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Abstract

We previously showed that postmortem serum levels of adrenocorticotropic hormone

(ACTH) were significantly higher in cases of hypothermia (cold exposure) than other causes

of death. This study examined how the human hypothalamic-pituitary-adrenal axis, and spe-

cifically cortisol, responds to hypothermia. Human samples: Autopsies on 205 subjects (147

men and 58 women; age 15–98 years, median 60 years) were performed within 3 days of

death. Cause of death was classified as either hypothermia (cold exposure, n = 14) or non-

cold exposure (controls; n = 191). Cortisol levels were determined in blood samples

obtained from the left and right cardiac chambers and common iliac veins using a chemilu-

minescent enzyme immunoassay. Adrenal gland tissues samples were stained for cortisol

using a rabbit anti-human polyclonal antibody. Cell culture: AtT20, a mouse ACTH secretory

cell line, and Y-1, a corticosterone secretory cell line derived from a mouse adrenal tumor,

were analyzed in mono-and co-culture, and times courses of ACTH (in AtT20) and cortico-

sterone (in Y-1) secretion were assessed after low temperature exposure mimicking hypo-

thermia and compared with data for samples collected postmortem for other cases of death.

However, no correlation between ACTH concentration and cortisol levels was observed in

hypothermia cases. Immunohistologic analyses of samples from hypothermia cases

showed that cortisol staining was localized primarily to the nucleus rather than the cyto-

plasm of cells in the zona fasciculata of the adrenal gland. During both mono-culture and co-

culture, AtT20 cells secreted high levels of ACTH after 10–15 minutes of cold exposure,

whereas corticosterone secretion by Y-1 cells increased slowly during the first 15–20 min-

utes of cold exposure. Similar to autopsy results, no correlation was detected between

ACTH levels and corticosterone secretion, either in mono-culture or co-culture experiments.

These results suggested that ACTH-independent cortisol secretion may function as a stress

response during cold exposure.
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Introduction

Many reports have documented the pathologic changes observed in human affected by hypo-

thermia due to cold exposure, and “classic” morphologic findings supporting a diagnosis of

hypothermia have been established [1–7]. However, as other etiologies of hypothermia include

drug abuse, dementia, malnutrition, and infectious disease, only a few studies have specifically

examined pathologic findings after cold exposure [8,9], especially from a biochemical perspec-

tive, such as the presence and levels of ketone bodies [10–13]. Furthermore, only a few reports

have estimated hormone levels as part of the pathophysiologic findings of cold exposure

[14–16].

Generalized hypothermia occurs when the body temperature (Tbody) drops below 35˚C rel-

ative to exhaustion of heat production and failure of heat loss prevention over time [17]. Five

degrees of generalized hypothermia severity have been described: mild (32–35˚C), moderate

(28–32˚C), severe (24–28˚C), deep (13–24˚C), and irreversible fatal outcome (<13˚C) [18]. As

Tbody drops, the hypothalamus (thermoregulation center) triggers a series of reactions that

function to produce heat and prevent heat loss. Heat production involves the secretion of

stress-response hormones (adrenaline, noradrenaline, and cortisol), which triggers an overall

increase in lipid metabolism, particularly ketogenesis [1]. The high inter-individual variability

with which these regulatory mechanisms are initiated impacts the diversity of hypothermic

presentation. The increased production of counter-regulatory hormones, such as cortisol,

stimulates production of heat and energy. Despite contrary results regarding adrenal cortex

hormone evolution in hypothermia, perimortem elevation of adrenal cortex hormones might

reflect more of the decrease in metabolism and hepatic clearance than an increase in ACTH

[19–27]. One study examining the agonal process and blood cortisol concentrations found no

significant difference between instantaneous death and death with prolonged agony [27].

Other studies recommend analysis of free blood cortisol in cases of suspected hypothermia

[19,21,24,28,29]. The primary stress response system is the sympathetic/ adrenomedullary

(S/A) system, which includes the chromogranin A [14] and hypothalamic-pituitary-adrenal

(HPA) axis [16,30]. Previous studies have suggested that postmortem serum adrenocorticotro-

pic hormone (ACTH) concentration is a useful biomarker of death due to cold exposure and

the magnitude of physical stress responses during cold exposure [31]. Increased serum con-

centrations of ACTH associated with activation of the HPA axis and S/A system can be bio-

chemically evaluated by measuring catecholamine and chromogranin A levels [32–36]. With

respect to the HPA axis, it is known that cortisol levels are correlated with ACTH levels, and a

precursor of cortisol, which is an activator, also inactivates cortisone accounting for 4–5% and

corticosterone exhibiting only weak activity [37,38]. Thus, this study evaluated cortisol as a

biomarker of cold exposure-related stress by analyzing cases of human death due to hypother-

mia. We also assessed the relationship between ACTH and corticosterone levels during cold

exposure using a mouse cell culture model.

Material and methods

Autopsy samples

Autopsies were performed within 3 days postmortem at our institute. The study included 205

serial cases (147 men and 58 women), and the median age was 60 years (range 15–98 years).

Cortisol levels were determined in blood samples collected aseptically from the left and right

cardiac chambers and the common iliac vein using syringes.

Cause of death was determined based on findings from a complete autopsy as well as

macromorphological, micropathologic, and toxicologic examinations. Cases were classified as

Cortisol levels after cold exposure are independent of adrenocorticotropic hormone stimulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0218910 February 18, 2020 2 / 20

https://doi.org/10.1371/journal.pone.0218910


either hypothermia (cold exposure, n = 14) or control. Cause of death in the latter group

included blunt injury (n = 37 total; head injury [n = 28], non-head injury [n = 9]), sharp-

instrument injury (n = 8), fire fatality (n = 43), asphyxia (n = 28), intoxication (n = 12 total;

methamphetamine-related fatality [n = 3], psychotropic drugs [n = 6], other [n = 3]), drown-

ing (n = 12), hyperthermia (heat stroke, n = 10), acute ischemic heart disease (n = 20), and nat-

ural causes (n = 22). This study involved autopsy cases from 2010 to 2019. Case profiles are

shown in Table 1.

Cases of hypo- and hyperthermia due to drug abuse and bathing, respectively, were

excluded. Postmortem interval was defined as time elapsed from estimated time of death to

autopsy, whereas survival period was defined as the time from the onset of fatal insult to death.

Only clearly described cases were examined in this study.

Tissue specimens of the bilateral adrenal glands were collected and fixed in 4% paraformal-

dehyde in phosphate-buffered saline (PBS; pH 7.2) for histopathologic and immunohisto-

chemical analyses.

Biochemical analysis

Blood samples were immediately centrifuged to prepare serum, and ACTH and cortisol levels

were measured using an AIA-3601analyzer (TOSOH Bioscience GmbH, Griesheim, Ger-

many) [39,40]. This analyzer utilizes a competitive fluorescent enzyme immunoassay format

and is performed entirely within small, single-use test cups containing all necessary reagents.

The analyte in the sample competes with the enzyme-labeled hormone and incubated with a

fluorogenic substrate, 4-methylumbelliferyl phosphate. The amount of enzyme-labeled hor-

mone that binds to the beads is inversely proportional to the hormone concentration in the

test sample. Calibration, daily checks, and maintenance procedures were carried out as

described in the Systems Operator’s Manual. Accurate performance data for human ACTH

and cortisol, including analyte recovery and dilution studies, had been previously evaluated

and were available in the manufacturer’s technical bulletins. The time required to obtain the

first result using this assay is 20 minutes, with additional results obtained every minute

thereafter.

Table 1. Case profile.

Cause of death No. Sex(M/F) Age (mean) Survival period (mean, h) Postmortem period(mean, h) Hospitalization(M/F)

Hypothermia 14 9/5 34-89(62) 6–24 (18) 24–72 (52.6) 0/0

Blunt injury (head injury) 28 19/9 15–98 (66) <0.5–1056 (128.7) 12–60 (29.3) 9/6

Blunt injury (non-head injury) 9 9/0 52–85 (67) <0.5–960 (122.6) 24–60 (30.6) 4/0

Sharp instrument injury 8 7/1 40–85 (67) <0.5–24 (6.3) 12–36 (27.4) 3/1

Fire fatality 43 34/10 28–95 (73) <0.5–3600 (142.4) 12–60 (27.8) 6/2

Asphyxia 29 19/10 21–83 (57) <0.5–240 (23.7) 12–60 (33.4) 4/2

Intoxicationa 11 8/3 25–59 (38) <0.5–48 (11) 12–36 (32.7) 0/1

Drowning 11 7/4 44–85 (62) <0.5–2 (3) 12–48 (29.6) 0/0

Hyperthermia 10 3/7 28–92 (70) 6–240 (33.1) 24–48 (32.7) 2/1

Acute cardiac death 20 19/1 19–88 (61) <0.5–144 (16.5) 6–60 (33.6) 1/1

Other natural death 22 14/8 21–88 (70) <0.5–4320 (243.5) 24–48 (29.2) 5/3

aMethamphetamine-related fatalities, n = 3; psychotropic drugs, n = 5; others, n = 3

No.: number, M: male, F: female

https://doi.org/10.1371/journal.pone.0218910.t001
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Serum samples (150 μL each) were placed in the test cups, and both hormones were mea-

sured using the above-mentioned immunoassays. The lower (and upper) reported values for

the ACTH and cortisol assays were 2.0 (2000.0) pg/mL and 28.0 (1656.0) nmol/L, respectively.

Oxyhemoglobin measurement

Blood oxyhemoglobin was determined using a CO-oximeter system (ABL80FLEX System;

Radiometer Corp., Tokyo, Japan) in hypothermia patients [41, 42]. Blood alcohol levels were

determined using headspace gas chromatography/mass spectrometry (GC/MS), and amphet-

amine and psychotropic drugs were detected by GC/MS [31].

Immunohistochemistry

Harvested adrenal glands were fixed in 4% paraformaldehyde in PBS (pH 7.2) for 12 h, embed-

ded in paraffin, and sectioned at a thickness of 4μm. Deparaffinization (Sakura Tissue TEK

DRS 2000, Tokyo, Japan) of each section was followed by heat-mediated antigen retrieval in

citrate buffer (pH 7.0) for 10 min, after which each section was immersed in 0.3% H2O2-meth-

anol for 10 min to inactivate endogenous peroxidases. After washing in PBS for 5 min, slides

were incubated overnight with anti-cortisol-binding globulin antibody (ab107368; Abcam).

Immunoreactivity was visualized by the polymer method using Dako Envision+ Dual Link

System-HRP (K4063; Dako, CA, USA) and the Dako liquid DAB+ Substrate Chromogen

System (K3468; Dako), according to the manufacturer’s instructions and with hematoxylin

counterstaining [13,31]. The total number of cells in the adrenal gland and number of cells

exhibiting cytoplasmic or nuclear cortisol immunoreactivity were determined microscopically

under 400× magnification. Three random fields were independently enumerated, and the data

are presented as number of cortisol-positive cells (cytoplasm or nucleus, respectively)/ total

number of adrenal gland cells×100. As cells in the zona fasciculata of the adrenal gland are

known to produce cortisol in the cytoplasm, immunostaining for cortisol in each group was

evaluated by technicians blinded to sample grouping. Three sections were randomly selected

for cell counting [43,44].

Cell culture models

Mono-culture models of pituitary and adrenal cells. Mono-culture models of ACTH-

secreting AtT20 pituitary cells [45–49] and corticosterone-secreting Y-1 adrenal cells [50–54]

derived from mice were developed to verify whether these cells secrete hormones only upon

stimulation by exposure to cold. AtT-20 was originally induced in a mouse that received ioniz-

ing radiation [55] and has been maintained in LAF-1 mice of both sexes (MS) by Dr.Jacob

Furth and colleagues [56] since 1957. LAF-1 mice of both sexes (4 to 6 weeks old) were pur-

chased from Jackson laboratory (Bar Harbor, ME, USA). Generally, AtT-20 tumors are main-

tained in both adrenalectomized and intact mice separately via injection of 106 tumor cells on

the back of the neck. Adrenalectomy was performed by making a mid-incision on the back of

young animals 2–3 days before tumor grafting. Adrenalectomized animals were provided 0.5%

saline as drinking water and injected with 0.5 mg of Percorten (11-deoxycorticosterone ace-

tate, Ciba, USA) every 3 weeks. Establishment of clonal cell line of AtT-20 (Flow Lab. Inc.,

USA) was complete. AtT-201 K cells used in this study were independently established in our

laboratory from a transplanted tumor; thus, AtT-20 animals were designated ‘Ms’ mice.

Mouse Y-1 adrenocortical tumor cells (ATCC CCL-79), were established in a male mouse

[57–61]. For both cell types (AtT20 and Y-1), the culture medium consisted of a 1:1 ratio of

DMEM-F12 and 15% charcoal stripped fetal bovine serum (FBS; Biological Industries, CT.,

USA) with 4mML-glutamine, 50 U/mL penicillin, and 50μg/ml streptomycin. Initially, cells of
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both types were seeded and cultured at 37˚C. Growth was controlled at 54,618 cells/cm2 for

AtT20 and 57,803 cells/cm2 for Y-1, and the cells were allowed to proliferate until they covered

the surface of the culture dished. The culture medium for Y-1 cells was replaced once every 2

days. Once the AtT20 and Y-1 cells reached confluence, they were transferred to 4˚C and

maintained. The amount of ACTH and corticosterone in the culture medium was measured at

5,10,1,20,30,40,60,180, and 360 min; at 12 and 24 h; and at 3 and 5 days. ACTH was measured

using a mouse ACTH assay kit (FEK-001-21; Phoenix Pharmaceuticals, Inc., USA) [62,63],

and corticosterone was measured using a mouse corticosterone assay kit (Assay MAX

EC3001-1; ANG, USA) [45–47]. At the end of the experiment, adherent cells were dissociated

from the surface using trypsin and then counted; hormone concentrations were calculated

using a correction formula and the measured values.

Co-culture model development. We developed a co-culture system for AtT20 ACTH-

secreting cells (ECACC no.87021902) [48,49] and Y-1 corticosterone-secreting cells derived

from mice [64–66] as a model of the pituitary-adrenal system. The co-culture model was used

to investigate whether these cells interact as part of the HPA axis during cold-stimulated hor-

mone production. Both AtT20 and Y-1 cells were cultured in medium containing DMEM-F12

supplemented with 15% inactivated FBS, 50μg/mL streptomycin, 50 μM penicillin, and

0.25 μg/mL fungizone. To inactivate ACTH present in the culture medium, 0.2 mL of rabbit

anti-mouse ACTH (1–24) serum (Siemens, Immulyze) was added to 200 mL of culture

medium. The appropriate amount of rabbit serum to add was determined using an ACTH

ELISA kit (MDB, M046006) [67].

Initially, both AtT20 and Y-1 cells were cultured separately at 37˚C, with AtT20 and Y-1

cells on the top and bottom of the filter, respectively. The cells were then co-cultured at 4˚C.

The insert for 6-well plate (Greiner Bio-One, Frickenhausen, Germany) used to separate the

AtT20 and Y-1 cells had a diameter of 23.1 mm, pore size of 3.0 μm, and pore density of 2×106

pores/cm2. Initially, corticosterone-secreting Y-1 cells were cultured on the bottom of the filter

with the filter placed upside down so that the cells formed a mono layer. Subsequently, the fil-

ter was placed upright in the culture medium. Schroten H, (2016) established this method in a

choroid plexus model [68–72], and we previously described this method in a report on the

physiologic significance of the blood-cerebrospinal fluid barrier and prolactin [73].

Excessive growth on the filter was controlled by trypsinization to maintain a single layer of

cells; the number of Y-1 cells on the filter was limited to 57,803/cm2. As the Y-1 cells formed

tights junctions, movement of ACTH between the cells was prevented. Thereafter, the culture

medium was replaced once every 2 days. Once culturing of the Y-1 cells was complete, AtT20

(ACTH secreting) cells were similarly grown on the other side of the filter (i.e., the side oppo-

site to Y-1 cells). The filter was immersed in the culture medium by placing the ACTH-secret-

ing (AtT20) cells side facing up and corticosterone-secreting (Y-1) cells side facing down.

Levels of ACTH and corticosterone in the culture medium were measured at 5, 10, 15, 20, 30,

40, and 60 min, as indicated above. After measurement of both hormones, the adherent cells

were dissociated from the filter using trypsin and counted. Accurate hormone concentrations

were calculated using a correction formula and the measured values.

Statistical analysis

For comparisons between groups, we used the nonparametric Mann-Whitney U test. The

Games-Howell test was used for analyses involving multiple comparisons. All analyses

were performed using Microsoft Excel and IBM SPSS statistic viewer 24. Lines in each

box represent the median, whereas lines outside each box represent the 90% confidence inter-

val. The sensitivity and specificity for distinguishing between two groups using cut-off cortisol
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values based on blood collection site (i.e., left and right cardiac chambers and common iliac

veins) were estimated using receiver operating characteristic (ROC) curve analysis. Areas

under the curve were calculated and analyzed using a 1-tailed test. The optimal compromise

between sensitivity and specificity was determined graphically.

Ethics statement

This study was evaluated by the Independent Ethics Committee of the Osaka City University

Graduate School of Medicine. According to the Independent Ethics Committee of the Osaka

City University Graduate School of Medicine, informed consent from opt-out for the autopsy

data analysis was approved. (authorization no.4153). The Ethics Committee approval for the

study was valid for the period 2010–2019.

Results

Relationship between cortisol levels and sex, age, survival period, and

postmortem period

Serum cortisol levels were not associated with postmortem period (left cardiac blood:

y = 0.497x+6.8131; R = 0.249; p>0.05, right cardiac blood: y = 0.279x+11.002; R = 0.163;

p>0.05, iliac vein: y = 0.299x+11.814; R = 0.152; p>0.05), survival period (left cardiac blood:

y = 0.476x+8.18; R = 0.238; p>0.05, right cardiac blood: y = 0.256x+12.505; R = 0.149; p>0.05,

iliac vein blood: y = 0.261x+13.9; R = 0.132; p>0.05), sex and related differences, or age.

Sex groups. Males and females did not exhibit significant differences in left cardiac blood,

right cardiac blood, or iliac vein blood (p>0.05). Cortisol levels by sex were as follows. Males:

left cardiac blood 1.5–154.6 μg/dL; median 20.8 μg/dL, right cardiac blood 1.7–136.7 μg/dL;

median 19.1 μg/dL, iliac vein blood 1.1–150.1 μg/dL; median 20.3 μg/dL. Females: left cardiac

blood 0.7–284.5 μg/dL; median 30.5 μg/dL, right cardiac blood 1.0–272.9 μg/dL; median

25.2 μg/dL, iliac vein blood 1.3–297.4 μg/dL; median 26.3 μg/dL.

Age. Cortisol levels in each age groups of males and females were as follows. Males: 10s

(n = 3): left cardiac blood 1.9–22.4 μg/dL; median 13.0 μg/dL, right cardiac blood 1.4–21.7 μg/

dL; median 12.6 μg/dL, iliac vein blood 2–24.8 μg/dL; median 14.8 μg/dL. 20s (n = 7): left car-

diac blood 4.6–42.7 μg/dL; median 13.0 μg/dL, right cardiac blood 4.7–13.0 μg/dL, median

13.0 μg/dL, iliac vein blood 6.4–44.7 μg/dL; median 18.3 μg/dL. 30s (n = 7): left cardiac blood

2.7–43.4 μg/dL; median 15.5 μg/dL, right cardiac blood 1.7–33.8 μg/dL; median 11.6 μg/dL,

iliac vein blood 0–40.0 μg/dL; median 10.8 μg/dL. 40s (n = 19): left cardiac blood 1.5–55.2 μg/

dL, median 15.7 μg/dL, right cardiac blood 1.7–53.2 μg/dL; median 14.1 μg/dL, iliac vein blood

1.1–57.2 μg/dL; median 15.4 μg/dL. 50s (n = 14): left cardiac blood 6.1–154.6 μg/dL; median

40.3 μg/dL, right cardiac blood 8.3–136.7 μg/dL; median 36.9 μg/dL, iliac vein blood 7.8–

150.4 μg/dL. 60s (n = 37): left cardiac blood 2.9–60.0 μg/dL; median 17.7 μg/dL, right cardiac

blood 3.4–60.0 μg/dL; median 15.5 μg/dL, iliac vein blood 2.9–72.8 μg/dL; median 16.8 μg/dL.

70s (n = 30): left cardiac blood 3.8–86.8 μg/dL; median 24.9 μg/dL, right cardiac blood 3.3–

81.5 μg/dL; median 23.7 μg/dL, iliac vein blood 4.5–109.6 μg/dL; median 2.5 μg/dL. 80s

(n = 25): left cardiac blood 0–60 μg/dL; median 15.5 μg/dL, right cardiac blood 2.6–60.0 μg/dL;

median 16.4 μg/dL, iliac vein blood 0–60 μg/dL; median 14.9 μg/dL. 90s (n = 5): left cardiac

blood 11.4–28.7 μg/dL; median 20.9 μg/dL, right cardiac blood 9.4–17.9 μg/dL; median

18.9 μg/dL; iliac vein blood 9.4–17.0 μg/dL; median 17.0 μg/dL. Females: 10s (n = 1): left car-

diac blood 2 μg/dL, right cardiac blood 1.9 μg/dL, iliac vein blood 2.4 μg/dL. 20s (n = 3): left

cardiac blood 0.7–3.0 μg/dL; median 1.9 μg/dL, right cardiac blood 0.0–1.7 μg/dL; median

0.9 μg/dL, iliac vein blood 1.3–2.4 μg/dL; median 1.7 μg/dL. 30s (n = 2): left cardiac blood
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3.0 μg/dL and 3.3 μg/dL, right cardiac blood 1.9 μg/dL and 2.4 μg/dL; iliac vein blood 2.9 μg/

dL and 3.8 μg/dL. 40s (n = 6): left cardiac blood 3.3–7.1 μg/dL; median 5.4 μg/dL, right cardiac

blood 3.1–6.3 μg/dL; median 4.6 μg/dL, iliac vein blood 3.8–6.9 μg/dL; median 5.0 μg/dL. 50s

(n = 7): left cardiac blood 7.6–11.1 μg/dL; median 8.8 μg/dL, right cardiac blood 6.5–8.7 μg/dL;

median 8.7 μg/dL, iliac vein blood 3.8–6.9 μg/dL; median 5.0 μg/dL. 60s (n = 3): left cardiac

blood 13.1–13.8 μg/dL; median 13.3 μg/dL, right cardiac blood 9.0–11.0 μg/dL; median

10.2 μg/dL, iliac vein blood 10.9–11.4; 11.1 μg/dL. 70s (n = 12): left cardiac blood 13.9–

19.4 μg/dL; median 15.9 μg/dL, right cardiac blood 11.5–15.3 μg/dL; median 13.4 μg/dL, iliac

vein blood 12.8–16.3 μg/dL; median 14.0 μg/dL. 80s (n = 19): left cardiac blood 19.8–58.2 μg/

dL; median 33.0 μg/dL, right cardiac blood 16.1–45.3 μg/dL; median 28.1 μg/dL, iliac vein

blood 16.8–60.0 μg/dL; median 29.7 μg/dL. 90s (n = 5) left cardiac blood 86.5–284.5 μg/dL;

median 154.9 μg/dL, right cardiac blood 50.8–272.9 μg/dL; median 119.4 μg/dL, iliac vein

blood 68.6–297.4 μg/dL; median 131.7 μg/dL.

Postmortem period. Cortisol levels were also classified by postmortem period in each sex

as follows (0–24 h, 24–48 h, 48–72 h). Males: 0–24 h: left cardiac blood 1.5–75.3 μg/dL; median

17.0 μg/dL, right cardiac blood 1.7–76.2 μg/dL; median 1.7–76.2 μg/dL; median 15.6 μg/dL,

iliac vein blood 1.1–76.9 μg/dL; median 16.8 μg/dL. 24–48 h: left cardiac blood 2.9–154.6 μg/

dL; median 24.5 μg/dL, right cardiac blood 2.4–136.7 μg/dL; median 22.2 μg/dL; iliac vein

blood 3.0–150.4 μg/dL; median 24.6 μg/dL. 48–72 h: left cardiac blood 0.0–55.2 μg/dL, median

18.8 μg/dL, right cardiac blood 3.3–53.2 μg/dL; median 18.7 μg/dL, iliac vein blood 0.0–

57.2 μg/dL; median 16.8 μg/dL. Females: 0–24 h: left cardiac blood 0.0–66.9 μg/dL, median

17.7 μg/dL; right cardiac blood 0.0–50.8 μg/dL; median 16.6 μg/dL, iliac vein blood 1.6–

38.7 μg/dL, median 17.7 μg/dL. 24–48 h: left cardiac blood 0.7–284.5 μg/dL; median 29.6 μg/

dL, right cardiac blood 1.1.-272.9 μg/dL; median 27.4 μg/dL, iliac vein blood 1.3–297.4 μg/dL;

median 31.0 μg/dL. 48–72 h: left cardiac blood 10.2–121.8 μg/dL; median 54.4 μg/dL, right car-

diac blood 0.0–99.6 μg/dL; median 30.0 μg/dL, iliac vein blood 0.0–90.4 μg/dL; median

29.7 μg/dL.

Relationship between cortisol levels and collection site

Cortisol levels exhibited a correlation (R = 0.97–0.98) with blood collection site, particularly

the left and right cardiac chambers and external iliac vein. A strong correlation was found

between left cardiac vein blood, right cardiac vein blood, and iliac vein blood, respectively (left

cardiac blood and right cardiac blood: y = 1.06x+0.8; R = 0.982; p<0.01, left cardiac blood and

iliac vein blood: y = 0.94x+1.82; R = 0.971; p<0.01, right cardiac blood and iliac vein blood:

y = 0.88x+1.18; R = 0.977; p<0.001).

Relationship between cortisol levels and cause of death

At all blood collection sites, cortisol levels were approximately three times higher in hypother-

mia cases than in cases involving other causes of death (p<0.05-p<0.0001; Fig 1a–1c). Specifi-

cally, serum cortisol levels were significantly higher in cases of death due to hypothermia

compared with other causes of death: left cardiac blood, 20–120 μg/dL (median 50 μg/dL;

males: 22–111.6 μg/dL (median 49.9 μg/dL), females: 38.3–121.8 μg/dL (median 66.5 μg/dL),

p>0.05); right cardiac blood, 20–100 μg/dL (median 50 μg/dL; males: 20.8–88.2 μg/dL (median

45.1 μg/dL), females: 36.5–99.6 μg/dL (median 62.5 μg/dL), p>0.05); iliac vein, 20–130 μg/dL

(median 60 μg/dL; males: 22–128 μg/dL (median 49.1 μg/dL), females: 36.5–99.6 μg/dL

(median 60.5 μg/dL), p>0.05) versus left cardiac blood, 0–50 μg/dL (median 20 μg/dL; males:

1.5–154.6 μg/dL (median 19.1 μg/dL), females: 0.7–284.5 μg/dL (median 27.0 μg/dL), p>0.05);

right cardiac blood, 0–40 μg/dL (median 10 μg/dL; males: 1.7–136.7 μg/dL (median17.5 μg/

Cortisol levels after cold exposure are independent of adrenocorticotropic hormone stimulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0218910 February 18, 2020 7 / 20

https://doi.org/10.1371/journal.pone.0218910


dL), females: 1.0–272.9 μg/dL (median 21.5 μg/dL), p>0.05); iliac vein, 0–20 μg/dL (median

20 μg/dL; males: 1.1–150.4 μg/dL (median 18.5 μg/dL), females: 1.3–297.4 μg/dL (median

23.6 μg/dL), p>0.05). There was no significant difference in cortisol levels between hypother-

mia and other causes of death for either males or females. Furthermore, most cases exhibited

Fig 1. Cortisol levels in blood collected from three sites. Cortisol levels by cause of death in the left (a) and right (b) cardiac chambers and the

common iliac vein (c).

https://doi.org/10.1371/journal.pone.0218910.g001
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lower cortisol levels, except in hyperthermia cases (heat stroke: left cardiac blood, 0–60 μg/dL

[median 30 μg/dL]; right cardiac blood, 0–42 μg/dL [median 20 μg/dL]; iliac vein, 0–60 μg/dL

[median 20 μg/dL]). There was no correlation between ACTH concentration and cortisol in

hypothermia cases at any of the collection sites tested (left cardiac blood: Y = 0.0103x+3.237;

r = 0.065; p>0.05 versus right cardiac blood: Y = 0.0217x+2.7124; r = 0.113; p>0.05 versus

iliac vein: Y = 0.026x+2.4458; r = 0.170; p>0.05).

Sensitivity and specificity cut-off values for distinguishing between groups with higher

(hypothermia) and lower (other cause of deaths) cortisol levels were determined using ROC

curve analysis and estimated as 30 μg/mL (0.917 and 0.852) for the left cardiac chamber, 25 μg/

mL (0.917 and 0.836) for the right cardiac chamber, and 30 μg/mL (0.917 and 0.872) for the

common iliac veins.

Cortisol immunopositivity in the adrenal gland

Cortisol immunostaining analysis indicated that in hypothermia cases, cortisol was primarily

localized in the nucleus, whereas cortisol staining was predominant in the cytoplasm in cases

involving other causes of death (Fig 2a–2c). the Graph in Fig 3a shows the cortisol positivity

rate in the nucleus by cause of death. Hypothermia (0–70%, median 50%) cases exhibited sig-

nificantly higher cortisol positivity rate than the other groups (0–30%, median 5%). The graph

in Fig 3b shows the number of cells that were positive for cortisol in the cytoplasm; however, it

was not significantly different compared with the nucleus.

Mono-culture model

In the mono-culture models, ACTH- and corticosterone-secreting cells were cultured sepa-

rately at 4˚C to ensure the absence of ACTH in the culture of corticosterone-secreting Y-1

Fig 2. Immunostaining of cortisol in the adrenal gland. Micrographs showing hematoxylin-eosin staining (i) and immunostaining

(ii) of cortisol in the adrenal gland in cases of (a) hypothermia (45-years-old male, postmortem period<28 h), (b) intoxication

(27-years-old male, postmortem period<20 h) and (c) acute cardiac death (68-years-old male, postmortem period<40 h) (original

bar 100 μm, respectively). In hypothermia cases, the cortisol positivity rates in the nucleus and nucleus to cytoplasm were higher than

with other cause of death. Cortisol positivity in the nucleus was a characteristic finding in hypothermia cases.

https://doi.org/10.1371/journal.pone.0218910.g002
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cells (Fig 4a). AtT20 cells secreted ACTH after 10~15 min of cold exposure (10 min: median

120 pg/mL; 15 minutes: median 100 pg/mL), which subsequently decreased by 30 min (median

15 pg/mL) (Fig 5a). Corticosterone secretion by Y-1 cells increased slowly during the first 30

min of cold exposure (median 30 ng/mL) and subsequently decreased by 60–180 min (60 min:

median 25 ng/mL; 180 min: median 20 ng/mL) (Fig 5b). However, cell culture studies did not

reveal a correlation between ACTH and corticosterone secretion in mono-culture experi-

ments, and these results thus suggest that corticosterone secretion after cold exposure is inde-

pendent of ACTH (Fig 5c).

Fig 3. Cortisol positivity rate in the nucleus and cytoplasm by cause of death. Cortisol immunopositivity in the nucleus (a:

hypothermia; p<0.05), cytoplasm (b: hypothermia; p>0.05), and nucleus to cytoplasm (c: hypothermia; p>0.05) ratio by cause of

death. Cause of death was classified based on a complete autopsy, and micromorphologic, micropathologic, and toxicologic

examinations, as follows: sharp instrument injury (male n = 7, female n = 1), non-head blunt injury (male n = 9, female n = 0), blunt

head injury (male n = 19, female n = 9), asphyxia (male n = 19, female n = 10), drowning (male n = 7, female n = 4), hypothermia

(male n = 9, female n = 5), hyperthermia (male n = 3, female n = 7), intoxication (male n = 8, female n = 3), fire fatality (male n = 34,

female n = 10), acute cardiac death (male n = 19, female n = 1), and natural death (male n = 14, female n = 8).

https://doi.org/10.1371/journal.pone.0218910.g003
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Pituitary–adrenal cell co-culture model

In the co-culture model (Fig 4b), ACTH secretion peaked at 10~15 min (10 min: median 130

pg/mL; 15 min: median 120 pg/mL) and slowly decreased from 20 min onwards (median 20

pg/mL). Corticosterone levels slowly increased beginning at 10 min (median 30 ng/mL),

peaked at 20 min (median 300 ng/mL), and decreased after 30 min (median 150 ng/mL) (Fig

6). These co-culture results suggest that corticosterone secretion is ACTH independent, as

seen in mono-culture experiments (Fig 7).

Discussion

The correlation between cortisol levels and blood collection site in the present study suggests

there were differences in cortisol levels at the various collection sites tested. Therefore, we

Fig 4. Mono- and co- culture of ACTH-(AtT20) and corticosterone-secreting (Y-1) cells. Schematic illustration of mono-culture

(a) and co-culture (b) models of pituitary and adrenal gland cells.

https://doi.org/10.1371/journal.pone.0218910.g004
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assessed the relationship between cortisol levels in blood collected from each site and cause of

death and found that cortisol levels in cases of hypothermia were three times higher than those

in other causes of death. As stress hormones, ACTH and cortisol may exhibit regional differ-

ences in terms of increases with an acute change in survival period. However, ACTH and cor-

tisol levels were highly correlated in the blood. It was thought that this result was associated

with death characterized by a long survival period rather than sudden death due to causes such

as acute cardiac death, based on the respective half-lives of ACTH and cortisol. No significant

correlations were observed between cortisol levels and causes of death other than hypothermia.

There was no correlation between ACTH concentration and cortisol levels in hypothermia,

suggesting that cortisol can be produced by the adrenal gland during cold stress without stimu-

lation by ACTH.

We cultured an adrenal cortex at low temperature using culture fluid that did not contain

ACTH. An increase in ACTH-independent corticosterone was observed. We did not use cells

cultured from human samples for this experiment because the cells that normally secrete

ACTH and cortisol in humans have not been established. We therefore used a mouse cell cul-

ture mode. Such ACTH-independent production of cortisol might be protective during pro-

longed (but not acute) periods of cold stress, as cold exposure promotes glucose production

[74]. Recently, Turk EE. suggested that the most-relevant to date are urinary catecholamines

and their O-methylated metabolites, urinary free cortisol, blood cortisol, as well as blood, vitre-

ous humor, and pericardial fluid for ketone bodies and free fatty acids. These biomarkers are

increased in response to either cold-associated stress or bioenergetic ketogenesis crisis and

Fig 5. Patterns of ACTH (AtT20) and corticosterone (Y-1) secretion over time. ACTH (a) and corticosterone (b)

concentrations over time under cold conditions (4˚C) in mono-culture.

https://doi.org/10.1371/journal.pone.0218910.g005
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significantly contribute to the diagnosis by excluding death by hypothermia, perimortem ele-

vation of adrenal cortex hormones might reflect more of a decrease in metabolism and hepatic

clearance than an increase in ACTH [75–84]. One study examining the agonal process and

blood cortisol concentrations found no significant difference between instantaneous death

and death with prolonged agony (e.g., subdural hematoma) [84]. Some researchers recom-

mend analysis of free urinary cortisol and blood cortisol in suspected cases of hypothermia

[74,85–88]. Importantly, micromorphologic changes in hormone expression in the adrenal

cortex appear to be important for cold-induced cortisol secretion.

Cortisol is produced primarily in the zona fasciculata of the adrenal gland. Cell counts and

nuclear and cytoplasm staining by technicians blinded to cause of death showed that during

hypothermia, cortisol staining was primarily localized in the nucleus rather than the cyto-

plasm. Furthermore, nuclear staining of cortisol was significantly greater in cases of hypother-

mia than cases involving other causes of death, whereas no significant difference between

groups was noted in terms of cytoplasmic staining. These findings support studies showing

that glucocorticoid receptors are inactive in the cytoplasm, as they are complexed with other

proteins [89]. When glucocorticoid bind, they become active dimers, move into the nucleus,

and promote transcription. Here, we found high levels of cortisol staining in the nucleus dur-

ing cold exposure. Considered together, these observations suggest that cortisol is secreted in

Fig 6. Secretion of ACTH and corticosterone over time in co-culture of AtT20 and Y-1 cells. Concentrations of ACTH and

corticosterone over time in co-culture of ACTH- (AtT20) and corticosterone-secreting (Y-1) cells under cold conditions (4˚C).

https://doi.org/10.1371/journal.pone.0218910.g006
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large quantities in response to the stress of cold exposure and that re-uptake might also occur

[90–92].

In this study, we used a novel co-culture system to assess ACTH and corticosterone secre-

tion secondary to cold stimulation. Experiments involving cultured cells are generally initiated

at the point each hormone is at a stable concentration. Thus, increases after initiation of the

experiment are significant. The increased levels of ACTH and cortisol in the blood following

cold exposure did not differ by blood collection site. This suggested that the survival period of

the case involving death due to cold exposure was long and that cortisol levels were stable at

each blood sampling site. In contrast, the cell culture experiment used medium that did not

contain ACTH. This experiment was started after the number of cells in the culture flask was

stable. Thus, the point at which measurements began was not the start time of ACTH secretion

from ACTH-producing cells after cold exposure. In other words, in the cell culture model

experiment, the increases in ACTH and corticosterone production after the start of measure-

ment were significant.

We demonstrated that ACTH and corticosterone secretion levels and patterns differed and

were not correlated. Mono-culture of ACTH- and corticosterone-secreting cells under ACTH-

free conditions at 4˚C resulted in a sudden peak in ACTH at 10 min that decreased after 30

min. This can be explained by the half-life of mouse ACTH [93]. However, in an ACTH-free

Fig 7. Correlation of ACTH and Corticosterone in mono-culture and co-culture. The correlation between ACTH

and corticosterone levels in mono-culture. The mono-culture study demonstrated that corticosterone secretion

following cold exposure is independent of ACTH (Y = 1.28x+11.34, r = 0.3, p>0.05). In co-culture the correlation

between ACTH and corticosterone levels results demonstrated that corticosterone secretion following cold exposure is

independent of ACTH (Y = 0.03x+52.04, r = 0.07, p>0.05).

https://doi.org/10.1371/journal.pone.0218910.g007
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environment, the increase in corticosterone was lower than that seen under co-culture condi-

tions, and there was no correlation between corticosterone and ACTH levels. These results

suggest that cold exposure leads to independent increased secretion of cortisol. In general,

metabolism slows with cold exposure. In our experimental findings, the increase in cortisol

levels in individuals who died following cold exposure was suggestive of both immune system

suppression and stress. However, as the increase in cortisol was ACTH-independent, there

was no experimental system we could use to determine whether the increase in cortisol was

associated with immune system suppression or stress. The data suggest that the immune sys-

tem was suppressed due to stress when we consider that there was a time lag in the cell culture

experiment between the increase in ACTH and production of corticosterone following cold

exposure.

There are some limitations to this study. The correlation between ACTH and corticoste-

rone levels in mouse cell culture may differ from that observed in human autopsy examples.

The half-life of hormones may also differ in the cell culture models and in humans. Further-

more, it is necessary to examine differences between human cortisol and mouse corticosterone

and address problems associated with temperature setting in the cell culture model [94].

In conclusion, the present study showed that serum cortisol level can be used as a bio-

marker for cold exposure and that cortisol production in response to cold stress does not

depend on ACTH-based activation. As immunostaining for cortisol revealed high expression

levels in the nucleus after cold exposure, it is possible that cortisol production following cold

exposure is independent of ACTH stimulation.
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