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Motion artifacts and myoelectrical noise are common issues complicating the collection and processing of dynamic electro-
cardiogram (ECG) signals. Recent signal quality studies have utilized a binary classification metric in which ECG samples are
determined to either be clean or noisy. However, the clinical use of dynamic ECGs requires specific noise level classification for
varying applications. Conventional signal processing methods, including waveform discrimination, are limited in their ability to
remove motion artifacts and myoelectrical noise from dynamic ECGs. As such, a novel cascaded convolutional neural network
(CNN) is proposed and demonstrated for application to the five-classification problem (low interference, mild motion artifacts,
mild myoelectrical noise, severe motion artifacts, and severe myoelectrical noise). Specifically, this study finally categorizes
dynamic ECG signals into three levels (low, mild, and severe) using the proposed CNN tomeet clinical requirements.,e network
includes two components, the first of which was used to distinguish signal interference types, while the second was used to
distinguish signal interference levels. ,is model does not require feature engineering, includes powerful nonlinear mapping
capabilities, and is robust to varying noise types. Experimental data are composed of private dataset and public dataset, which were
acquired from 90,000 four-second dynamic ECG signals and MIT-BIH Arrhythmia database, respectively. Experimental results
produced an overall recognition rate of 92.7% on private dataset and 91.8% on public dataset. ,ese results suggest the proposed
technique to be a valuable new tool for dynamic ECG auxiliary diagnosis.

1. Introduction

,e electrocardiogram (ECG) signal shown in Figure 1 is
composed of a P wave, a QRS wave, and a T wave. Its
amplitude is in the range of 0.05–5mv, and its frequency
ranges from 0.1–60Hz. Dynamic ECGs, collected using a
Holter monitor, provide a record of ECG signals over ex-
tended periods of time [1]. ,ese are commonly used in the
diagnosis of arrhythmia and myocardial ischemia, as well as
24-hour monitoring of daily patient activities via an ECG. In
contrast to dynamic ECGs, routine ECGs are collected from
patients in a resting state. As such, baseline drift, motion
artifacts, and myoelectrical noise are common in dynamic
ECGs. Baseline drift can be removed using a high-pass filter.
However, motion artifacts are more problematic and are
caused by changes in contact resistance resulting from
movement of the body. As shown in Figure 2, signals

containing mild and severe motion artifacts manifest as
irregular abrupt waves with frequencies below 7Hz. Myo-
electrical noise, caused by muscle activity, is also difficult to
remove. As shown in Figure 3, signals containing mild and
severe myoelectrical noise are primarily characterized by
rapidly changing blur waves. ,ese vary in amplitude with
frequencies in the range of 30–300Hz. Besides, motion
artifacts andmyoelectrical noise can also overlap on the ECG
spectrum, leading to the potential for false diagnosis.

Clinical dynamic ECGs require high accuracy for these
types of interference measurements. As such, the primary
objective of this study is to quantify the degree of in-
terference present in a given signal. ,is would optimize the
use of signals with preferable interference levels, for im-
proved diagnosis of specific diseases. We intend to divide
dynamic ECG signals into three levels: low, mild, and severe.
Low-interference signals could be used for the diagnosis of
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arrhythmia or myocardial ischemia, mild-interference sig-
nals could be confidently used for heartbeat or heart rate
variability (HRV) measurements, and signals containing
severe levels of interference could be safely ignored to
prevent a false diagnosis.

,e 2011 PhysioNet/Computing in Cardiology (PCinC)
Challenge [2] proposed the development of an efficient
algorithm, capable of running on a mobile phone, for
estimating whether routine ECG signals were acceptable or
not. To date, various studies have focused on developing a
signal quality assessment index (SQI) that extracts actual
features. Behar et al. [3] extracted 7 SQIs from the PCinC
database, MIT-BIH arrhythmia database [4], andMIMIC II
database [5] and used a support vector machine (SVM) to
assess ECG quality for both normal and abnormal rhythms.
,e study was focused on preventing the misidentification
of motion artifacts or myoelectrical noise as arrhythmia in
ICU ECG monitoring. Zhang et al. [6] used multiscale
entropy as an SQI, since signals with varying signal-to-
noise ratios (SNRs) exhibit differing multiscale entropy
levels. Orphanidou et al. [7] extracted 4 SQIs from the
PCinC database to determine whether ECG signals were
acceptable for clinical use, achieving a sensitivity of 94%
and a specificity of 97%. Johnson et al. [8] proposed a model
for heartbeat detection which extracted 2 SQIs from the
PCinC database, achieving a sensitivity of 94.07% and a
specificity of 89.03%. Besides, Redmond et al. [9] classified
the ECG quality into three categories based on the
determinability of heart rate (HR): good (HR is easy to
determine); average (HR is difficult, but possible to de-
termine); bad (HR cannot reliably be determined), which
reached an accuracy of 78.7% on their own test data. Li et al.
[10] divided ECG signal quality into five levels according to
signal-to-noise ratio (SNR). A total of 13 SQIs derived from
ECG waveform segments were input to a support vector
machine (SVM) and used to classify a simulated dataset.
Tests conducted on the MIT-BIH arrhythmia database
produced an accuracy of 88.07% as well. While these
studies could also be applied to the classification of dy-
namic ECGs, an effective assessment of signal quality is
required in clinical applications because dynamic signals
often include motion artifacts and myoelectrical noise.

ECG signal classification has also been attempted using
classical machine learning methods. However, such tech-
niques require time-consuming feature engineering to

identify the available features. For example, Zhang et al. [11]
input certain nonlinear features, extracted from ECG sig-
nals, into machine learning algorithms such as SVM and
random forest (RF). ,is was done to provide a comparison
and determine ECG signal suitability. Such classical machine
learning approaches include several inherent limitations,
such as fewer training samples, poor generalization capa-
bilities, and tedious feature extraction. In contrast, deep
learning techniques [12] do not require complex feature
engineering and have successfully been applied to a variety
of fields including image recognition [13], speech recogni-
tion [14], and machine translation [15]. However, due to the
scarcity of ECG data, there have been few studies on the
application of deep learning to the classification of dynamic
ECG interference.

,is study proposes a dynamic ECG quality assessment
model that extracts ECG signal features and evaluates signal
quality using a cascaded convolutional neural network
(CNN). ,is model was divided into two stages. ,e first
stage, which included a subnetwork, was used to distinguish
signal interference type. ,e second stage consisted of two
subnetworks that were similar to subnetwork in the first
stage. It was used to further estimate the degree of signal
interference. ,is model was trained and tested until dy-
namic ECG signals in the dataset had been classified into one
of five classes (low interference, mild myoelectrical noise,
severe myoelectrical noise, mild motion artifacts, and severe
motion artifacts). Furthermore, we categorized the classi-
fication results into three levels: low (low interference), mild
(mild myoelectrical noise and mild motion artifacts), and
severe (severe myoelectrical noise and severe motion
artifacts).

,e contributions of this study can be summarized as
follows:

(1) We propose a novel cascaded CNN that includes two
components, the first of which was used to distin-
guish signal interference type, while the second was
used to assess signal interference levels. In other
words, the model conducts a five-classification task
on the acquired dataset.

(2) Dynamic ECG signals were divided into three levels
(low, mild, and severe) to meet clinical requirements.
Low-interference signals could be used for the di-
agnosis of arrhythmia or myocardial ischemia. Mild-
interference signals could be confidently used for
heartbeat or heart rate variability (HRV) measure-
ments. Signals containing severe levels of in-
terference could be safely ignored to prevent a false
diagnosis.

(3) Low-interference signals were defined, according to
clinical requirements, as having little interference
levels. Mild and severe interference were defined by
the clear visibility of an R wave. As such, when
preparing dataset, we quantified the standards for
data labelling.

(4) Experimental results showed that our model was
superior to others. As a result, the model achieved
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Figure 1: A sample ECG signal.
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promising performance for dynamic ECG auxiliary
diagnosis.

,e remainder of this paper is organized as follows.
Section 2 introduces the data and methodology in additional
detail. Section 3 details the experimental configurations,
results, and discussions. Section 4 concludes the paper and
describes possible directions for future research.

2. Materials and Methods

2.1. Private Dataset. Considering a large number of data
were required to train and validate our model, we prepared
private dataset by ourselves.,e process of preparing dataset
involved data collection, data preprocessing, and data la-
belling. Specially, preprocessing raw dynamic ECGs was
helpful to differentiate these five categories. ,e data were
recorded, labelled, and reviewed by two cardiologists.
Technically, we also presented the rules of data labelling for
reference.

2.1.1. Data Collection. ,e ECG recordings with standard
12-lead channels were collected using TE-9000Y, a Holter
monitor made in Helowin medical technology company in
China. ,e ECGs were digitized at 128 samples per second
per channel over a 10mV range. In case of individual di-
versity, 2,100 subjects, from the Hospital of Tonglu County,
Zhejiang Province in China between 2014 and 2017, in-
cluded 1,500 outpatients (about 60%men aged 23 to 85 years
and 40% women aged 25 to 89 years) and 600 inpatients
(about 70%men aged 32 to 86 years and 30%women aged 28
to 87 years). Eventually, we acquired 2,100 24-hour II-lead
dynamic ECG signal recordings from those subjects.

2.1.2. Data Pre-Processing. A second-order Butterworth
filter was used in the preprocessing steps. High-frequency
noise above 40Hz and baseline drift below 0.5Hz were
filtered out.

2.1.3. Data Labelling. ,e dynamic ECG signals of five
categories were intercepted from recordings and labelled,
respectively. For the sake of the robustness of the model,
some tricks would be needed inevitably. For low in-
terference, we preferred to select those signals with cardiac
arrhythmias, myocardial ischemia, etc. Exhibiting varied
heart rates, etc., signals with corresponding moderate in-
terferences were first selected for mild myoelectric in-
terference and mild motion artifact as well. Because severe
interferences covered the signals thoroughly, we intercepted
data at random for severe myoelectric interference and
severe motion artifact.

We selected 10 4-second non-overlapping excerpts for
the category of the low interference from each of 1,500
recordings (from 1,500 outpatients). And, then 25 4-second
non-overlapping segments were picked for category of low
interference from each of 600 recordings (from 600 in-
patients) to include less common but clinically significant
arrhythmias, because low interference exists abundantly in
each recording. Moreover, compared with recordings of
outpatients, those of inpatients have less interference. For
the mild myoelectric interference, 30 4-second non-over-
lapping excerpts were obtained from each of 500 recordings,
which had at least 10-minute mild myoelectric interference
and selected from 1,500 recordings (from 1,500 outpatients).
For the mild motion artifact, 25 four-second non-over-
lapping excerpts were obtained from each of 600 recordings,
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Figure 2: (a) Mild motion artifacts and (b) severe motion artifacts.
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Figure 3: (a) Mild myoelectrical noise and (b) severe myoelectrical noise.

Computational and Mathematical Methods in Medicine 3



which presented at least 10-minute mild motion artifacts
and was selected from 1,500 recordings. For the severe
myoelectric interference, 75 four-second non-overlapping
excerpts were obtained from each of 200 recordings, which
had at least 10-minute severe myoelectric interference and
selected from 1,500 recordings. For the severe motion ar-
tifact, 50 four-second non-overlapping excerpts were ob-
tained from each of 300 recordings, which had at least 10-
minute severe motion artifacts and was selected from 1,500
recordings as well.

In conclusion, the dataset included 90,000 II-lead dy-
namic ECG signals, with a 4-second duration and a sampling
rate of 128Hz. ,is set consisted of 30,000 low interference
(including about 9,000 signals with cardiac arrhythmias,
myocardial ischemia, etc.), 15,000 mild motion artifacts
(including about 800 signals with varied heart rates, etc.),
15,000 severe motion artifacts, 15,000 mild myoelectric
interference (including about 1,000 signals with varied heart
rates, etc.), and 15,000 severe myoelectric interference
samples.

2.1.4. Rules of Data Labelling. We selected a segment with
4-second duration, based on two facts: after preprocessing,
we found in a large number of clinical data that the pos-
sibility of two or more interference patterns (excepting low
interference) coexisting within a 4-second period is ex-
tremely small and at least one cardiac rhythm cycle is
included. As such, only one type of interference that
dominated the 4-second duration was assigned as label of
each dynamic ECG sample. ,at is to say, if an interference
duration presented in the signal exceeded 2 seconds, it
would be the label. ,e rules of labelling data were defined
in detail as follows:

(1) If the duration exceeded 2 seconds and the amplitude
of the noise was so sufficiently small that the P, QRS,
and T waves are clear, it was considered low
interference

(2) If the signal had myoelectrical noise and the maxi-
mum amplitude of the noise was less than half the
height of the clear R-wave in a heartbeat cycle (with a
duration exceeding 2 seconds), it was mild myo-
electrical noise

(3) If the signal had motion artifacts and the maximum
amplitude of the noise was less than half the height of
the clear R-wave in a heartbeat cycle (with a duration
exceeding 2 seconds), it was classified as mild motion
artifacts

(4) If the signal had myoelectrical noise and the maxi-
mum amplitude of the noise exceeded half the height
of the clear R-wave in a heartbeat cycle (with a
duration exceeding 2 seconds), it was severe myo-
electrical noise

(5) If the signal had motion artifacts and the maximum
amplitude of the noise exceeded half the height of the
clear R-wave in a heartbeat cycle (with a duration
exceeding 2 seconds), it was classified as severe
motion artifacts

2.2. Public Dataset. Being used as the validation dataset as
well, the MIT-BIH arrhythmia database [4] includes 48 half-
hour excerpts of two-channel ambulatory ECG recordings
with arrhythmia reference annotations. Usually, the first
channel is the modified limb lead II and the second is a
precordial lead V1. ,e recordings have a diagnostic band
width of 0.1–100Hz and were digitized at 360Hz. ,erefore,
the channel of lead II was selected and was downsampled to
128Hz to match our study. A 4-second non-overlapping
window was used to segment the ECG data into different
classes. ,e dataset was reannotated to include the five
classes according to the rules of data labelling in Section 2.1.
A summary of the number of ECG segments of each class is
found in Table 1.

2.3. Time-Frequency Spectrum of Dynamic ECG Signals.
Short-time Fourier transforms (STFTs) [16] are a classical
time-frequency analysis method which describes frequency
domain characteristics by analysing a segment of a signal in a
specific time window. ,e frequency characteristics of dif-
ferent window function types vary in the short-time Fourier
transform. As such, both the time and frequency resolution
must be considered.

We applied the time-frequency spectrum of our dynamic
ECG signal to a convolutional neural network model in a
process similar to speech recognition [17–20]. ,is study
utilized an 8-point symmetric Hamming window because it
reduced spectrum leakage and acquired better time-fre-
quency details after multiple trials. As a result, after the
short-time Fourier transform, dynamic ECG signals (with a
size of 1× 512) were converted into the time-frequency
spectrum (257× 63). ,e time domain signal and time-
frequency spectrum for five types of dynamic ECGs are
shown in Figure 4. Low interference signals were identified
as having negligible interference. Myoelectrical noise and
motion artifacts had different levels of energy distribution
and wave shapes. ,e signatures in time and frequency
domain that were characteristic of low interference, motion
artifacts, and myoelectrical noise were distinguishable.
Additionally, signals with low interference exhibited clear
wave properties, signals with mild electrical noise or mild
motion artifacts exhibited R waves, and signals with severe
electrical noise or motion artifacts included significant in-
terference that overlapped on the ECG spectrum.

2.4. Convolutional Neural Networks. CNNs [21] are feed-
forward neural networks, containing deep neural network
models with a convolutional layer and a pooling layer. ,is
special structure facilitates unique characteristics such as
local perception, weight sharing, and pooling. Local per-
ception involves a convolution kernel operating in a local
rectangular region within an image, in order to acquire a
feature map. Weight sharing involves the sharing of weights
and biases in a convolution kernel for each feature map.
Pooling is a descending sampling operation in the feature
map, with a goal of reducing and summarizing the acquired
feature map. Two conventional choices, average pooling and
maximum pooling, acquire an average or maximum of small
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rectangular blocks within the feature map. ,e size of these
data can be reduced without affecting the extracted features.
During supervised learning, the output from these layers was
flattened into a one-dimensional vector (after several con-
volutional and max-pooling layers) for input into the fully
connected neural network. ,is usually included one or
more fully connected layers for classification.

Several studies have demonstrated that small convolu-
tion kernels achieve improved recognition accuracy in
CNNs [22–24]. Lin et al. [25] demonstrated that a convo-
lution kernel with a size of 1× 1, acting as a cross-channel
aggregation, could further reduce dimensionality and the
number of parameters. However, this process had little effect
on recognition accuracy. ,is 1× 1 convolution kernel was
also applied to reduce dimensionality in our model. Hinton
et al. [26] demonstrated that “dropout” reduced overfitting
by randomly omitting part of the neuron connections in
each training case, which proved to be an efficient way of
performing model averaging with neural networks. ,is
“dropout” was also applied to our model. Ioffe and Szegedy
[27] showed that the inclusion of batch normalization (BN)
led to improved recognition results. Glorot et al. [28]
demonstrated that using a RELU as a nonlinear activation
function in deep convolutional neural networks could
eliminate problems caused by vanishing gradients, which is
beneficial for model convergence. As such, in the dynamic
ECG quality assessment model, the network was stacked
with a block labelled “block1” (including a 3× 3 convolu-
tional layer) and block labelled “block2” (including a 1× 3
convolutional layer). ,e BN layer and RELU activation
function layer are also shown in Figure 5.

2.5. A Dynamic ECG Signal Quality Assessment Model.
,is study proposes a novel dynamic ECG quality assess-
ment model to compensate for limitations such as a lack of
fine-grained recognition for clinical requirements, shortages
of signal processing methods, and complex feature engi-
neering. ,rough the model, ECG signals will be classified
into five classifications, which are then divided into three
levels.

,e cascaded CNN model includes two stages, as shown
in Figure 6.,e first stage, which included subnetwork1, was
used to distinguish signal interference type. After the pre-
processing of a single lead ECG signal, a time-frequency
spectrum was acquired using a short-time Fourier trans-
form. ,e time-frequency spectrum was then input to the
convolutional neural network (CNN1) for feature

extraction. Meanwhile, the preprocessed ECG signal was
input to another convolutional neural network (CNN2) for
feature extraction. ,e features extracted from CNN1 and
CNN2 were combined and input to a fully-connected neural
network that included a fully-connected layer and a softmax
layer for classification into three classes (low interference,
myoelectrical noise, and motion artifacts). ,e second stage
consisted of two subnetworks that were similar to sub-
network1 in the first stage. It was used to further estimate the
degree of signal interference. Signals containing motion
artifacts, as identified by the first stage, were input to
subnetwork2 in the second stage to estimate whether the
motion artifacts were mild or severe. Signals containing
myoelectrical noise, as identified by the first stage, were
input to subnetwork3 in the second stage to determine
whether the noise was mild or severe. Finally, ECG signals
input into our model would be classified into five classes.

In the first stage of Figure 6, for the subnetwork1, the
frequency spectra produced by a short-time Fourier trans-
form of the preprocessed dynamic ECG signal set
( [ecgi, yi] , i � 1, 2, . . . , n) were input to the convolutional
neural network CNN1 model, resulting in the feature vector
Mi (Mi ∈ Rm∗1). ,e dynamic ECG signals were directly
input to another convolutional neural network CNN2model
as one-dimensional time series to acquire the feature vector
Ni (Ni ∈ Rn∗1). ,e combined vectors Mi and Ni were then
input into a neural network including a fully connected layer
and softmax layer. Finally, the output vector Oi was ac-
quired. ,is process can be described as follows:

Mi � fCNN1 stft ecgi( ,W1, b1( ,

Ni � fCNN2 ecgi,W2, b2( ,


Oi � g Mi; Ni ,W3, b3( ,

(1)

where stft(ecgi) denotes the value of the dynamic ECG signal
after a short-time Fourier transform, W1, W2, and W3
denote weight matrices in the neural network, b1, b2, and b3
denote biases in the neural network, fCNN1 is the feature
extraction process for the CNN1 convolutional neural
network, fCNN2 is the feature extraction process for the
CNN2 convolutional neural network, and g denotes feature
mapping of the fully connected neural network which
contains a fully connected layer and softmax layer.

In the first stage, the gradient descent method of error
backpropagation was used during network training. ,ere
are 3 neurons in the last layer of the softmax layer, since the
first network stage classifies data into three classes. A cross
entropy loss function could then be constructed using the
true values of the samples yi and the predicted values of the
network Oi as follows:

loss � − 
3

j�1
y

j
i ∗ logO

j
i + 1 − y

j
i log 1 − O

j
i  , j � 1, 2, 3,

(2)

where O
j
i denotes the predicted result of the jth class and the

ith sample and y
j

i denotes the true result of the j
th class and ith

sample.

Table 1: Signal quality of lead II in the MIT-BIH arrhythmia
database.

Class\database MIT-BIH arrhythmia
# Low interference 16419
# Mild myoelectrical noise 2373
# Mild motion artifacts 1512
# Severe myoelectrical noise 432
# Severe motion artifacts 864
Total 21600
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,e second stage consisted of two subnetworks. Sub-
network2 was used for the binary classification of mild motion
artifacts and severe motion artifacts. Subnetwork3 was used
for the binary classification of mild myoelectrical noise and
severemyoelectrical noise. Subnetwork2 and subnetwork3 had
the same convolutional structure as the subnetwork1 in the
first stage, described previously except softmax layer.

3. Experiments

In the process of experiments, two models, including
baseline model and our cascaded CNNmodel, were defined.
For the purpose of demonstrating that our model was able to
improve the performance of assessing quality of ECGs, we
carried out two groups of experiments. ,e one was that two
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Figure 4: ,e time-frequency spectrum for five types of dynamic ECG signals.
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models were trained and tested on private dataset for
comparisons. ,e other was that after being trained on
private dataset, those two models were tested on public
dataset for comparing with the previous studies [3, 10].

3.1. Experimental Platform and Evaluation Index. ,e ex-
perimental platform consisted of three IBM servers whose
configuration included an Intel Xeon E5-2650 2.8GHz CPU,
16GB of DDR3 memory, an 8GB GTX1080 GPU, and a
64 bit Centos operating system. MATLAB 2017a was used
for data processing, and the neural network code was written
in the TensorFlow v1.10 framework based on the Python
language. ,e following indices were used to measure the
performance of the recognition model.

Sensitivity (Se) was defined as the percentage of true
positive samples among samples which were judged to be
true positive and false negative by the model. It was cal-
culated using Se�TP/(TP+ FN). Specificity (Sp) was defined
as the proportion of good quality signals that have been
correctly identified as acceptable. It was calculated as
Sp�TN/(FP +TN). Accuracy (Ac) measured the percentage
of all true samples among all samples recognized by the
model. It was Ac� (TP +TN)/(TP +TN+FP+ FN). ,ese
statistical measures were calculated by the number of true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN).

3.2. Baseline Model

3.2.1. Baseline Model. ,e experiment conducted in our
study established a baseline model for comparative assess-
ment. We used a single convolutional neural network to
directly classify five dynamic ECG signal types, using a
universal methodology applied to similar problems [29–33].
,e configuration of this baseline model is shown in Table 2.

,e input in Table 2 consisted of preprocessed dynamic
ECG signals with a size of 1× 512. ,e convolution process
was stacked by block2 shown in Figure 5. ,e format was
implemented as “{number of blocks}_block2_{number of
feature maps}.” ,e pool layer utilized maximum pooling,
the format was structured as “Max_pooling_{size},” and the
final convolutional layer (Conv_1× 1_32) was a kernel of
size 1× 1 with 32 feature maps. ,is fully connected layer
(Fc_128) included 128 neurons, while the softmax layer
contained 5 neurons.

3.2.2. Training Details. ,is experiment included 10,000
test data samples, 2,000 validation data samples, and a set of
training data on private dataset. ,e following parameters
were used in the experiments. ,e Adam optimizer [34]
was included for training the model. ,e initial learning
rate was set to 0.03, the decay rate was 0.50, and the decay
step was 10,000. Weights and biases were initialized using a
method proposed in a previous study [35]. ,e training
phrase included 100 epochs with minibatches of 100
sample signals.

3.3. Cascaded CNN Model

3.3.1. Cascaded CNN Model. ,e cascaded CNN model
shown in Figure 6 is primarily composed of two networks:
CNN1 and CNN2. Each of these networks was included in
the experiment. ,e specific parameters are shown in
Table 3.

Table 3 details a time-frequency spectrum of size
257× 63, acquired from a preprocessed dynamic ECG signal
using a short-time Fourier transform input to the CNN1
network. ,e convolutional layers were stacked with block1
(Figure 5) using the format “{number of blocks}_block1_
{number of features}.” ,e pool layer used maximum
pooling, and the format was structured as “Max_pooling_
{size}.” ,e final convolutional layer (Conv_1× 1_32) in-
cluded a kernel of size 1× 1 with 32 feature maps.,e CNN2
network is similar to CNN1, and its input data consisted of
preprocessed dynamic ECG signals with a size of 1× 512.,e
fully connected network included Fc_128, which consisted
of 128 neurons and a softmax layer. ,e “dropout” was
applied to Fc_128.

3.3.2. Training Details. ,e cascaded network shown in
Figure 6 contains 3 subnetworks including subnetwork1,
subnetwork2, and subnetwork3. ,ese 3 subnetworks were
first trained separately. ,e cascaded network made up of 3
subnetworks was then tested. ,e private dataset consisted
of 30,000 low interference, 15,000 mild motion artifacts,
15,000 severe motion artifacts, 15,000 mild myoelectric
interference, and 15,000 severe myoelectric interference
samples. A set of 10,000 samples were selected for model
testing.,e remaining set included 28,000 low interference,
13,000 mild motion artifacts, 13,000 severe motion

Table 2: ,e baseline model configuration.

Baseline model
Input (1× 512)
↓

W1_block2_32
↓

Max_pooling_1× 4
↓

W2_block2_64
↓

Max_pooling_1× 4
↓

W3_block2_128
↓

Max_pooling_1× 4
↓

Conv_1× 1_32
↓

Fc_128
↓

Softmax
Vertical arrows indicate sequential connections in the network. Note that
W1, W2, and W3 are the number of block2 items. For example,
W1_block2_32 denotes that W1 block2 items are connected sequentially,
each of which outputs 32 feature maps. Max_pooling_1× 4 denotes a max
pooling with a size of 1× 4.
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artifacts, 13,000 mild myoelectric interference, and 13,000
severe myoelectric interference samples. ,e data in sub-
network1 consisted of low interference (28,000 samples),
motion artifacts (13,000 mild and 13,000 severe), and
myoelectric interference (13,000 mild and 13,000 severe)
samples. ,is set was split into 78,000 training and 2,000
validation samples. Subnetwork2 included 13,000 mild
motion artifact and 13,000 severe motion artifact samples,
which were split into 25,000 training and 1,000 validation
samples. Subnetwork3 included 13,000 mild myoelectric
interference and 13,000 severe myoelectric interference
samples, which were split into 25,000 training and 1,000
validation samples. ,e 3 subnetwork parameters were
used in the experiments.,e Adam optimizer [34] was used
for training. ,e initial learning rate was set to 0.02, the
decay rate was 0.50, and the decay step was 10,000. ,e
probability of “dropout” was 50%. Weights and biases were
initialized using a method proposed in a previous study
[35]. ,e training phase included 80 epochs with mini-
batches of 100 sample signals.

3.4. Experimental Results

3.4.1. Results on Private Dataset. Baseline and our cascaded
CNN model were trained and tested on private dataset. As
shown in Table 4, optimal performance for the baseline
model reached 88.3%, using the parameters listed in Table 2
(W1� 1, W2� 2, and W3� 5). Setting the parameters as
N1� 1, N2� 2, and N3� 5 (Table 3) produced an overall Ac
of 92.7%, which was better than that in baseline model. ,e
Se and Sp reached 95.4% and 98.4% (low interference), 91.1%
and 98.2% (mild myoelectrical noise), 92.9% and 98.4%
(severe myoelectrical noise), 92.3% and 97.7% (mild motion
artifacts), and 91.8% and 98.3% (severe motion artifacts),

respectively. ,is suggests the proposed model out-
performed the baseline model in each class.

3.4.2. Results on Public Dataset. After training those two
models on private dataset, we evaluated them on public
dataset further. As shown in Table 5, results of four models,
including 7-SQI SVM [3], 13-SQI SVM [10], baseline model,
and our cascaded model, are listed for comparisons. An Ac
of 94.6%, a Se of 86.3%, and a Sp of 94.8% were gained using
7-SQI SVM to conduct binary task. Seen from the results of
five classifications (clean, minor, moderate, severe, and
extreme noise) using 13-SQI SVM, we noted that by taking
into account training and testing on public dataset,
Ac� 88.07% was obtained, whereas considering training on
simulated data and testing on public dataset resulted in
Ac� 57.3%. Dividing the five classification results into three
levels (low, mild, and severe) directly, we found that our
proposed model reached Ac� 91.8%, which is higher than
that of baseline model (Ac� 85.7%). Specially, the measures
of low (Se� 92.9%, Sp� 96.1%), mild (Se� 89.1%,
Sp� 93.9%), and severe (Se� 85.6%, Sp� 97.5%) were ob-
tained by our proposed model. In contrast, baseline model
merely resulted in Se� 86.3%, Sp� 89.9% (low), Se� 82.2%,
Sp� 88.5% (mild), and Se� 87.2%, Sp� 96.9% (severe).
Furthermore, Table 6 shows the accuracy results obtained on
public dataset per record. It can be seen that good Ac was
achievable when the dominant rhythm was sinus rhythm.
However, the Ac was lower when arrhythmias were atrial
flutter (AFL) and atrial fibrillation (AF) (record 202, 203,
210, 221, and 222) and ventricular flutter (VFL) (record 207).
,is reveals that the irregular arrhythmia waveforms, such as
AFL/AF waves and VFL waves, which are similar to myo-
electrical noise to a certain degree, will impact signal quality
classification.

3.5. Discussions

3.5.1. Comparisons with Previous Studies. ,e highest ECG
acceptability accuracy listed in Table 5 and reported for the
PCinC challenge is 94.6% [3]. While this approach is ap-
plicable to dynamic ECG signals, clinical use requires more
specific interference level classification. Li et al. divided
ECG noise into five levels including clean (no visible noise
or artifact), minor noise (transient artifacts or low-level
noise that does not interfere with the interpretation or
recognition of P, T, or atrial flutter waves), moderate noise
(interpreted with confidence despite visible and obvious
flaws—does not interfere with recognition of QRS com-
plexes or ventricular flutter waves), severe noise (in-
terpretable with difficulty—noise interferes with QRS), and
extreme noise (unacceptably poor recording that cannot be
interpreted) [10]. ,ey extracted 13 features including
bSQI (the percentage of beats detected by wqrs that were
also detected by eplimited [36]), sSQI (the skewness of the
ECG signal), kSQI (the kurtosis of the ECG signal), pSQI
(the relative power in the QRS complex), basSQI (the
relative power in the baseline), bsSQI (the baseline wander
check in the domain), eSQI (the relative energy in the QRS

Table 3: ,e configuration of CNN1 and CNN2 in the dynamic
ECG signal quality assessment model.

CNN1 CNN2
Input (257× 63) Input (1× 512)
↓ ↓
N1_block1_32 N1_block2_32
↓ ↓
Max_pooling_4× 2 Max_pooling_1× 4
↓ ↓
N2_block1_64 N2_block2_64
↓ ↓
Max_pooling_4× 2 Max_pooling_1× 4
↓ ↓
N3_block1_128 N3_block2_128
↓ ↓
Max_pooling_4× 4 Max_pooling_1× 4
↓ ↓
Conv_1× 1_32 Conv_1× 1_32

Fc_128 (dropout)
Softmax

,e vertical arrows indicate sequential connections in the network. Note
that N1, N2, and N3 are the number of blocks. N1_block1_32 indicates that
N1 block1 items were connected sequentially, each of which outputs 32
feature maps. Max_pooling_4× 2 denotes a max pooling with a size of 4× 2.
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complex), hfSQI (the relative amplitude of high frequency
noise), purSQI (signal purity of ECG), rsdSQI (the relative
standard deviation (STD) of QRS complex wave), entSQI
(the sample entropy of the ECG waveform), hfMSQI (high-
frequency mask of ECG waveform), and PicaSQI (periodic
component analysis (PiCA) periodicity measure of the
ECG waveform). Although this annotation is considered
fine-grained, based on its signal-to-noise ratio (SNR), it
neglects the characteristics of different interference types
and uses complex nonlinear features. A support vector
machine (SVM) was trained and validated on the MIT-BIH
set (88.07%). However, this approach offers poor gener-
alizability because of limited individuals. In contrast, our
model labels more data, does not require feature engi-
neering, has powerful nonlinear mapping capabilities, and
offers better generalizability. It is worth mentioning that

three levels (low, mild, and severe) effectively meet clinical
requirements for dynamic ECGs as well.

3.5.2. Effect of the Cascaded Model. With regards to the
experiment results, it is important to note that our proposed
model was superior to the baseline model and had advan-
tages over the previous studies. While using the baseline
model for classifications, we came across an awkward
problem that mild noise and severe noise were classified
somewhat mistakenly, which led to a lower Se and Sp. For
example, Se� 85.8% (mild motion artifacts) and Se� 88.0%
(severe motion artifacts) were only obtained by the baseline
model provided in Table 4. Besides, we discovered that the
three interference types (low interference, myoelectrical
noise, and motion artifacts) have distinguishable

Table 4: Classification results of baseline and cascaded CNN model on private dataset.

Class\model
Baseline Cascaded CNN

Se (%) Sp (%) Ac (%) Sp (%) Sp (%) Ac (%)
Low interference 90.3 96.2 95.4 98.4
Mild myoelectrical noise 87.9 97.3 91.1 98.2
Severe myoelectrical noise 89.5 97.6 88.3 92.9 98.4 92.7
Mild motion artifacts 85.8 96.5 92.3 97.7
Severe motion artifacts 88.0 97.6 91.8 98.3

Table 5: Comparisons with previous studies on public dataset.

Model 7-SQI SVM [3] 13-SQI SVM [10]∗ 13-SQI SVM [10]+ Baseline Cascaded CNN
Level Bad or good Clean Minor Moderate Severe Extreme — Low Mild Severe Low Mild Severe
Se (%) 86.3 56.9 59.3 56.2 46.7 45.3 — 86.3 82.2 87.2 92.9 89.1 85.6
Sp (%) 94.8 92.5 65.9 87.9 97.1 99.1 — 89.9 88.5 96.9 96.1 93.9 97.5
Ac (%) 94.6 57.3 88.07 85.7 91.8
∗Trained on simulated dataset and tested on public dataset; SVMwith 13 signal quality assessment indices (SQIs) classified ECG signals into five levels (clean,
minor, moderate, severe, and extreme noise). +SVM with 13 SQIs was trained and tested on public dataset, for which only accuracy of five classifications was
given.

Table 6: Results per record on public dataset using cascaded CNN model.

Record Dominant rhythm Ac (%) Record Dominant rhythm Ac (%) Record Dominant rhythm Ac (%)
100 N 94.7 117 N 97.6 212 N 95.3
101 N 96.4 118 N 96.0 213 N, B 96.7
102 P 93.6 119 N, B, T 93.1 214 N, T 91.8
103 N 96.2 121 N 96.4 215 N 92.4
104 P 95.3 122 N 97.1 217 P, AF 82.7
105 N 95.8 123 N 96.4 219 N, AF 79.3
106 N, B 93.6 124 N 95.8 220 N 96.7
107 P 94.2 200 N, B 95.3 221 AF, T 78.9
108 N 96.7 201 N, AF, T 80.2 222 N, AFL, NOD, AB 77.3
109 N 94.7 202 N, AF 79.6 223 N, B, VT, T 94.0
111 N 93.6 203 AFL, AF 75.1 228 N, B 93.6
112 N 93.1 205 N 94.9 230 N, PREX 94.4
113 N 92.9 207 N, VFL, SVTA, B, IVR 77.6 231 N, BII 95.3
114 N 94.9 208 N, T 96.4 232 SBR 94.0
115 N 94.2 209 N, SVTA 90.4 233 N, B 93.1
116 N 96.2 210 AF 80.9 234 N, SVTA 92.0
N, normal sinus rhythm; AB, atrial bigeminy; AFL, atrial flutter; AF, atrial fibrillation; B, bigeminy; BII, 2nd-degree heart block; IVR, idioventricular rhythm;
NOD, nodal rhythm; P, paced rhythm; PREX, preexcitation (WPW); SBR, sinus bradycardia; SVTA, supraventricular tachyarrhythmia; T, ventricular
trigeminy; VFL, ventricular flutter; VT, ventricular tachycardia.
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characteristics, as described in Section 1. ,e interference
levels (mild myoelectrical noise, severe myoelectrical noise,
mild motion artifacts, and severe motion artifacts) have
somewhat potential characteristics which should be deeply
mined in time and frequency domain, as shown in Figure 4.
,erefore, instead of classifying ECG signals into five
classifications using a baseline model directly, our cascaded
CNN model exploited the powerful ability of learning fea-
ture representations, firstly evaluating the types of ECG
signals and secondly assessing levels of signal quality via two
binary tasks.

3.5.3. Efficiency. ,e number of trainable parameters in the
baseline model was 0.28 million, compared with 3.2 million
in the proposed model. ,is is primarily due to the use of
time-frequency spectra and network cascades. ,e use of
high-performance computers makes this process more
efficient.

Interference categorization is an important part of
computer interpretation, more so than the end result. It is
evident that our proposed model should only be used for
preliminary screening in clinical applications, after which
a clinician should perform manual corrections. As such,
we provide guidelines for clinicians to validate and correct
these prediction results (if need be). ,e highest in-
terference levels should be assigned to dynamic ECG
segments. Specifically, if a prediction result includes low
interference and mild interference lasting less than 2
seconds, it should be classified as mild interference.
Similarly, if a result includes low interference and severe
interference lasting less than 2 seconds, it should be
classified as severe interference. If a result includes mild
interference and severe interference lasting less than 2
seconds, it should be classified as severe interference. ,e
application of this model has the potential to improve
clinical diagnostic efficiency, allowing physicians to focus
on diagnosing dynamic ECG segments for different ap-
plications, such as arrhythmia, myocardial ischemia, heart
rate, HRV, and so on.

4. Conclusion

,is study addressed the shortage of quality assessment
methods for dynamic ECG signals. ,e proposed cascaded
CNN containing two stages divided the signals into three
levels including low, mild, and severe, to meet the needs of
clinical requirements. Motivated by the fact that three
categories are comparatively distinguishable, the first stage
was capable of classifying dynamic ECG signals into low
interference, myoelectrical noise, and motion artifacts.,e
second stage estimated the degree of signal interference,
primarily using CNN feature representations to conduct
binary classification. Results showed the overall recogni-
tion accuracy for the model reached 92.7% on private
dataset. It is important to note that an overall accuracy of
91.8% was obtained by our proposed model on public
dataset. ,ese results suggest the proposed method to be a
valuable new tool for dynamic ECG auxiliary diagnosis.

Future studies will aim to further increase the model
accuracy and compress the model without lowering the
accuracy.
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