
nanomaterials

Article

Short-Time Hydrothermal Synthesis of CuBi2O4
Nanocolumn Arrays for Efficient
Visible-Light Photocatalysis

Yi Wang 1, Fang Cai 1,2, Pengran Guo 2, Yongqian Lei 2, Qiaoyue Xi 2,* and Fuxian Wang 2,*
1 College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
2 Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong

Engineering Technology Research Center of On-line Monitoring of Water Environmental Pollution,
Guangdong Institute of Analysis, Guangzhou 510070, China

* Correspondence: xiqiaoyue@fenxi.com.cn (Q.X.); wangfuxian@fenxi.com.cn (F.W.);
Tel.: +86-020-37656885 (Q.X.)

Received: 7 August 2019; Accepted: 30 August 2019; Published: 5 September 2019
����������
�������

Abstract: In this article, a short-time hydrothermal method is developed to prepare CuBi2O4

nanocolumn arrays. By using Bi(NO3)3·5H2O in acetic acid and Cu(NO3)2·3H2O in ethanol as
precursor solutions, tetragonal CuBi2O4 with good visible light absorption can be fabricated within
0.5 h at 120 ◦C. Tetragonal structured CuBi2O4 can be formed after 15 min hydrothermal treatment,
however it possesses poor visible light absorption and low photocatalytic activity. Extending the
hydrothermal treatment duration to 0.5 h results in a significant improvement invisible light absorption
of the tetragonal CuBi2O4. The CuBi2O4 obtained through 0.5 h hydrothermal synthesis shows a band
gap of 1.75 eV and exhibits the highest photocatalytic performance among the CuBi2O4 prepared with
various hydrothermal time. The removal rate of methylene blue by the 0.5 h CuBi2O4 reaches 91%
under visible light irradiation for 0.5 h. This study proposes a novel strategy to prepare photoactive
CuBi2O4 nanocolumn arrays within 0.5 h at a moderate temperature of 120 ◦C. The hydrothermal
method provides a facile strategy for the fast synthesis of metal-oxide-based photocatalysts at mild
reaction conditions.
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1. Introduction

CuBi2O4, a typical p-type semiconductor material, has emerged as a promising photocatalytic
material due to its narrow bandgap (1.5–1.8 eV) and high photovoltage [1–3]. Specifically, tetragonal
CuBi2O4 possesses strong visible light absorption and exhibits great potential for photocatalytic
degradation of organic pollutants [4–8]. Different methods have been applied to prepare a
CuBi2O4 photocatalyst, including the solid state grinding method [9–11], sol–gel method [12,13],
and co-precipitation method [14]. However, these conventional methods generally suffer from high
energy consumption, long fabrication time, or complex preparation procedures. As a cost effective
and facile method, hydrothermal synthesis is commonly used to prepare various metal oxides (e.g.,
CuBi2O4, and BiVO4) with uniform size distribution, high purity, and high crystallinity [5,15,16]. It
does not require organometallic or toxic precursors for the preparation nanocrystalline materials.
However, traditional hydrothermal methods usually require long preparation time (generally 12–36 h
for metal oxides, including CuBi2O4), which greatly limits their practical application [6,8,16–21].

In this study, we have successfully prepared tetrahedral CuBi2O4 nanocolumn arrays through
a rapid hydrothermal method at mild reaction conditions. Tetrahedral CuBi2O4 with a band gap of
1.75 eV can be obtained within 0.5 h hydrothermal treatment at a moderate temperature of 120 ◦C. The
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0.5 h CuBi2O4 nanocolumn arrays show good visible light absorption and photocatalytic property. The
hydrothermal recipe developed for the synthesis of photoactive CuBi2O4 may be extended for the fast
preparation of other metal-oxide-based photocatalysts at moderate reaction temperatures.

2. Materials and Methods

2.1. Material Preparation

The CuBi2O4 nanocolumn arrays were prepared by the hydrothermal method. Typically, 0.9701 g
Bi(NO3)3·5H2O (99.999% Alfa Aesar (China) Chemical Co. Ltd., Shanghai, China) was dissolved
in 5 mL acetic acid, and 0.2416 g Cu(NO3)2·3H2O (99.8% Alfa Aesar (China) Chemical Co. Ltd.,
Shanghai, China) was dissolved in 25 mL ethyl alcohol [22,23]. Then, the two solutions were mixed
and NaOH solution was added under magnetic stirring at room temperature until pH 14 was reached.
Subsequently, the above mixture was transferred into a 100 mL Teflon-lined steel autoclave, and then
maintained in an oven at 120 ◦C for 5 min, 10 min, 15 min, 0.5 h, 1 h, 2 h, 8 h, and 12 h, respectively
(the samples were denoted as CBO-5 min, CBO-10 min, CBO-15 min, CBO-0.5 h, CBO-1 h, CBO-2 h,
CBO-8 h, and CBO-12 h, correspondingly). The obtained products were washed with ethanol and
distilled water three times respectively and then dried in a vacuum drying oven for 12 h at 80 ◦C.

2.2. Characterization

The crystal structure was analyzed by an X-ray diffractometer (XRD, Bruker D 8 Advance,
Karlsruhe, Germany) using Cu kα 1 as the radiation source. The morphologies of the CBO were
characterized using a scanning electron microscopy (SEM, HITACHI S-3700N, Tokyo, Japan). X-ray
photoelectron spectroscopy (XPS, ESCALAB 250XI, Thermo Fisher Scientific, Waltham, MA, USA) was
carried out to investigate the stoichiometry and chemical bonding states of the samples. The UV-vis
absorption spectra of the samples were collected by a UV-2800 spectrophotometer (Shanghai, China).

2.3. Photocatalytic Activity Measurement

First, 40 mg of the photocatalyst was dispersed into 50 mL methylene blue dye solution (0.02 mM).
Then, 0.05 mL H2O2 was added and stirred in the dark for 30 min to reach the adsorption equilibrium.
A 300 W xenon lamp with a 420 nm cut filter was used as the light source. Then, 2 mL aliquots
were extracted and centrifuged every 5 min. The concentration of the remaining methylene blue was
then analyzed by measuring the absorption of the supernate at 664 nm (the maximum absorption
wavelength of methylene blue) via a UV-vis spectrophotometer. The degradation rate was calculated
by the following formula:

Degradation rate (%) = 1−
C
C0

(1)

where C0 and C refer to the absorbance of the solution at 664 nm before and after the test.

3. Results and Discussion

3.1. Synthetic Procedures of CuBi2O4 Nanocolumn Arrays

Different from traditional hydrothermal methods, the Bi(NO3)3·5H2O was dissolved in acetic
acid to avoid the use of strong acid, and the Cu(NO3)2·3H2O was dissolved in ethanol instead of
water in order to create high vapor pressure at moderate hydrothermal temperature. Those precursor
solutions were previously used for the spray pyrolysis of CuBi2O4 thin films by Wang et al. [22]. It
has been verified experimentally that both solutions can remain stable for at least 1 year at room
temperature without stirring. As illustrated in Figure 1, a blue transparent solution was obtained when
the colorless and transparent Bi(NO3)3 solution was mixed with the blue Cu(NO3)2 solution. When
the NaOH solution was added dropwise to the mixture, the blue transparent solution first turned
into a blue-white suspension, then a yellow-green suspension. After hydrothermal reaction for 0.5 h,
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a brownish black powder was finally obtained. The chemical reaction during the reaction can be
expressed by the Formulas (2) to (5) [14]. The crystallization mechanism of CuBi2O4 particles can
be described as a “dissolution-crystallization” process [14], during which the amorphous precipitate
BiOOH and Cu(OH)2 are attacked by mineralizers in an alkaline environment to form ion aggregates.
Subsequently, CuBi2O4 particles are produced through nucleation, precipitation, dehydration, and
crystal growth in a supersaturated solution.

Bi3+ + 3OH− → Bi(OH)3 (2)

Cu2+ + 2OH− → Cu(OH)2 (3)

Bi(OH)3 → BiOOH + H2O (4)

2BiOOH + Cu(OH)2 → CuBi2O4 (5)
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3.2. Characterization of CuBi2O4 Nanocolumn Arrays

Figure 2a shows the XRD patterns of CuBi2O4 with different hydrothermal durations. The
CBO-10 min showed only two broad peaks appeared at 20.6◦ and 32.9◦, indicating that the crystal
growth was not complete in the first 10 min. When the hydrothermal time was 15 min, the peaks at
20.6◦, 27.7◦, 29.3◦, 30.8◦, 32.9◦, 34.2◦, 37.3◦, 46.1◦, 53.0◦, 55.1◦, 59.7◦, and 65.8◦ were obviously observed,
which can be assigned to the (200), (211), (220), (002), (310), (112), (202), (411), (213), (332), (521), and
(413) lattice planes of tetragonal CuBi2O4 (JCPDF 42-0334), respectively. All the reflection peaks can
be indexed to the tetragonal CuBi2O4 and no other impurities were found [23–25]. For the samples
obtained under the hydrothermal times longer than 15 min, similar XRD patterns were obtained.
It can be obviously noticed that the peak width at half-height of the CBO-10 min was wider than
those with longer hydrothermal times, indicating small crystal size at the beginning of the crystal
growth. To further investigate the surface chemical state of CuBi2O4, the CBO-10 min, CBO-15 min,
and CBO-0.5 h samples were analyzed by XPS. The full XPS spectra of CBO samples displayed in
Figure S1a confirmed the existence of Cu, Bi, and O elements. The C 1s high-resolution spectra of
different samples were shown in Figure S1b. The binding energies were calibrated using the C 1s peak
at 284.8 eV. It was observed that the three samples displayed similar elemental characteristic peaks. As
shown in Figure 2b, the Cu2+peaks of the CBO-0.5 h shifted to lower binding energy of 933.65 eV and
953.35 eV, which corresponded to the Cu 2p3/2 and Cu 2p1/2 binding energies of Cu2+, respectively.
Two shake-up satellites appeared at about 962 eV and 941 eV [1,2,26,27]. The high-resolution Bi 4f
spectrum of pristine CBO-0.5 h in Figure 2c can be divided into two main peaks at 164.05 eV and
158.8 eV, which originated from Bi 4f5/2 and Bi 4f7/2 binding energies of Bi3+, respectively. The O 1s
spectrum of CBO-0.5 was shown in Figure 2d, where the peak at 529.55 eV can be ascribed to the
lattice oxygen [4,28,29]. As for the CBO-10 min and CBO-15 min samples, new peaks centered at
about 530.9 eV and 531.4 eV in the XPS spectra of O 1s emerged (Figure 2d), which may represent the
presence of subsurface oxygen vacancy defects [30].
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Figure 2. (a) XRD patterns of the CBO-5 min, CBO-10 min, CBO-15 min, CBO-0.5 h, CBO-1 h, CBO-2
h, CBO-8 h, CBO-12 h, and XPS high-resolution spectra of CBO-10 min, CBO-15 min, and CBO-0.5 h
samples: (b) Cu 2p, (c) Bi 4f, and (d) O 1s.

To investigate the morphologies of CuBi2O4 with different hydrothermal time, SEM was conducted.
When the hydrothermal time was only 5 min (Figure 3a), no obvious appearance was found except
for some aggregated nanoparticles. As the hydrothermal time increased to 10 min (Figure 3b), some
spherical particles were formed, which were dispersed and arranged in a random manner. After 15 min
hydrothermal treatment (Figure 3c), hierarchical CuBi2O4 nanocolumn arrays were created. This is
consistent with the XRD results in Figure 2d, where the CBO-5 min and CBO-10 min were found to be
amorphous while the CBO-15 min showed well defined tetragonal structure. When the hydrothermal
time increased from 0.5 h to 12 h, the hierarchical microstructures continued to grow. As shown in
Figure 3d–f, the size of the nanorods increased and they became closer to each other, but in general the
CuBi2O4 still appeared as nanorod arrays without substantial change in morphology. The proposed
fabrication mechanism of CuBi2O4 nanocolumn arrays via the rapid hydrothermal synthesis route
was illustrated in Scheme 1. Initially, the CuBi2O4 cores were created, based on which the nanorods
started to grow. Then, the nanocolumns were obtained with the continuous generation and growth
of the nanorods. Finally, the nanocolumn arrays were fabricated through the self-assembling of the
nanocolumns. The repaid nucleation and high crystal growth rate of CuBi2O4 greatly shortened the
hydrothermal reaction time and reduce the energy consumption.
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Figure 3. SEM images of CuBi2O4 prepared with the hydrothermal time of (a) 5 min, (b) 10 min, (c)
15 min, (d) 0.5 h, (e) 1 h, (f) 2 h, (g) 8 h, and (h) 12 h.
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3.3. Optical Absorption Properties

UV-vis diffuse reflectance spectra of CuBi2O4 with different hydrothermal time were investigated
and displayed in Figure 4a. Tauc plots were applied to determine the band energy of different CuBi2O4

samples, as illustrated in Figure 4b. The CBO-15 min showed poor visible light absorption and its exact
band gap could hardly be determined from the Tauc plot. In comparison with the CBO-15 min, the
samples with longer hydrothermal time exhibited significantly enhanced visible light absorption. The
CBO-0.5 h sample showed a direct band gap of 1.75 eV, which lies in the band gap range of CuBi2O4 as
previously reported [22,23,28,31]. Further hydrothermal treatment for more than 1 h did not lead to
improvement in visible light absorption.
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3.4. Photocatalytic Activity of CuBi2O4

As showed previously in the XRD results, amorphous CuBi2O4 was obtained when the
hydrothermal treatment time was shorter than 15 min. Therefore, the CuBi2O4 samples with treatment
time over 15 min were selected to evaluate the photocatalytic performance via the degradation of
methylene blue under visible light. As shown in Figure 5a, the CBO-15 min sample showed low
photocatalytic performance, which can be ascribed to its poor visible light absorption (Figure 5a).
CBO-0.5 h showed significantly higher photocatalytic activity than CBO-15 min, which can be explained
by its good visible light absorption as shown in Figure 4. Among all the samples with different
hydrothermal treatment durations, the CBO-0.5 h exhibited the highest photocatalytic performance,
of which a removal rate of 91% was achieved within 30 min in the presence of a trace amount of
H2O2 (about 0.05 mL in 50 mL solution). The photocatalytic degradation efficiency of the CBO-0.5 h is
comparable to the previously reported CuBi2O4 prepared by traditional method with much longer
hydrothermal treatment duration [6]. Further extending the hydrothermal time to 1 h or longer did
not result in significant change in the photocatalytic performance. In general, photocatalysts with high
specific surface areas and large pore volumes are beneficial for the enhancement of photocatalytic
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performance. To elucidate the effect of specific area, BET measurements were carried out. Figure S3
showed the nitrogen adsorption–desorption isotherms of CuBi2O4 with different hydrothermal time.
It can be seen that all the samples had isotherms of type IV, indicating the presence of mesopores
(2–50 nm). The isotherms exhibited H3 hysteresis loops at a high relative pressure range from 0.8
to 1.0, suggesting the presence of slit-like pores. As shown in Table S1, no significant difference in
BET surface areas and pore volumes was found among the CBO samples with different hydrothermal
time, therefore the difference in degradation rate should not be attributed to the specific surface area of
samples. In addition, the optimization experiments of sodium hydroxide concentration showed that
the concentration of the sodium hydroxide had no significant effect on the structure of the CuBi2O4

and 6.5 M sodium hydroxide was used in this study (Figure S2).
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Figure 5. Photodegradation of methylene blue (MB) over as-prepared CuBi2O4 (a) with different
hydrothermal time and (b) treated under different hydrothermal temperature (90 ◦C, 120 ◦C, 150 ◦C,
180 ◦C, and 200 ◦C) with the presence of 0.05 mL H2O2 under visible irradiation (λ > 420 nm); (c) XRD
patterns of CuBi2O4 treated under different hydrothermal temperature; and (d) the UV-vis spectra of
MB degradation in the presence of CBO-0.5 h.

The photocatalytic performance of CuBi2O4 samples with different hydrothermal temperatures
was also investigated. As shown in Figure 5b, CuBi2O4 sample with the hydrothermal temperature
of 120 ◦C could achieve comparable photocatalytic performance as the one treated at a much higher
temperature of 200 ◦C. When the temperature exceeded 120 ◦C, the (312) and (420) peaks appeared,
nevertheless the emerged crystal planes of (312) and (420) had no promoting effect on the photocatalytic
activity. From an energetic point of view, hydrothermal treatment at low temperature and low pressure
is highly expected. Therefore, 120 ◦C was selected as a suitable hydrothermal temperature in this study.
Eventually, we successively prepared the CuBi2O4 nanocolumn arrays via a facile hydrothermal method
with much shorter reaction time at lower temperature compared to the traditional hydrothermal
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synthesis routes [4,7,14,25,30,32,33]. The time-dependent UV-vis absorption spectra of methylene blue
(MB) under light irradiation for CBO-0.5 h at the hydrothermal temperature of 120 ◦C were presented
in Figure 5d. The intensity of the absorption peak gradually decreased and eventually diminished as
the irradiation time increased from 0 to 30 min.

3.5. Stability of the CuBi2O4 Nanocolumn Arrays

The reusability of the CuBi2O4 samples was tested by repeating the photodegradation experiment
under visible light irradiation. After each cycle of the photocatalysis experiment, the dye solution was
adjusted to the initial concentration and the separated photocatalysts were washed and used again. As
illustrated in Figure 6a, the decomposition rate of MB by the CBO-0.5 h slightly decreased by only
6.6% after five cycles of experiments, demonstrating the high stability of the as-prepared CuBi2O4

photocatalyst. We note that the decrease may be partially due to the loss of the sample powder during
the separation and cleaning processes. The XRD patterns before and after 5 cycles of photodegradation
experiments (Figure 6b) showed that the CBO-0.5 h maintained the tetragonal structure.
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4. Conclusions

In this study, we developed a facile hydrothermal method for the fast preparation of tetragonal
CuBi2O4 nanorod arrays with good light absorption and high photocatalytic performance. The use of
Bi(NO3)3·5H2O in acetic acid and Cu(NO3)2·3H2O in ethanol as precursor solutions allowed for the
rapid hydrothermal synthesis of CuBi2O4 nanorod arrays at mild reaction conditions. Amorphous
CuBi2O4 was obtained when the hydrothermal treatment time was shorter than 15 min. Tetragonal
structured CuBi2O4 can be achieved when the hydrothermal treatment time reached 15 min, whereas
the CBO-15 min presented poor visible light absorption and low photocatalytic performance. Extending
the hydrothermal treatment duration to 0.5 h resulted in significantly improvement in visible light
absorption and photocatalytic activity. Further prolonging the hydrothermal time to 1 h or even
longer did not result in significant change in the photocatalytic performance. The CuBi2O4 with a
hydrothermal treatment time of 0.5 h exhibited a degradation efficiency up to 91% for MB degradation,
which is comparable to the CuBi2O4 prepared by traditional methods that commonly consume 12–36 h.
Our hydrothermal method provides new insights for the rapid preparation of metal-oxide-based
photocatalysts at moderate temperature and pressure.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/9/1257/s1,
Figure S1: (a) XPS survey spectrum and (b) C 1s high-resolution spectra of the CBO-10 min, CBO-15 min, CBO-0.5 h;
Figure S2: (a) XRD patterns of the under different concentration of NaOH (2.5 M, 4.5 M, 6.5 M, 8.5 M and 10.5 M),
(b) Effects of CuBi2O4 with different concentration of NaOH (2.5 M, 4.5 M, 6.5 M, 8.5 M and 10.5 M) with the
present of 0.05 mL H2O2 on the photocatalytic oxidation of MB under visible irradiation (λ > 420 nm); Figure S3:

http://www.mdpi.com/2079-4991/9/9/1257/s1
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N2 adsorption-desorption isotherms of the as-prepared samples; Table S1: The BET surface area, pore volume and
average pore size of CBO-0.5 h, CBO-1 h, CBO-2 h, CBO-8 h, CBO-12 h.
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