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Abstract

Visual expertise refers to proficiency in visual recognition. It is attributed to accumulated

visual experience in a specific domain and manifests in widespread neural activities that

extend well beyond the visual cortex to multiple high-level brain areas. An extensive

body of studies has centered on the neural mechanisms underlying a distinctive domain

of visual expertise, while few studies elucidated how visual experience modulates

resting-state whole-brain connectivity dynamics. The current study bridged this gap by

modeling the subtle alterations in interregional spontaneous connectivity patterns with a

group of superior radiological interns. Functional connectivity analysis was based on

functional brain segmentation, which was derived from a data-driven clustering approach

to discriminate subtle changes in connectivity dynamics. Our results showed there was

radiographic visual experience accompanied with integration within brain circuits

supporting visual processing and decision making, integration across brain circuits

supporting high-order functions, and segregation between high-order and low-order

brain functions. Also, most of these alterations were significantly correlated with individ-

ual nodule identification performance. Our results implied that visual expertise is a con-

trolled, interactive process that develops from reciprocal interactions between the visual

system and multiple top-down factors, including semantic knowledge, top-down atten-

tional control, and task relevance, which may enhance participants' local brain functional

integration to promote their acquisition of specific visual information and modulate the

activity of some regions for lower-order visual feature processing to filter out nonre-

levant visual details. The current findings may provide new ideas for understanding the

central mechanism underlying the formation of visual expertise.
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1 | INTRODUCTION

Visual expertise refers to consistently superior performance in visual

recognition for domain-specific visual recognition tasks. It is an

acquired skill through at least hundreds of cases of training (Annis &

Palmeri, 2019) and emerges from the reciprocal interactions between

visual system and multiple top-down factors, such as semantic knowl-

edge, attention, and task relevance (Harel, 2016). It recruits multiple

systems and manifests in widespread neural activities that extend

beyond a well-studied visual system to multiple high-level areas

across the brain (Bar, 2003; Grill-Spector, Kourtzi, &

Kanwisher, 2001).

Many expertise models have been used to study neural correlates

of visual expertise and identified functional reorganization, segmenta-

tion and integration of brain networks (Kelly & Garavan, 2005). Haller

et al. reported stronger activation in the right medial and middle fron-

tal gyrus in radiologists, which is associated with a more efficient

visual attention, semantic analysis and decision-making mechanism

for recognizing abnormalities in X-ray images than in laypersons

(Haller & Radue, 2005). Bilali�c et al. observed more sensitive activa-

tion in the left fusiform gyrus (FFG) in radiologists in differentiating X-

ray films from nonmedical imaging photographs than novice students,

supporting the expertise view that FFG seems more likely to be con-

nected to visual features such as holistic processing in general (Bilalic,

Grottenthaler, Naegele, & Lindig, 2016). Martens et al. reported

altered representations in the high-level visual cortex of ornithologists

and illustrated the effects for bird expertise even extending from the

frontal lobe to the lower-order visual regions, indicating that expertise

is related to a combination of domain-specific and domain-general

changes in neural processing (Martens, Bulthe, van Vliet, & Op de

Beeck, 2018). Harel et al. compared the effects related to car exper-

tise reported by McGugin et al. (McGugin, Gatenby, Gore, &

Gauthier, 2012) and Harel et al. (Harel, Gilaie-Dotan, Malach, &

Bentin, 2010), and observed common regions in the visual system and

other cognitive systems, including the lingual gyrus/collateral sulcus,

precuneus, and superior temporal sulcus, and these results suggest

that the widespread and distributed pattern of expertise-related activ-

ity across the entire cortex is facilitated by extensive interactions

between the visual system and other systems (Harel, Kravitz, &

Baker, 2013). In sum, the activations of these circuits compose a neu-

robehavioral model of brain processes in visual expertise, consisting

of visual processing, attention control, decision making and semantic

analysis (Humphreys, Price, & Riddoch, 1999).

Visual expertise is fundamental to radiological expertise (Rourke,

Cruikshank, Shapke, & Singhal, 2016; Samei, Krupinski, &

Hendee, 2010). The superior perceptual ability of visual expertise to

subtly distinguish visually similar stimuli is the primary basis for dis-

ease detection and diagnosis (Rourke et al., 2016). Radiological exper-

tise is a domain-specific visual ability with proficiency in visual

recognition and other cognitive skills (Waite et al., 2020), acquired

through reviewing hundreds of cases (Nodine, Mello-Thoms, Kundel, &

Weinstein, 2002; Samei et al., 2010) and involving the adaptation of

perceptual mechanisms to radiographic images (Kundel, Nodine,

Conant, & Weinstein, 2007). Thus, the model of radiologists is a

proper entry point for exploring the mechanism of visual expertise.

In the absence of perceptual input, resting-state brain activity

plays a crucial role in maintaining ongoing internal representations

and is responsible for coding prior experience (Dong et al., 2014;

Dong et al., 2015; Miall & Robertson, 2006). In particular, refined

dynamic interactions between brain regions reflect history of

repeated synchronized activation (Amad et al., 2017) and neuronal

coupling (Urner, Schwarzkopf, Friston, & Rees, 2013) between brain

regions in the learning process, which supports the superior behav-

ioral performance and reflects distinctive cognitive mechanisms. To

our knowledge, little attention has been paid to how visual expertise

modulates connectivity patterns in resting-state brain activities.

Accordingly, our current study investigated whole-brain connectivity

dynamics modulated by visual expertise using the model of radiolo-

gists consisted of 20 trained superior intern radiologists (IR) and well-

matched normal controls (NC) and more sensitive functional connec-

tivity (FC) analysis to identify subtle changes in connectivity patterns.

As it has been discussed beforehand, radiologists have consistently

superior performance in domain-specific visual recognition tasks

(Evans et al., 2011), which is supported by optimal visual processing,

attention control, decision making, and semantic analysis processes,

we expect to see functional integration within brain circuits

supporting neurobehavioral such as visual processing and other cogni-

tive functions, and refined connecting patterns across these circuits.

2 | METHODS

This study was approved by the Ethics Committee of the First Affili-

ated Hospital of Xi'an Jiaotong University subcommittee on Human

Studies and was conducted in accordance with the Declaration of

Helsinki. The detailed study design was explained to all participants

before the experiment and their written informed consents were

obtained.

2.1 | Participants

Participant recruitment was carried out among intern radiologists from

the First Affiliated Hospital of Xi'an Jiaotong University and matched

healthy controls from our database for visual expertise. In total,

40 healthy right-handed 4th-year undergraduates (19 males,

21 females) were recruited after a rigorous screening procedure.

Twenty participants (nine males, 11 females, 23.30 ± 1.19 years old,

Mean ± SD) underwent a 1-month visual recognition training proce-

dure forming the IR group. The IR group consisted of medical students

from the undergraduate program in national medical schools following

the same training protocol as required by the same syllabus. They

underwent training in the X-ray department on lung nodule recogni-

tion and reviewed 25–35 cases during their daily rotation from

8:00 a.m. to 6:00 p.m., 6 days a week. The mean duration of training

was 26.1 ± 2.3 (mean ± SD) days, and the total number of
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training cases per participant in the IR group was 763.0 ± 76.8 (Mean

± SD). Each of the participants in the IR group had a radiology tutor

who provided clinical-based supports in each daily training. During

training, participants in the IR group were required to perform a path-

ological analysis and fill in reports on X-ray films displayed on the

monitor screen, where each case report was matched for consistency

with the opinion of the radiology tutors.

On the other hand, 24th-year undergraduates (10 males,

10 females, 23.55 ± 1.12 years old, Mean ± SD) with no clinical expe-

rience in radiography formed the NC group. The two groups were not

significantly different in age (p = .510, Mann–Whitney test) and were

homogeneous in terms of educational level. All participants had nor-

mal or corrected-to-normal visual acuity and confirmed having no

smoking habits, alcohol abuse, MRI scan restrictions, or history of

mental or health disorders. Screening procedure was conducted in a

face-to-face interview with all subjects from both IR and NC groups

to exclude the effect of visual expertise from other known domains

(e.g., cars, chess, birds, etc.). The detailed study design was explained

to all participants before the experiment and their written informed

consents were obtained.

2.2 | Behavioral measurement

Viewing conditions were controlled by excluding natural light. The

experimenter started the experiment only after describing the entire

procedure to the participants and making sure that the experimental

protocol was fully understood. The same test bank was used for

experiments in both IR and NC groups.

In order to measure the participants' perceptual ability in medical

imaging, we selected 100 standard lung X-ray images from the X-ray

image bank of the Department of Medical Imaging, First Affiliated

Hospital of Medical College. Pathological conditions in the images

were scrutinized by three senior independent radiologists with more

than 10 years of experience in radiology diagnosis, and confirmed by

radiological reports. In addition, the level of difficulty for judgment

was also evaluated by these radiologists on a scale from 1 to 3, and

the portion for each difficulty level was 55%, 30%, and 15%, respec-

tively. Prior to testing, participants were informed that each X-ray

image may contain a single nodule or no nodules, and diagnosis

unrelated to lung nodules was not mentioned.

Sixty-five X-ray images, each containing only one nodule, were

selected as positive cases, and 35 tumor-free X-ray images

were selected as negative cases. For each testing image, participants

were required to make a decision within 4 s using an in-house radio-

logical behavioral data collection system. Their judgment of the pres-

ence or absence of nodule, confidence level of judgment, and time

spent for decision-making were recorded using in-house software

(Chinese Software Patent No. 2018SR036699). Standard receiver

operating characteristic (ROC) curve analysis was employed to evalu-

ate the performance of the diagnostic tests (Metz, 2006). The ROCFIT

program (part of a set of curve-fitting and estimation programs called

ROCKIT, available at http://www-radiology.uchicago.edu/sections)

was used to produce an ROC curve after averaging the confidence

intervals for each group of participants. The area under the curve

(AUC) was the result of the analysis.

In addition, considering that face recognition ability is considered

as inherent visual expertise, we also employed a standardized face

recognition test, the Cambridge Face Memory Test (CFMT;

Duchaine & Nakayama, 2006), to assess the level of face recognition

ability in both IR and NC groups. The CFMT task was scored as the

number of correct cases across 72 three-alternative forced-choice

trials.

2.3 | MRI data acquisition

The imaging data in this study were collected at the First Affiliated

Hospital of Medical College, Xi'an Jiaotong University, on a 3-Tesla

MRI system (EXCITE, General Electric, Milwaukee, WI). A standard

birdcage head coil and restraining foam pads were used to minimize

head movement and reduce scanner noise.

The resting scan was recorded with a gradient-echo single-shot

echo planar imaging sequence using the following parameters: scan

duration = 370 s, repetition time = 2 s, field of view = 240 mm, echo

time = 30 ms, matrix = 64 � 64, 32 interleaved axial slices were ori-

ented parallel to the anterior commissure-posterior commissure line

of each participant, and voxel size = 3.8 � 3.8 � 5.0 mm, no gap. Par-

ticipants were asked to stay awake, keep their eyes closed, and hold

their head still during the scanning process. At the end of the experi-

ment, we confirmed that the participants did not fall asleep during the

whole procedure.

In addition, for each participant, we acquired an MPRAGE

T1-magnetization high resolution anatomical image (resolution:

1 � 1 � 1 mm) for co-registration using the following parameters:

field of view = 256 mm, matrix = 256 � 256, repetition time = 1.9 s,

echo time = 2.26 ms, flip angle = 9
�
, and number of slices = 176 in

the sagittal orientation. Two expert radiologists screened the struc-

tural images of all participants and reported no brain abnormalities on

conventional MRI.

2.4 | Resting-state fMRI data preprocessing

Resting-state functional MRI (rs-fMRI) data preprocessing was per-

formed using the Data Processing Assistant for Resting-State fMRI

(DPARSF) (http://www.restfmri.net/forum/DPARSF) and Statistical

Parametric Mapping (SPM12) (http://www.fil.ion.ucl.ac.uk/spm) under

Matlab 2009a, including: (1) discarding the first 10 volumes to avoid

nonequilibrium effects; (2) slice-timing correction for acquisition

delays between slices; (3) realignment to match each functional vol-

ume to the reference volume, the estimated translation and rotation

parameters for each volume were confirmed to be not >1 mm and 1�,

and there was no group-wise difference in frame-wise displacement

(NC vs. IR = 0.048 ± 0.021 vs. 0.066 ± 0.044, Mean ± SD, p = 0.242,

Mann–Whitney test); (4) regressing the effects of head motion
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parameters (using the Friston's 24 head motion model), white matter,

and cerebrospinal fluid signals; (5) spatial normalization and

resampling of the functional images to 3 mm isotropic voxels; (6) spa-

tially smoothing the functional images with an isotropic Gaussian ker-

nel with a half-maximal value of 6 mm full width; (7) removing the

linear trends; and (8) band-pass filtering (0.01–0.08 Hz) to reduce the

effects of low-frequency drift and high-frequency noise.

2.5 | Brain sub-division

Predefined brain atlases used in multiple previous studies (Alaerts,

Swinnen, & Wenderoth, 2016; Wang et al., 2015) summarized the

functional distribution patterns of the general human brain but may

not adapt well to the brain signals in specific research cases, especially

those with neural plasticity modification. In this study, we compared

the performance of data-driven clustering approaches and functional

atlases in dividing the brain into functionally homogeneous sub-

regions. Specifically, we selected the clustering method from five

widely used clustering algorithms based on their overall accuracy to

model the brain signal of interest across multiple clustering scales

(Thirion, Varoquaux, Dohmatob, & Poline, 2014), including multigraph

K-way spectral clustering (MKSC; Shen, Tokoglu, Papademetris, &

Constable, 2013), group mean Ncut-based spatially constrained multi-

class spectral clustering (MSC-mean; Craddock, James, Holtzheimer,

Hu, & Mayberg, 2012), two-level Ncut-based spatially constrained

multi-class spectral clustering (MSC-two-level; Craddock et al., 2012),

group mean Ncut-based simple linear iterative clustering (SLIC-mean;

Wang & Wang, 2016), and two-level Ncut-based simple linear itera-

tive clustering (SLIC-two-level; Wang & Wang, 2016). The group-

mean clustering strategy was accomplished by averaging the individ-

ual similarity matrices followed by submitting the average to cluster-

ing (Patel, Borsook, & Becerra, 2008), and the two-level clustering

strategy by performing clustering for each individual and then con-

ducting second-level group clustering (van den Heuvel, Mandl, &

Pol, 2008). Gray matter mask (https://www.nitrc.org/projects/seecat/

) with cerebellum and brainstem excluded was employed in the clus-

tering analysis.

The above clustering methods also provided their corresponding

functional atlases with multiple clustering scales obtained from the

Beijing_Zang dataset (https://www.nitrc.org/projects/slic/), which

usually divided the whole brain into 50 to 1000 clusters (expected

number) with an interval of 50 clusters. For the comparability with

these atlases, we set the expected number of clusters from 50 to

1500 with an interval of 50 clusters, and estimated the appropriate

clustering scale for this study by evaluating the clustering results

across the scale variants. We chose a larger upper-bound of cluster

number 1500 because the spectral clustering methods (MKSC, MSC-

mean, and MSC-two-level) may generate trivial solutions (i.e., empty

clusters). Thus, the resultant number of clusters was less than the

expected one. In the following sections, all the clustering results were

evaluated using the resultant number of clusters.

2.5.1 | Clustering method selection

In an attempt to select a clustering method suitable for this study, we

performed a functional sub-division on the rs-fMRI data using the

above data-driven clustering methods and their corresponding func-

tional atlases, respectively. We systematically evaluated the above

clustering methods in terms of accuracy and reproducibility (LaConte

et al., 2003). Accuracy reflects the ability of the clustering method to

model the signals of interest in fMRI data, while reproducibility dem-

onstrates the consistency of the clustering results obtained from dif-

ferent subsets of the dataset (Thirion et al., 2014). We first selected a

clustering method from the 10 candidate methods based on the accu-

racy measurement of the silhouette width (Peter, 1987), and then

selected an appropriate clustering scale, that is, the number of clus-

ters, by taking into account reproducibility, cluster compactness,

cluster isolation, and the results of previous studies. Reproducibility

measures were not used in the selection of the clustering method

because the candidate clustering algorithms in this study have differ-

ent spatial constraint strategies, which would introduce an unfair

comparison in the assessment of algorithm robustness. Specifically,

the SLIC-mean algorithm strictly controls the numbers of clusters and

gets the same number of clusters across multiple clustering operations

with higher reproducibility and higher intercluster functional similarity.

The MSC-mean algorithm allows the existence of empty clusters,

resulting in lower intercluster functional similarity, but multiple clus-

tering yields a different number of clusters, leading to lower

reproducibility.

The silhouette width quantifies the accuracy of clustering based

on the combination of cluster compactness and cluster isolation. Clus-

ter compactness can be defined by the average of the intracluster

functional similarity of all clusters. For the kth cluster Ck , the

intracluster functional similarity is defined as

Intra kð Þ¼ 1
nk nk�1ð Þ

X
i, j � Ck , i≠ j

sij,k¼1,2, � � �,K, ð1Þ

where sij denotes the similarity between voxel i and j measured by the

Pearson's correlation coefficient, nk denotes the number of voxels in

cluster k, and K is the total number of clusters. Cluster isolation is

defined by the averaged intercluster functional similarity across all

clusters. For the kth cluster Ck , its intercluster functional similarity is

defined as

Inter kð Þ¼ 1
nk N�nkð Þ

X
i � Ck , j =2 Ck

sij, ð2Þ

where N is the total number of voxels. The Silhouette width can be

calculated by (Peter, 1987)

Silhouette¼ 1
K

XK

k¼1

Intra kð Þ� Inter kð Þ
max Intra kð Þ, Inter kð Þ½ � : ð3Þ
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Taking silhouette width as a measure of accuracy, the best perfor-

mance of the above clustering methods was used for the following

analysis.

2.5.2 | Clustering scale estimation

Subsequently, on the basis of the selected clustering method, we esti-

mated the clustering scale appropriate for this study by taking into

account the clustering reproducibility, cluster compactness, cluster

isolation, and reports of previous studies on radiologists. The cluster-

ing scale was usually represented as the size of the cluster (Parisot,

Arslan, Passerat-Palmbach, Wells, & Rueckert, 2016), which was

closely related to the number of clusters that a clustering method

used to partition the data. In this article, we do not strictly distinguish

between these two expressions.

For the clustering reproducibility measurement, all participants

were split equally into two subgroups, with each subgroup con-

structed with 10 randomly selected participants from the IR and NC

groups, respectively. The subgroup splitting procedure was repeated

10 times for the credibility of evaluation (Wang & Wang, 2016). For

each subgroup split, two subgroups were clustered separately, with an

expected number of clusters from 50 to 1500 in steps of 50. We

employed the adjusted rand index (ARI) and adjusted mutual informa-

tion (AMI; Nguyen, Epps, & Bailey, 2010) metrics to measure the

reproducibility of each split and to estimate the clustering scale appro-

priate for this study. The ARI measures the similarity between two

clustering results, which is invariant to the permutation of cluster

labels. The AMI measures the mutual information of two discrete

assignments of voxels to clusters. The higher the value of ARI or AMI,

the better the reproducibility of the clustering method.

Since the ARI and AMI typically fluctuate with the clustering

scales (Thirion et al., 2014), we selected the numbers of clusters with

local maximums of ARI or AMI as candidates and estimated the

expected clustering scale (in terms of the number of clusters, denoted

as K̂ ) for this study through comprehensive consideration of cluster

compactness, cluster isolation, and reports of previous radiologist

studies. On the one hand, we desire a sufficiently large number of

regions to guarantee that they were functionally homogeneous and

adequately represent the connectivity information presented in the

rs-fMRI data. On the other hand, too many regions would make statis-

tical inference challenging, leading to an explosion in computational

complexity and interfere with the interpretability of the observed con-

nections (Varoquaux & Craddock, 2013). The size of activated brain

regions reported in previous radiologist studies may provide a rational

basis for our choice of clustering scale. We expect that the cluster size

should be appropriately small to avoid obliterating the radiographic

visual experience effect, while allowing good interpretability of the

results. Choosing a cluster size similar to the size of previously

reported activation areas may better satisfy both of these

requirements.

Once the appropriate clustering scale was obtained, the clustering

method was performed again with a cluster number set larger than

the expected K̂ . The resultant number of clusters is denoted as K.

Afterwards, the intrinsic brain activity signal was obtained by averag-

ing the rs-fMRI BOLD signal series across voxels within each cluster.

For each participant, the brain activity can be expressed as Zp �RK�T ,

where p¼1,2, � � �,P is the index of participant, p = 40 is the number of

participants, and T = 175 is the number of slices.

2.6 | Functional connectivity analysis

Functional connectivity between brain regions can be measured by

calculating the correlation matrix of the intrinsic brain activity signals

(i.e., each row of Zp ). Since the correlation matrix captures a large

amount of sampling noise and inherent randomness that arises in the

estimation of correlations between short time series, the correlation

matrix estimator is a good alternative for recovering the connectivity

structure (Varoquaux, Gramfort, Poline, & Thirion, 2010). In the cur-

rent study, the correlation matrix Xc
p �RK�K for each participant was

generated by Ledoit–Wolf shrinkage estimation (Ledoit &

Wolf, 2004). Noteworthy, for the problem of recovering the func-

tional connectivity structure, sparse inverse covariance estimators

have been found to be efficient, which could capture the effects of

other regions for the standard correlation between two regions

(Varoquaux & Craddock, 2013). In this study, we also calculated the

inverse covariance matrix Xm
p �RK�K for each participant using

the Graphical Lasso estimation (Friedman, Hastie, & Tibshirani, 2008).

The above correlation matrix and inverse covariance matrix car-

ried a lot of information on the functional structure of the brain: the

correlation matrix captures the large-scale functional network, and

the inverse covariance matrix captures partial correlations that can be

regarded as the backbone or core of the brain networks. Since the

spurious background associations between different regions across

participants often made FC analysis challenging (Varoquaux &

Craddock, 2013), a strategy for second-level analysis was proposed to

disentangle the background association effects from the intrinsic con-

nectivity and give unstructured residuals (Varoquaux, Baronnet,

Kleinschmidt, Fillard, & Thirion, 2010). We performed a statistical test

for FC analysis on the residuals of a parametrization intermediate

(Varoquaux, Baronnet, Kleinschmidt, Fillard, & Thirion, 2010) between

the correlation matrix Xc
p �RK�K generated by Ledoit–Wolf shrinkage

estimation (Ledoit & Wolf, 2004) and the inverse covariance matrix

Xm
p �RK�K produced by Graphical Lasso estimation (Friedman

et al., 2008). The correlation matrix Xc
p can be expressed as composed

of the nonspecific intrinsic matrix Xm
p and the participant-specific

effect matrix dXc
p (Varoquaux, Baronnet, Kleinschmidt, Fillard, &

Thirion, 2010):

Xc
p ¼Xm

p þdXc
p: ð4Þ

Equation (4) can be approximated as:

Xc
p ≈Xm

1
2

p IK þdXc
p

� �
Xm

1
2

p , ð5Þ
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where IK is an identity matrix with the same dimensions as the corre-

lation matrix. Thus, the participant-specific effect matrix dXc
p can be

approximated by:

dXc
p ≈Xm�1

2

p Xc
pX

m�1
2

p � IK : ð6Þ

The above method decouples the participant-specific effects

(i.e., actual connections) distributed over the correlation matrices from

background noises (i.e., spurious connections) carried by the inverse

covariance matrices (Varoquaux & Craddock, 2013). Thereafter, Fish-

er's z transformation was applied to each participant-specific effect

matrix dXc
p . For intergroup FC comparisons, the effect of frame-wise

displacement (FD) and face recognition ability (i.e., the CFMT scores)

were regressed out, and a nonparametric permutation test was per-

formed: calculate the difference between the mean values of the IR

and NC groups, denoted �x, regroup the samples and calculate the dif-

ference between means of the two groups, denoted �xi , repeat the

regrouping operation 10,000 times and take the proportion of �xi > �x in

the 10,000 iterations as the uncorrected p value, and then control the

false discovery rate (FDR) p< .05. In addition, a correlation analysis

was conducted to examine the relationship between the interregional

FC calculated using the averaged BOLD signals within subregions and

lung nodule identification performance indexed by the area under the

receiver operating characteristic curve for lung nodule identification.

The pipeline of the data analysis in this study is illustrated in Figure 1.

In addition, in order to evaluate the power of the results, we con-

ducted a post-hoc analysis with the significant level set to .05 and

sample number set to 20, and the power of each reported FC was cal-

culated. In addition, a prior analysis was conducted to evaluate the

effect sample size for each reported FC with the power set to 0.95.

These power analyses were performed using the GPower software

(v3.1) (Faul, Erdfelder, Lang, & Buchner, 2007).

3 | RESULTS

3.1 | Results of behavior tests

Behavior feature of IR and NC groups are summarized in Figure 2.

The two groups were not significantly different in CFMT scores

(p = .174, Mann–Whitney test). In the behavioral test of lung nodule

F IGURE 1 Pipeline of the whole-brain functional connectivity analysis of rs-fMRI data. The rs-fMRI data were preprocessed and divided into sub-
regions using a carefully selected clustering algorithm and scale for further analysis. Functional connectivity analysis was performed on the residuals of
a parametrization intermediate between the correlation matrix generated by the Ledoit–Wolf shrinkage estimation and the inverse covariance matrix
produced by Graphical Lasso estimation. Then, functional connections with differences between intern radiologists and normal control groups were
obtained after Fisher's z transformation, covariates regression, nonparametric permutation test, and false discovery rate correction

WANG ET AL. 4543



recognition, the AUC of the 1-month trained IR group was signifi-

cantly higher than that of the NC group (IR group: mean = 0.80,

SD = 0.04 vs. NC group: mean = 0.53, SD = 0.02, p < .001, Mann–

Whitney test), indicating a better nodule recognition ability in the

trained group. For the IR group, the AUC of ROC in nodule recogni-

tion fell in the interval of 0.73–0.86, which indicated that our experi-

mental design was reliable, according to the guidelines for designing

proper behavioral assessment for radiological performance (Samei

et al., 2010). The 1-month visual recognition training in the X-ray

department had considerably improved the lung nodule identification

performance of participants in the IR group, as demonstrated by the

comments of radiology tutors. Moreover, there was no significant dif-

ference in the score of CFMT between the IR and NC groups (IR

group: mean = 56.8, SD = 5.5 vs. NC group: mean = 59.2, SD = 5.2,

p = .174, Mann–Whitney test), which demonstrated that the two

groups had similar face recognition abilities.

3.2 | Results of the clustering method selection

The silhouette width of the results of the brain sub-division is illus-

trated in Figure 3a, with the data-driven generated results in red and

the atlas generated results in blue. The data-driven methods show an

overall higher silhouette width, confirming our anticipation that data-

driven methods were better adapted to the brain signals in this study

than predefined functional atlases. The MSC-mean method had the

highest silhouette width with comparable intracluster homogeneity

(Figure 3b) and better intercluster isolation (Figure 3c) than other

methods. Therefore, the MSC-mean method was adopted to divide

the brain into sub-regions in the following analysis.

3.3 | Results of the clustering scale estimation

For clustering reproducibility measurement (Figure 3d, average of

10 subgroup partitions), both ARI and AMI reached prominent local

maxima when the expected number of clusters were set to 100, 250,

and 600, and the whole brain was divided into approximately 98, 235,

and 489 clusters, respectively. The number of clusters at the local max-

ima of AMI and ARI indicated that some stable features could be cap-

tured when the whole brain was divided into these numbers of clusters

(Thirion et al., 2014). Then, we selected the expected cluster scale from

the above three candidate numbers of clusters by taking into account

the following factors. First, the size of activated brain regions reported

in previous radiologist studies (Bilalic et al., 2016; Haller &

Radue, 2005; Harley et al., 2009) was mostly found in the range of

604 to 7046 mm3 (mean = 2,127 mm3, SD = 1744 mm3,

median = 1580 mm3, after removing the top five and bottom five out-

liers), while the region sizes corresponding to 98, 235, and 489 clusters

were approximately 18,000, 7500, and 3600 mm3, respectively. Among

the above three candidates, dividing the whole brain into the scale

(i.e., 489 clusters) that was similar to the previously reported scale of

activation areas could better satisfy the requirements of avoiding the

obliteration of radiographic visual experience effects and have good

interpretability of the results. Second, the clustering scale of 489 clus-

ters produced significantly better cluster compactness and cluster isola-

tion than 98 or 235 clusters (Figure 3b,c), indicating that the ability of

the clustering method to model the signals of interest was strongest

when dividing the whole brain into approximately 489 clusters. Third,

as the number of sub-regions increases from 400 to 600 (Figure 3d),

the algorithm's reproducibility indices were monotonically increasing

and decreasing before and after reaching the local maxima at

489, respectively. The absence of abrupt changes in the reproducibility

index within this interval of the number of sub-regions makes our

choice of a cluster number around 489 clusters more reliable.

Taking all these factors into account, we set the expected number

of clusters for the MSC-mean method to 600 (>489 because of the

presence of trivial solutions) and eventually divided the whole brain

into 512 sub-regions.

3.4 | Results of functional connectivity and
correlation analysis

In the cluster-based whole-brain FC analysis, significant intergroup dif-

ferences in temporal synchronism were observed: (1) between cingu-

late gyri and frontal areas, precuneus (PCUN), and temporal areas,

(2) between the lingual gyrus (LING) and occipital and frontal areas, and

(3) between the fusiform gyrus (FFG), cingulate gyri, and frontal areas.

The results of the FC and correlation analysis are presented in

Table 1, which lists the name of brain regions and their corresponding

hemisphere (Hem), Brodmann area (BA), MNI coordinates, the Spe-

arman's correlation coefficient (r) with a significant correlation

(p < .05, FDR corrected) between its associated FC and visual recogni-

tion accuracy, and the power (1 � β) and effect sample number in

each group (N) evaluated by post-hoc and a priori analyses. The names

of brain regions in this study were defined according to the auto-

mated anatomical labeling (AAL) template (Tzourio-Mazoyer

et al., 2002). Among the 27 connections reported with significant

F IGURE 2 Individual performance of lung nodule identification
and face recognition. The error bars denote the standard deviation of
the AUC or values in the Cambridge Face Memory Test for each
group. The AUC is the area under the receiver operating characteristic
curve for lung nodule identification
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group-wise FC difference, seven of which were found to have insuffi-

cient statistical power due to an inadequate sample size as shown in

the last two columns of Table 1. Although this does not affect the

interpretation of the results, we do suggest that further studies with

larger samples are encouraged to repeat the current findings.

Specifically, a significant higher temporal synchronism (p < .001,

permutation test, FDR corrected) was observed in the IR group

between the bilateral dorsal anterior cingulate gyrus (ACGdor; 5, 30,

18, BA24) and (1) superior frontal gyrus (SFG), including the bilateral

medial SFG (SFGmed) and left dorsolateral SFG (SFGdor), (2) orbital

frontal gyrus (OFG), including bilateral superior OFG (OFGsup) and

left inferior OFG (OFGinf), and (3) bilateral PCUN; between the right

median cingulate gyri (MCG; 10, 34, 34, BA32) and (1) bilateral middle

temporal pole (TPOmid), and (2) frontal areas, including the left

SFGmed and right OFGsup; and between the left LING and bilateral

occipital and occipital-adjacent regions, including the superior occipi-

tal gyrus (SOG), left calcarine fissure (CAL), and left cuneus (CUN).

In contrast, significantly lower temporal synchrony (p < .001, per-

mutation test, FDR corrected) was observed in the IR group between

the left LING (�28, �61, 0, BA19) and right frontal areas, including

the right middle frontal gyrus (MFG), right middle OFG (OFGmid), and

right OFGinf. In addition, significantly lower temporal synchrony

(p < .001, permutation test, FDR corrected) was observed in the IR

group between the left FFG (�42, �53, �15, BA37) and bilateral

ACGdor, right MCG, and frontal areas, including the right SFGdor, left

medial orbital superior frontal gyrus (OFGsupmed), and left SFGmed.

Most aforementioned brain regions were also observed in previous

task-state radiographic visual expertise studies (Bilalic et al., 2016;

Haller & Radue, 2005; Melo et al., 2011).

In addition, we stated that the differences of interregional FC were

not likely to be contributed by other categories of visual expertise,

since the expertise in other domains were either excluded from partici-

pant inclusion or controlled by additional behavioral tests (i.e., face rec-

ognition expertise). Normally, the perceptual ability of radiographic

F IGURE 3 Results of clustering performance evaluation. (a) Silhouette width of data-driven clustering methods and predefined functional
atlases. (b) Cluster compactness of the data-driven clustering methods across multiple clustering scales. (c) Cluster isolation of the data-driven
clustering methods across multiple clustering scales. (d) The adjusted mutual information and adjusted rand index of the MSC-mean method
across different clustering scales
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visual recognition is obtained by reviewing hundreds of cases (Nodine

et al., 2002; Samei et al., 2010). We conducted a correlation analysis

between FC and the number of training cases within the IR group to

test the homogeneity of the training sample size and found no signifi-

cant correlation between them, indicating that the number of cases par-

ticipants reviewed do not affect the FC of the IR group. In other words,

the amount of training was homogeneous in the IR group.

4 | DISCUSSION

The visual expertise model of radiologists is rare but important (Bilalic

et al., 2016; Haller & Radue, 2005). Radiological expertise is acquired

through reviewing hundreds of cases (Nodine et al., 2002; Samei

et al., 2010). It is a fundamental skill whose key ability is to identify

subtle abnormalities on an initial global analysis of the retinal image

(Myles-Worsley, Johnston, & Simons, 1998; Wallis & Bulthoff, 1999).

Numerous functional neuroimaging studies investigated the brain

dynamics involved in visual expertise. These studies have revealed an

involvement of widespread brain regions supporting radiologists'

superior ability in visual recognition, such as frontal gyrus, fusiform

gyrus, lingual gyrus/collateral sulcus, precuneus, and superior tempo-

ral sulcus (Bilalic et al., 2016; Haller & Radue, 2005; Harel

et al., 2010). The activations of these circuits compose a neuro-

behavioral model of brain processes in visual expertise, consisting of

visual processing, memory, and semantic analysis and refined con-

necting patterns across these circuits. The current study investigated

how visual experience modulates resting-state whole-brain connectiv-

ity dynamics using the expertise model of radiologists and a more sen-

sitive functional connectivity (FC) analysis to identify subtle changes

TABLE 1 Results of functional connectivity and correlation analysis

Name Hem BA

Coordinates

Name Hem BA

Coordinates

r 1 � β Nx y z x y z

ACG R 32 10 36 16 Medial SFG R 9 12 51 41 0.962 19

L/R 0 10 26 Medial SFG L 8 -5 28 46 0.542 0.965 19

R 32 10 36 16 Dorsolateral SFGa L 10 �20 59 20 0.885 26

R 32 10 36 16 Dorsolateral SFGa L 8 �20 28 55 0.924 23

L/R 0 10 26 Superior OFG R 11 10 60 �19 0.323 0.974 18

L/R 0 10 26 Superior OFGa L 11 �8 58 �22 0.944 21

R 32 10 36 16 Inferior OFG L 47 �42 31 �16 0.951 20

R 11 9 39 2 PCUN R 12 �56 34 0.345 0.969 18

R 32 10 36 16 PCUNa L �9 �59 29 0.806 32

MCG R 32 10 34 34 Middle TPO L 21 �51 12 �26 0.316 0.956 20

R 32 10 34 34 Middle TPO R 21 55 9 �33 0.959 19

R 32 10 34 34 Medial SFG L 10 �15 50 8 0.982 16

R 32 10 34 34 Superior OFG R 11 15 47 �23 0.978 17

LING L 19 �28 �61 0 MFGb R 46 36 47 29 �0.408 0.968 19

L 19 �28 �61 0 Middle OFGb R 47 29 50 �3 �0.352 0.990 15

L 19 �28 �61 0 Inferior OFGb R 47 36 28 �6 �0.326 0.962 19

L 19 �28 �61 0 SOGa R 17 15 �93 22 0.852 29

L 19 �28 �61 0 SOGa L 17 �15 �93 22 0.902 25

L 19 �28 �61 0 CAL L 17 �6 �83 8 0.422 0.999 11

L 19 �28 �61 0 CUN L 17 �6 �94 19 0.430 0.993 14

FFG L 37 �42 �53 �15 Dorsal ACGb R 32 10 36 16 �0.328 0.974 18

L 37 �42 �53 �15 Dorsal ACGb L 32 �4 40 16 0.970 18

L 37 �42 �53 �15 MCGb R 32 10 35 35 �0.401 0.992 14

L 37 �42 �53 �15 Dorsal SFGb R 10 17 55 7 0.958 20

L 37 �42 �53 �15 OFGsupmedb R 10 �8 53 �2 �0.403 0.976 17

L 37 �42 �53 �15 Medial SFGa,b L 8 �8 28 58 0.949 21

L 37 �42 �53 �15 Medial SFGb L 9 �8 53 36 0.991 15

Abbreviations: BA, Brodmann's area; Hem, hemisphere; N, the effect sample number in each group evaluated by a prior analysis; r, Spearman' correlation

coefficient; 1 � β, the power evaluated by post-hoc analysis.
aInsufficient statistical power due to an inadequate sample size, otherwise sufficient.
bWeakened functional connectivity in the IR group, otherwise enhanced.
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in connectivity patterns. Radiologists have superior perceptual ability

in distinguishing visually similar stimuli (Samei et al., 2010), which is

supported by a complex brain process of visual processing, attention

control, decision making and semantic analysis. Our results illustrated

integration across brain circuits supporting high-order functions, that

is, decision making and attention control as well as decision making

and semantic processing (Figure 4), and integration within brain cir-

cuits supporting visual processing and decision making (Figure 4).

Interestingly, we also found segregation between high-order cognitive

and low-order perceptual brain networks, such as visual processing

and attention control as well as visual processing and decision making

(Figure 4).

4.1 | Integration within brain circuits supporting
visual processing and decision making

4.1.1 | Higher coherence between regions for
visual perception

Compared with the NC group, the IR group has higher coherence

within FCs responsible for visual processing. Specifically, significant

higher FCs were observed between the left LING (belongs to visual

area V2) and the sub-regions of the primary visual cortex (visual area

V1) including the bilateral SOG (BA17/18), left CAL, and left CUN

(collectively referred to as V1 [Ji et al., 2019] in Figure 4). Visual

expertise is an acquired skill through learning hundreds of cases with

domain-specific visual features (Annis & Palmeri, 2019). The acquisi-

tion of expert knowledge may be accompanied by an increase in the

cohesion of visual processing functions. In the process of visual learn-

ing, the neural computation in the human brain remodels the sensory

responses (Ji et al., 2019), which makes the brain more perceptive and

makes it easier for subjects to recognize specific features in images

(Haller & Radue, 2005). The ventral visual stream is thought to be a

basis of visual recognition (Ungerleider & Haxby, 1994), which starts

with V1, relays to V2, and finally reaches the inferior temporal cortex

(Song et al., 2017). Thus, increases in coherence within the ventral

visual stream should be associated with enhanced visual abilities.

In this study, a significant higher FC was observed in the IR group

between regions belonging to V2 and V1 within the ventral visual

stream. LING belonging to visual area V2 is a brain region for early

visual processing that has been found to be associated with the

encoding of image features (Machielsen, Rombouts, Barkhof,

Scheltens, & Witter, 2000) and skill learning such as word learning

F IGURE 4 Altered functional
connectivity with their possible
corresponding functional
integration (red lines) or
segregation (blue lines) in the IR
group. The locations of ACG,
SFG, OFG, and TPO are
represented by multiple images
for two reasons: (1) the sub-
regions of TPO are disconnected
and located in different
hemispheres; and (2) changed
functional connections in the
ACG, SFG, or OFG were
observed in different sub-regions.
Detailed brain region connections
are shown in Figures S1–S3
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(Marcotte & Ansaldo, 2014), associative visual learning (Ji et al., 2019),

perceptual learning (Liu et al., 2016), and always to be activated

among visual experts according to the evidence from meta-analysis

(Neumann, Lotze, & Eickhoff, 2016). In addition, LING has been

observed to be co-activated across the habituation and acquisition

phases of associative visual learning with CAL and CUN belonging to

visual area V1 (Ji et al., 2019), and among presbyopia subjects with

improved near-reading abilities after perceptual learning with CUN

belonging to V1 (Liu et al., 2016). Evidence on human vision

suggested that functional integration in the ventral visual stream pro-

vides the basis for efficient processing of visual information, where

V1 provides critical input to V2, and V2 modulates the information

transmitted through V1 (Friston, Ungerleider, Jezzard, &

Turner, 1995). In the present study, the FC between LING and CAL

and between LING and CUN were significantly correlated with the

accuracy of lung nodule identification in participants, indicating that

the higher FC between V1 and V2 was associated with the improve-

ment of individual behavioral performance. Therefore, we speculate

that as radiographic visual learning progresses, participants will

become familiar with lung nodule-specific visual features, which may

facilitate the joint activation of lower-order visual areas and allow

visual perceptual processing of nodule-specific features to be more

efficient.

4.1.2 | Higher coherence between regions for
decision-making

Compared with the NC group, the IR group has higher coherence

within FCs responsible for decision-making. Specifically, significant

higher FCs were observed between regions for decision-making:

between ACGdor and SFG, and between ACGdor and OFG in the IR

group. Decision-making is the process of flexibly aligning cognitive

and sensorimotor operations based on an assessment of potential

costs (Lee, Rushworth, Walton, Watanabe, & Sakagami, 2007), which

is essential in expert visual processing (Donovan & Litchfield, 2013;

Vila-Maldonado, Abell�an, S�aez-Gallego, García-L�opez, &

Contreras, 2014). The connectivity between brain regions within the

decision-making function increases with visual training (Bueicheku,

Miro-Padilla, & Avila, 2019), which suggests that the acquisition of

visual expertise is accompanied by an increase in cohesion within the

decision-making function.

Significantly higher FCs were observed in the IR group between

brain regions within the decision-making function: between ACGdor

and frontal areas including SFG and OFG. ACG is located strategically

in the central place for processing top-down and bottom-up stimuli

and assigns appropriate control to other brain regions (Pavlovic,

Pavlovic, & Lackovic, 2009). It appears to be especially involved when

effort is needed to carry out tasks, such as during early learning or

problem solving (Allman, Hakeem, Erwin, Nimchinsky, & Hof, 2001).

The functions of ACG could be summarized into two major categories:

1) conflict detection, such as error detection, task anticipation, moti-

vation, and modulation of emotional processes (Bush, Luu, &

Posner, 2000; Nieuwenhuis, Riddeerinkhof, Blow, Band, & Kok, 2001;

Posner & Digirolamo, 1998); 2) cognitive control, such as decision-

making and reward-based learning (Lee et al., 2007). The dorsal part

of ACG, that is, the ACGdor, is the central station on control distribu-

tion (Posner & Digirolamo, 1998), which is contained within an exten-

sive network of cortical regions, including the SFG and OFG, that

serve as neural substrates for decision-making (Bush et al., 2000;

Miller, 2000; Paus, 2001; Posner & Raichle, 1995). The joint activation

of ACG and SFG (Roelofs, van Turennout, & Coles, 2006), and the

joint activation of ACG and OFG have been observed in decision-

making (Lee et al., 2007).

In this study, we tended to summarize the function of ACG as

decision-making by comprehensively considering the theory of the

model of radiologists and the function of FCs involved in the ACG.

According to the model of radiologists, the cognitive process of radio-

graphic image interpretation may more or less involve the participa-

tion of functions of conflict detection and decision-making (Nodine,

Kundel, Lauver, & Toto, 1996). While the FC between ACG and SFG

and between ACG and OFG have significant group-wise differences

generally related with decision-making. Therefore, we prefer to sum-

marize the function of ACG as decision-making in this study. In addi-

tion, the strength of FC between ACGdor and SFG was found in

relation to the experience of visual learning in both task and resting

states (Bueicheku et al., 2019). In this study, the FCs between ACGdor

and SFG and between ACGdor and OFG were significantly correlated

with subject's lung nodule identification accuracy, suggesting that the

higher FC between brain regions for decision-making was associated

with the improvement of individual behavioral performance. Given

that the coordinated activation of cortical regions during behavior

shapes the organizational pattern of correlated spontaneous activity

at rest (Lewisa, Baldassarre, Committeri, Romani, & Corbetta, 2009),

we speculate that the higher FC between brain regions for decision-

making may be attributed to the co-activation of ACG, SFG, and OFG

during radiographic visual recognition learning. These results imply a

better communication mechanism of the decision-making system built

as radiographic visual learning proceeds.

4.2 | Integration across brain circuits supporting
high-order functions

Our results elucidated that training in radiographic visual recognition

increased association between high-level cognition functions, such as

decision-making and top-down attention control, decision-making and

semantic processing. In details, the FC were significantly higher in the

IR group between ACGdor and PCUN, and between ACGdor

and TPO.

Top-down attention control is the process of activating, regulat-

ing, and monitoring how information is received and processed, and is

embodied in multiple processes such attention guidance, focus

shifting, environmental monitoring, and stimuli context assessment

(Cavanna & Trimble, 2006; Kawashima, Roland, & O'Sullivan, 1995;

Vogt & Derbyshire, 2009; Wagner, Shannon, Kahn, & Buckner, 2005;
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Wenderoth, Debaere, Sunaert, & Swinnen, 2015). It has a pivotal role

in the reading of domain-specific visual information such as radio-

graphic images, which may be attracted to a particular feature and

then compared to the previously learned reference images (Haller &

Radue, 2005; Harley et al., 2009). The top-down attention control

network has rich functional interaction with the decision-making net-

work in the process of visual perception and recognition (Wang,

Zhang, Klein, Levi, & Yu, 2014; Xiao et al., 2008). The increase of func-

tional interaction strength between the two networks was closely

associated with improved visual ability acquired through learning (Niu

et al., 2014).

In this study, higher FC was observed in the IR group between

regions for top-down attention control (i.e., the PCUN) and decision-

making (i.e., the ACG). PCUN is a focal area of attention organization,

where information from various brain regions is integrated (Lin, Has-

son, Jovicich, & Robinson, 2011), and is involved in various attentional

processes such as attention directing (Kawashima et al., 1995), focus

shifting (Cavanna & Trimble, 2006; Wenderoth et al., 2015), environ-

ment monitoring, and stimuli context assessing (Vogt &

Derbyshire, 2009; Wagner et al., 2005). Moreover, PCUN is closely

related to visual learning, such as associative visual learning

(Ji et al., 2019) and word learning (Marcotte & Ansaldo, 2014). In addi-

tion, PCUN has been observed to be co-activated with ACG under a

variety of cognitive processes such as in tasks that require goal-

directed attention modulation, integration, and shifting (Wenderoth

et al., 2015), and during the acquisition phase of associative visual

learning (Ji et al., 2019). In this study, the FC between PCUN and

ACG was also positively correlated with participants' lung nodule

identification performance. These results imply a more effective func-

tional interaction mechanism between attention control and decision-

making functions that enabled the trained participants to locate a spe-

cific combination of lung nodule-specific visual features and show

higher nodule identification accuracy.

Semantic processing is a process to store and discern subtle simi-

larities and differences of concepts, which is recruited during tasks

that require concept recognition or comparison such as identifying

familiar faces and scenes, or identifying voices (Nakamura et al., 2000;

Nakamura et al., 2001). Semantic discrimination is closely interrelated

with attention control and decision-making systems (Niu et al., 2014),

and is indispensable for visual recognition (Vandenberghe, Price, Wise,

Josephs, & Frackowiak, 1996) and visual learning (de Hoz, Knox, &

Morris, 2003; Roland, Gulyas, Seitz, Bohm, & Stone-Elander, 1990).

Moreover, evidence from visual studies showed that brain areas that

are related to decision-making are involved in semantic discrimination

(Gold & Shadlen, 2007), which implied the vital role of interaction

between semantic processing and decision-making for visual

processing. Therefore, we speculate that learning to discriminate

sophisticated visual features may result in an enhancement in func-

tional interaction between brain systems of semantic processing and

decision-making.

FC between regions for semantic processing (i.e., the TPO) and

decision-making (i.e., the ACG) were significantly higher in the IR

group than in the NC group. TPO is an essential member of the

mentalizing (i.e., theory of mind) system and is concerned with gener-

ating a broader semantic and emotional context for the materials

being processed based on the experience (Frith & Frith, 2003). TPO is

often activated in tasks that require semantic comparison or discrimi-

nation such as comparing sentences with unrelated strings of words

(Vandenberghe, Nobre, & Price, 2002), examining highly coherent ver-

sus less coherent narratives (Maguire, Frith, & Morris, 1999), and

probing knowledge of associations between concepts and the visual

attributes of those concepts (Vandenberghe et al., 1996). Besides,

TPO is strongly associated with prior experience of skill learning. Evi-

dence from magneto-encephalographic source localization, corrobo-

rated by intracranial recordings, suggests that prior experience

modulates early neural processing along a neural route initiated in an

anterior system that includes OFG and TPO (Gamond et al., 2011).

Moreover, TPO has been found to be involved in multiple skill learn-

ing processes, such as visual learning (Roland et al., 1990), auditory

learning (Zhu et al., 2019), word learning (Elmer, Albrecht, Valizadeh,

Francois, & Rodriguez-Fornells, 2018), and spatial learning (de Hoz

et al., 2003). In this study, the FC between TPO and ACG was signifi-

cantly correlated with individual lung nodule identification accuracy,

which seems to suggest that learning to discriminate sophisticated

visual features facilitated individual decision-making to identify lung

tumors.

4.3 | Segregation between high-order and low-
order brain functions

Our results elucidated that visual recognition experience prompted

the disassociation between brain circuits for cognition and visual

processing, such as between visual processing and attention control,

and between visual processing and decision-making. Specifically, FC

between the left LING and right MFG, between the left LING and

right OFG, and between the left FFG and areas for decision-making,

including ACGdor, SFG, and OFG were lower in the IR group.

The acquisition of visual expertise may involve the suppression of

some preexisting neural representations and the development of new

ones (Harley et al., 2009), which may help to filter out some nonre-

levant information and thus facilitate more efficient task execution

(Liu et al., 2020). In this study, we observed diminished functional syn-

chronization between regions for visual processing (i.e., the left LING)

and attention control (i.e., the MFG) in the IR group. MFG has been

proposed as a junction of the dorsal and ventral attention networks,

which acts as a circuit breaker to interrupt ongoing endogenous atten-

tion processes in the dorsal system and redirects attention to exoge-

nous stimuli (Japee, Holiday, Satyshur, Mukai, & Ungerleider, 2015).

MFG and LING have separate roles in visual object recognition: LING

focuses more on lower-order visual information processing, while

MFG focuses more on processing top-down information (Otsuka &

Saiki, 2020). Furthermore, study on spatial sequences learning found

that the left LING and right MFG works on discrete neural circuits

(Nemmi, Boccia, Piccardi, Galati, & Guariglia, 2013), demonstrating

their distinct roles again in visual information processing.
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Moreover, the functional coupling between brain regions for

visual processing (i.e., the left LING) and decision-making (i.e., the

OFG) was lower in the IR group than the NC group. OFG is a member

of the decision-making network that encodes expected outcomes and

plays a critical role in flexible, outcome-guided behavior (Liu

et al., 2020). Functional diverges between the OFG and left LING

have been observed through categorization learning of visually similar

objects (Xu, D'Lauro, Pyles, Kass, & Tarr, 2013). Moreover, it has been

found that the activation of top-down projection of the OFG leads to

response suppression in V1 during associative learning to filter out

nonrelevant visual information to facilitate learning (Liu et al., 2020),

again providing evidence that visual learning can induce suppression

of some functional representations.

Furthermore, weakened FC was observed in the IR group

between the left FFG and regions for decision-making (i.e., the

ACGdor, SFG, and OFG). The general role of the left FFG in lower-

order visual feature processing and visual learning has been demon-

strated in numerous neuroimaging studies. Specifically, the left FFG

was found to be engaged in the processing of abstract visual informa-

tion (Devlin, Jamison, Gonnerman, & Matthews, 2006), its activity in

radiologists could reliably distinguish between upright and inverted X-

rays (Bilalic et al., 2016). Left FFG plays a vital role in visual categori-

zation learning (Goold & Meng, 2017; Lech, Gunturkun, &

Suchan, 2016); its activity was observed to be positively correlated

with participants' perceptual performance (Bi, Chen, Zhou, He, &

Fang, 2014; Liu et al., 2016; Mukai et al., 2007) and could be modu-

lated by visual learning (Goold & Meng, 2017). The left FFG works for

a different neural system involved in semantic category-based visual

processes than ACG (Wei, Zhangi, Lyu, Hu, & Li, 2017), and was

observed to have diverged function in contrast to the decision-making

network through visual categorization learning for visually similar

objects (Xu et al., 2013). Concretely, significant categorical discrimina-

bility has been observed in the ventral visual pathway (including the

left FFG and left LING) during both early and late learning, whereas

significant categorical discriminability in the prefrontal cortex is only

present during early learning and disappears (as category familiarity

increases) during late learning (Xu et al., 2013).

In addition, FCs between the left LING and MFG, between the

left LING and OFG, and between the left FFG and regions for

decision-making were negatively correlated with participants' lung

nodule identification accuracy (Table 1). These results indicated the

direct linkage between weakened FC of some brain regions and

improved lung nodule identification performance. The process of lung

nodule identification in X-ray images requires the collaborative work

between multiple brain functional systems, and may involve filtering

out task-irrelevant visual information. As skills develop, cognition and

perception are developed separately (Duan et al., 2012). The resting-

state brain activity is responsible for the coding of prior experience

(Miall & Robertson, 2006), and the organization patterns of correlated

spontaneous activity in resting states can be shaped by the coordi-

nated activation of cortical networks during behaviors (Lewisa

et al., 2009). We suggest that the diminished functional synchroniza-

tion between the above functional systems in the IR group probably

are the results of radiological diagnostic learning, which involves

suppressing some existing neural representations between functional

systems in order to achieve more effective domain-specific visual

information processing.

4.4 | Limitations

We suggest several limitations be taken into consideration when

interpreting the current findings. Firstly, in this study, the sample size

is not optimal. The subjects were medical school students in rotation.

There were about only 31 students, part of which were assigned to

technical group. In this study, the homogeneity of radiological experi-

ence was carefully controlled. After rigorous behavioral screening pro-

cedure, we made sure that the participants with qualified behavioral

performance were recruited. The sample size is the best we could

possibly achieve. However, we do suggest that further studies with

larger samples are encouraged to repeat the current findings. Second,

the training duration for the experts is relatively short. The radiologist

interns had to undertake rotations in MRI, B-scan ultrasonography,

positron emission tomography-computed tomography (PET-CT) and

X-ray departments within 4 months. One-month training in X-ray

department is the longest for their training plan. After difficult negoti-

ation with the hospital, we managed to align all the participants' train-

ing arrangement to starting from X-ray, but failed to increase the

training duration. However, the total number of training cases for

each participant was 763.0 ± 76.8 (Mean ± SD), which is sufficient to

achieve the expertise (Annis & Palmeri, 2019). The results of behav-

ioral test also supported this. We do suggest that further studies with

a longer training duration conducted to repeat the current findings.

Last but not least, a longitudinal experimental design and pretests for

the participants were not carried out in this study. For cross-sectional

studies, confounding factors such as congenital factors or long-term

experiences in X-ray diagnosis before training, cannot be ruled out as

possible explanations for the observed differences between groups.

Although this is unlikely to happen, we should be careful to claim that

the observed difference in FC is actually caused by short-term learn-

ing, or by congenital factors or long-term experiences. In further stud-

ies, longitudinal experiments should be considered to test our

conclusions.

5 | CONCLUSIONS

The current study explored how real-world visual experience modu-

lates connectivity patterns in resting-state brain activity using the

model of radiologists. Region-wise functional connectivity analysis

was performed based on functionally defined brain regions. Results

suggested that visual expertise be accompanied by integration within

or across brain circuits, and segregation between brain functions in

the restful brain. The current study bridged the gap to understand the

role of radiological visual experience on interregional spontaneous

connectivity dynamics and may provide new ideas for understanding
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the central mechanism of the formation of real-world visual recogni-

tion expertise. Our findings implied that radiographic visual

recognition learning may modulate the plasticity of spontaneous brain

functional interactions within or between brain functions, resulting in

a neurological system for more efficient radiographic-specific visual

information processing.
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