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Abstract

Motivation: Gene Expression Omnibus (GEO) and other publicly available data store

their metadata in the format of unstructured English text, which is very difficult for

automated reuse. Results: We employed text mining techniques to analyze the metadata

of GEO and developed Restructured GEO database (ReGEO). ReGEO reorganizes and

categorizes GEO series and makes them searchable by two new attributes extracted

automatically from each series’ metadata. These attributes are the number of time points

tested in the experiment and the disease being investigated. ReGEO also makes series

searchable by other attributes available in GEO, such as platform organism, experiment

type, associated PubMed ID as well as general keywords in the study’s description. Our

approach greatly expands the usability of GEO data, demonstrating a credible approach

to improve the utility of vast amount of publicly available data in the era of Big Data

research.
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Figure 1. The number of datasets in GEO with multiple time points. (source: GEOMetadb).

Introduction

In this Big Data era, data-driven approach for biomedical
research becomes more and more important (1), and data
sharing and reuse has received a great deal of attention in
the scientific community (2, 3). However, many barriers
still exist for reuse of others’ data (4). In particular, when
a public data repository or database is not designed for
data reuse, the metadata (data about data) may be vague
and documented in plain text, and not structured and well
standardized, making it difficult for researchers to identify
the data they need. Using text mining techniques to identify
and organize critical metadata information from the data
repositories or databases can greatly increase the reuse of
these shared data.

The Gene Expression Omnibus (GEO) is the largest data
repository designed for archiving and distributing microar-
ray, next-generation sequencing, and other functional high-
throughput genomics data (1, 5, 6). As of January 2018,
the GEO repository hosts over 90 000 series submitted
directly by an estimated 26 000 laboratories, comprising
over 2 × 106 samples (https://www.ncbi.nlm.nih.gov/geo/
summary) derived from over 3000 organisms. GEO offers
a simple submission procedure that allows researchers to
summarize a study in plain text. However, such flexibility
has also resulted in unstructured metadata in plain English
scattered in different sections of each study’s description
making its reuse difficult.

Time-course data are fundamental to study genome
dynamics and identify genes whose expression changes
significantly over a defined period of time. Discovery of
these genes is crucial in order to understand underlying
disease mechanisms, detect novel targets for intervention
and improve prevention and treatment of diseases (7–9).
While robust statistical methods have been developed to
identify these genes and discover dynamic gene regulatory
networks (10–13), these methods generally require time-
course data with a certain minimum number of time points
to yield reliable results. Even though the availability of

time-course data in GEO has increased throughout the
years (14) (Figure 1), such information is mostly buried in
the metadata in the form of unstructured plain text and
is very difficult to obtain, especially through automated
means.

To maximize reuse, GEO incorporates a comprehensive
search function to discover experimental results through
query terms such as ‘organism’ or ‘cell type’ (15). Addi-
tional tools such as RESTful APIs (16, 17) and GEOmetadb
(14) can also assist in retrieving data from GEO. However,
important information such as the time course of a study
still cannot be obtained, making it extremely difficult to
reuse GEO data to study genome dynamics. Many dif-
ferent approaches attempted to enhance the retrieval of
data from GEO database. Aside from GEOmetadb (14),
other previous efforts include GEOquery (18), which offers
an interface between BioConductor (19) and GEO for
the retrieval of records through the same fields available
in this repository. More recent works include ScanGEO
(20) and ImaGEO (21), which offer web interfaces that
allow the retrieval of GEO series with search capabilities
that are superior to those offered natively by GEO while
GEOMetaCuration allows the collaborative, manual cura-
tion of existing attributes (22). In addition, recent works
also focused on mining GEO metadata, include ALE (23)
and CEDAR (24). However, these works do not contem-
plate the automated identification of new attributes from
each series’ existing metadata on GEO, particularly the
number of time points and disease under investigation in
each study.

In this work, we employed text mining techniques to
develop Restructured GEO (ReGEO), a novel database to
maximize re-use of GEO data by providing time series
information about experimental data stored in GEO. We
used a rule-based text mining algorithm to parse the meta-
data in GEO to automatically identify the number of time
points in the experimental design. Our approach reached an
accuracy rate of 93.5% and is entirely automatic. Our work
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demonstrates the utility of text mining in improving the
usability of publicly available data. The ReGEO database
can be accessed at http://www.regeo.org.

Database description

Data source and workflow

We obtained metadata and the titles of samples for Gene
Series Expression (GSE) data from GEO and GEOmetadb
(14). Among these data sets, super series datasets are a
combination of a number of related datasets that will be
analyzed individually. After excluding these super series
from time point detection, the metadata and the titles
of the samples were then analyzed by our novel natural
language processing (NLP) search engine in order to detect
the number of time points in each experiment. The resulting
time points were subject to a rational analysis that validates
the information of time points from both the metadata and
the sample IDs (see next section for details). MetaMap was
also applied to the metadata, and the Disease Ontology
(DO) terms were detected from the annotated text for
each dataset. Both the resulting time point information and
DO were stored in the ReGEO database. The workflow is
shown in Figure 2.

Automated identification of time points

We designed an NLP text mining algorithm to detect infor-
mation about the number of time points (for example ‘12
time points’, ‘7 developmental stages’) of gene expression
data in GEO in the ‘Summary’ and ‘Overall design’ fields;
listings of time points (for example ‘harvest at 6, 12 hours
and 1, 3, 5 days’); and time-related statements, e.g. ‘early
stage’ or ‘middle age’. In addition, the algorithm looks for
the time point information in the titles of the series’ samples,
taking into account that the time values may appear as a
number followed by a time unit, or vice versa (e.g. ‘day 1’,
‘10 hr’). In summary, the algorithm evaluates the following
four possible scenarios for determining the time points

1. Explicit statement of the number of time points.
2. Listing of time points.
3. Approximate statement.
4. Time points in titles of GSM samples.

A regular expression-based method was used to parse the
GEO metadata to match the above patterns, followed by
verification of consistence and rationality in the following
conditions:

1. For time points expressed in the ‘Summary’ or ‘Over-
all design’ fields, the following four situations are
considered as valid statement of time points.

a. Explicitly stated number of time points, time series
or stages, and so on;

b. A list of numbers only in ascending order, followed
by or starting with a time unit;

c. Multiple lists, as stated in b;
d. A list of numbers each with time unit.

2. Rational analysis for single-letter time-unit time
points expressed in the titles of samples, the following
rules are applied.

a. Treated as false time points if the same number
is mentioned in summary or overall design with
samples or patients.

b. Treated as false time points if certain other letters
that are deemed irrelevant to time occurred in the
same positions in other titles.

c. At least part of the time points in that dataset
must show a regular pattern, either in an arithmetic
progression or geometric progression series.

When filtering GEO series by a fixed number of time
points, false negatives are less desirable than false positives
because the latter can be easily identified and discarded
during analysis. For this reason, our algorithm was designed
to err by excess and, possibly, assign extra time points to a
series rather than missing any of them.

The above text mining rules were fine-tuned on 600
manually-curated GEO series with ≥8 time points and
evaluated on an additional 200 GEO series.

Automated identification of diseases

The automated identification of diseases in each GEO
series was accomplished with MetaMap and DO (25),
where DO is a well maintained, standardized ontology
for human disease with the purpose of providing the
biomedical community with consistent, reusable and
sustainable descriptions of human disease terms, phenotype
characteristics and related medical vocabulary disease
concepts (disease-ontology.org). MetaMap is a highly
configurable program to map biomedical text to the UMLS
Metathesaurus or, equivalently, to discover Metathesaurus
concepts mentioned in text (26, 27). MetaMap uses a
knowledge-intensive approach based on symbolic, NLP
and computational-linguistic techniques. Besides being
applied for both information retrieval and data-mining
applications, MetaMap is one of the foundations of NLM’s
Medical Text Indexer, used for semiautomatic and fully
automatic indexing of biomedical literature at NLM.

We applied MetaMap to annotate the metadata of
each GEO series, including ‘Title’, ‘Summary’, ‘Organism’
and ‘Overall design’ field, as well as the abstract of the

http://www.regeo.org
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Figure 2. Workflow for developing ReGEO.

citation, then we detected DO terms in the processed
text, and labeled each GEO series with DOID termIDs,
DOID termName, DOID isLeaf, DOID distancefromRoot
and DOID isObsolete. DOID termIDs is the numeric
identifiers of the DO term; DOID termName is the
corresponding DO terms; DOID isLeaf indicates whether
the matched term is a ‘leaf’ node in DO’s hierarchy t;
DOID distancefromRoot denotes the distance of matched
term from the root in DO; DOID isObsolete denotes if the
term has become obsolete in the latest version of DO. The
last three fields will ensure that the children of a matching
node, if any, are also returned when a user searches for
GEO series associated with a particular disease.

The ReGEO database

ReGEO contains one record for each GEO series published
on or before June 2018 and is updated on a monthly
basis in order to incorporate the most recent submissions
to GEO. ReGEO provides the number of time points

and the time values extracted by our text mining algo-
rithm from the metadata obtained from GEOmetadb.
Descriptive information obtained from GEO such as the
study’s title, type of experiment, and organism used is
also included. Each record also contains the following
structured information obtained from GEOmetadb (14)
(version 3.5, for data up to March 2017): platform id,
platform organism, platform taxid, sample organism,
sample taxid, contributor, contact, gse, last update date,
pubmed id, submission date, title and type. Additional
new data from March to June 2017 were directly obtained
from GEO. We also used MetaMap program (26) to
annotate the GEO series with DO (25, 28) and stored the
information in ReGEO database.

The web interface of ReGEO allows the search of GEO
series by disease name, number of time points, and date
of last update as illustrated in Figure 3a. The search result
lists the accession numbers of the matching GEO series,
their titles and the time points they contain, with accession
numbers linked to the full information of the corresponding



Database, Vol. 2019, Article ID bay145 Page 5 of 8

GEO series (Figure 3b). Clicking on an accession number
(e.g. GSE55268) will bring up a page that displays the full
information of the corresponding GEO series, as shown in
Figure 3c.

Evaluation and accuracy of metadata curation

We estimated the error rate of our text mining procedure
by applying our algorithm to a test set of 200 randomly
selected GEO series published on or before April 24, 2017.
Each of these series consists of at least one GEO sample
record with at least one time point. We manually identified
the number of time point(s) of these 200 test series, out
of which 159 series have one single time point, 33 have
between 2 and 7 time points (inclusive), and 8 have over
7 time points.

Using this data set with manually-identified time point(s)
as benchmark, our text mining program precisely identified
the correct number of time point(s) in 167 out of the 200
series (83.5%). Due to inconsistent ways of reporting the
baseline time point, it is common to have a small discrep-
ancy of one time point between even two human curators;
hence, we consider the computer-curated information on
time points as correct if it is within ±1 time point as com-
pared with the ground truth collected by human curators.
Based on this criterion, our tests showed that our automated
identification of time points has an accuracy rate of 93%
(186/200). The error rate in series with a single time point
is 1.26% (2/159), in series with 2–7 time points is 27.3%
(9/33) and in series with over 7 time points is 37.5% (3/8).
This evidences that the algorithm exhibits greater accuracy
as the actual number of points of the series decreases, a
satisfactory trait to correctly eliminate single time point
data and to identify multiple time-points data for genome
dynamic analysis.

The decreased accuracy for multiple time-points data is
due to the increased complexity of these data sets—studies
with two or more time points are generally less homoge-
neous and consistent in the way they refer to the time points
in the experiment. One frequent case occurs when the series
refer to an experiment that uses different time lengths in
a treatment. For example, in series GSE28435, the correct
number of time points is 6 (0, 0.25, 1, 3, 6, and 24 h).
However, the treatment samples also included the seizure
latency lengths of 4 min, 8 min, 9 min, 13.5 min, etc. For
this reason the current version of the algorithm assigns 16
time points to this series. This kind of error is very hard to
avoid and even human curators sometimes can make the
same mistake in these cases.

The situation is getting even more complicated when the
title of a sample includes time-related descriptors such as
patient age or length of recovery time that do not refer

to time points. This is illustrated by series GSE10288,
where the ages of different patients were interpreted by the
algorithm as time points. Similarly, the same samples under
different stimulations measured on different time series also
can cause the same problem. Grouping samples with patient
ID or treatment could possibly help to avoid this problem.
However, GEO metadata is not currently organized in this
manner and future attempts to do this grouping could result
in a tendency to label samples with a smaller number of time
points, which would be undesirable.

Despite all these complications, the accuracy of our
algorithm to identify single and low number of time points
data ensure us to eliminate these data sets as they consist a
majority of data in GEO database. The errors incurred by
our method for high time-point data can then be quickly
checked and fixed by a human due to the small number
of these data sets. The current version of the algorithm to
identify time ponts is optimized, balancing the trade-offs of
precison and recall, and used to build ReGEO.

A similar approach was followed to evaluate the accu-
racy of the disease tags assigned to each series. From the
randomly-selected 200 series that were manually curated,
172 were correctly labeled with the related diseases by the
MetaMap method. The remaining 28 series were labeled
with incorrect diseases or with no diseases at all. Therefore,
the overall accuracy rate achieved was over 86%.

In order to be inclusive but precise, we have crafted
Disease Search in a careful way. For example, to search
a DO term, we consider title, summary, overall design
and citations. We also used the advanced term mapping
software, MetaMap, to allow partial match and ignored
short abbreviation and stop words. In comparison, we do
not impose any of these restrictions on Keyword search.

The full detail of these tests can be found in supplemen-
tary file ReGEO test results.csv (inserted as an attachment
at the end of this document).

Conclusions and perspectives

Identifying, pooling and harmonizing ‘small data’ from
many studies is one of the goals of Big Data research, which
will help investigators to conduct integrative analyses of
a large number of data sets under similar experimental
conditions without generating new data. The ultimate goal
of ReGEO is to provide end users with a convenient and
accurate way to identify and categorize data for their inte-
grative data analysis.

Employing text mining techniques represents a new
direction to achieve this goal by extracting useful infor-
mation from unstructured metadata text. As such, ReGEO
is designed not as a data ‘dump site’, but as a user-friendly
database for data identification and integrative research.
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Figure 3. An illustration of the ReGEO database. a) The interface of ReGEO. b) Part of the search results from ReGEO database for GEO series

with ten or more time points. c) An example of a data set stored in ReGEO that annotated with specific DO terms (“influenza” and “flu”) and their

corresponding DOIDs (8469).
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In this paper we have focused on identifying the number of
time points and related diseases from the GEO unstructured
data description texts as a starting point, making it possible
to study gene expression dynamics across different data sets
and under different experimental conditions.

Employing ontology, e.g. DO in our case for data
annotation, could further facilitate data discovery and
integrative analysis. For example, the number of detected
and manually confirmed cases for ‘prostate cancer’ in
ReGEO is 1444, in which only 1244 are consistent
with the annotation in GEO database, and 82 are not
present. However, several technical difficulties need to
be further investigated. For one, there may exist many
synonyms for ontology terms, and an efficient method is
needed to organize and integrate these synonyms. Another
difficulty is that ontology terms could lack sufficient
detail. For example, the finest DO term on influenza
infection is ‘Influenza’, which does not contain sub-terms
on the specific trains of influenza virus. This issue can be
ameliorated by integrating other ontologies, such as the
Infectious DO, into the annotation. These limitations could
be overcome by collaborating with ontology developers.

In the future, we aim to further extend the methods
developed in this work by employing advanced text mining,
NLP, machine learning, and ontology techniques (29), and
applying these methods to identify and curate additional
attributes and metadata from the unstructured texts pro-
vided by GEO. These methods, together with the related
data analysis and visualization tools developed and inte-
grated with ReGEO, can be applied to other public database
for data discovery and integrative analysis.

Supplementary data
Supplementary data are available at Database Online.
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