain X j

depends on the feature j. For real-valued features, we took X j to be the interval ½ � 5; 5�, which after stan-

dardization corresponds to the range of all observed measurements within 5 standard deviations of the

mean. Due to the polynomial representation of the nonlinear feature mappings, these could be computed

exactly.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance of the prediction of RS-FCC between stimulation sites from the stimulation delay was

calculated using one-sided F-test with 165 observations and 2 degrees of freedom. Statistical significance

of the SS-FCC of stimulation (N = 481,505 pairwise observed SS-FCC) versus control (N = 67,510 pairwise

observed SS-FCC) condition was calculated using Welch’s unequal variances t-test. These tests were per-

formed in Python 3 using the SciPy package. The resampling procedure described in the section ‘‘Resam-

pling for feature stability’’ was performed in R.
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