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Abstract: Dempster–Shafer theory (DST), which is widely used in information fusion, can process
uncertain information without prior information; however, when the evidence to combine is highly
conflicting, it may lead to counter-intuitive results. Moreover, the existing methods are not strong
enough to process real-time and online conflicting evidence. In order to solve the above problems,
a novel information fusion method is proposed in this paper. The proposed method combines the
uncertainty of evidence and reinforcement learning (RL). Specifically, we consider two uncertainty
degrees: the uncertainty of the original basic probability assignment (BPA) and the uncertainty of
its negation. Then, Deng entropy is used to measure the uncertainty of BPAs. Two uncertainty
degrees are considered as the condition of measuring information quality. Then, the adaptive conflict
processing is performed by RL and the combination two uncertainty degrees. The next step is to
compute Dempster’s combination rule (DCR) to achieve multi-sensor information fusion. Finally,
a decision scheme based on correlation coefficient is used to make the decision. The proposed
method not only realizes adaptive conflict evidence management, but also improves the accuracy
of multi-sensor information fusion and reduces information loss. Numerical examples verify the
effectiveness of the proposed method.

Keywords: multi-sensor information fusion; negation of evidence; reinforcement learning; uncer-
tainty degree; correlation coefficient

1. Introduction

Multi-sensor information fusion (MSIF) is an important information processing tech-
nology, which can achieve multi-level and multi-source information combination optimiza-
tion [1,2]. A single sensor has less information and is easily affected by environmental
interference and measurement error. As a result, the obtained information may contain
mistakes, which makes it difficult to make accurate decisions [3]. In contrast, fusing multi-
sensor information can improve the performance of system and make the results more
reliable [4,5]. Due to the advantages of multi-sensor setups, in recent years, it has been
widely used in fault diagnosis, target positioning, and UAV system control [6–10]. The prac-
tical experience shows that comparing with a single-sensor system, multi-sensor systems
can significantly enhance the system performance of detection, identification, and fault
diagnosis [11,12]; however, due to various uncertainties in the real world, the information
obtained by multi-sensor is affected. In addition, due to the influence of the sensor itself,
the information obtained by multi-sensor systems may be inaccurate, uncertain, or even be
faulty [13–15]. How to correctly process multi-sensor information and establish a fusion
model is a widespread attention problem. As for this issue, many theories and methods
have been proposed, for example Z-number [16,17], D-number [18,19], fuzzy sets [20–22],
rough sets [23,24], R-number [25], entropy-based [26,27], and Dempster–Shafer theory
(DST) [28,29].
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DST is an uncertainty reasoning theory, as an extension of probability theory, which can
process uncertain information without prior probability [29]. Due to the characteristics,
DST has been widely used in military and civil fields. In addition, DST provides a classic
combination rule for fusing multi-source information, namely Dempster’s combination
rule (DCR); however, DCR has some problems in application. When the evidence to com-
bine is highly conflicting, it may produce counter-intuitive results, for example, the Zadeh
paradox [30]. Facing with these challenges, many methods have been proposed in the
past years. Yager [31] considered that the conflict cannot provide useful information.
He proposed a combination rule that redistributes the conflict to the frame of discernment
(FOD). Dubois and Prade [32] proposed that the conflict should be assigned to the intersec-
tion or union of associated focal elements. Later, Murphy [33] proposed that the original
evidence should be given weights for modification and to obtain new evidence. Then,
the new evidence was used to achieve multi-sensor information fusion (MSIF) based on the
DCR. Lefevre et al. [34] proposed a general framework to realize the unification of several
classical combination rules. Smets [35] thought the conflict should be allocated to empty
set. Dezert and Smarandache [36] proposed a new framework i.e., Dezert–Smarandache
Theory (DSmT), which is an extension of DST. Further, in [36], a series of combined rules are
provided, namely PCR1-PCR6, which can handle conflicting evidence. Based on interval-
valued belief structures, Song et al. [37] presented an uncertainty measurement method
and applied the method to MSIF. Aiming at the fusion decision making without prior
knowledge, Wang et al. [38] designed a method based on interval-valued belief structure
and DCR. Yuan and Xiao et al. [39] proposed a fusion method based on Deng entropy [40]
and evidence distance [41]. Jiang and Wei et al. [42] proposed a weighted average method
based on the credibility of evidence to deal with high-conflict evidence. Ni et al. [43]
presented an improved conflict evidence fusion method, in which the degree of uncertainty
of evidence was used to design the weight coefficient of each evidence.

The above methods mainly focus on original basic probability assignment (BPA);
however the concept of negative evidence is also a feasible way to express information.
Through the negation, multi-faceted aspects of information can be viewed. Smets proposed
a calculation method for determining the negation of probabilistic events [44]. Based on that,
many scholars have carried out relevant research on the negation of BPA, and proposed
a series of approaches for the negation of BPA [45–48]. In addition, researchers adopt
different methods to measure the uncertainty of BPA, and modified the original BPA based
on the uncertainty for the combination of evidence.

Until now, the above-mentioned methods cannot realize the real-time conflict pro-
cessing and the calculation is complicated when the amount of data is large. This paper
proposes a new information fusion method, which combines the uncertainty of evidence
and RL. In the proposed method, the negation of evidence is calculated. Then, Deng en-
tropy is used to measure the uncertainty of evidence. Moreover, in order to avoid the
irrationality caused by the conflict of information, RL is used to realize adaptive conflict
resolution of evidence. Finally, DCR and correlation coefficient are used for multi-sensor
information fusion and decision making. In the proposed method, we consider the original
BPA and the negation of BPA, the reason is as follows. The positive information of the
evidence can be obtained from the original BPA, the negative information of the evidence
can be obtained from the negative BPA. Through the original BPA and negation of BPA can
make the information obtained more comprehensive.

The main contributions are summarized as follows:

• The negation of evidence is introduced into RL to achieve information quality as-
sessment. The uncertainty of original evidence and its negation is obtained by using
Deng entropy. Then, the obtained uncertainty degrees are used to distinguish the
information quality of evidence, which helps to realize the access to information.

• In order to achieve the adaptive online information fusion, RL is combined with the
uncertainty degrees to process the conflicting evidence. In this process, a Markov
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decision process (MDP) model is built, and solved through Q-learning algorithm to
implement the fusion of evidence.

The rest of this paper is organized as follows. In Section 2, the preliminaries, including
DST, the negation of BPA, Deng entropy, and RL are introduced. In Section 3, the pro-
posed information fusion decision method is presented. In Section 4, the effectiveness the
proposed method is verified by numerical examples. Finally, in Section 5, the conclusion
is given.

2. Preliminaries
2.1. Dempster–Shafer Theory (DST)

DST is an effective method to deal with uncertain information, which satisfies weaker
conditions than Bayesian probability [29]. Some basic concepts in DST are given below.

Assume Θ is a finite set consisting of N mutually exclusive elements, indicated by

Θ = {θ1, θ2, . . . , θN}, (1)

then the Θ is called a FOD.
The power set of Θ is indicated by

2Θ = {θ1, θ2, · · · , θN , {θ1, θ2}, {θ1, θ3}, · · · , Θ, ∅}. (2)

If a function m : 2Θ → [0, 1] satisfies the following conditions, it is a BPA or mass function,{
m(∅) = 0

∑ m(A) = 1
(3)

where A is called focal element, and m(A) represents the mass assigned to A.
DST provides a Dempster’s combination rule (DCR) [28,29] to fuse multiple pieces of

evidence, which is defined as below m(∅) = 0

m(A) =
∑

A1∩A2∩A3 ···=A
m1(A1)m2(A2)···mm(Am)

1−K (A 6= ∅),
(4)

where K = ∑
A1∩A2∩A3···=∅

m1(A1)m2(A2) · · ·mm(Am) represents the conflict among BPAs.

Yager’s combination rule [31] is an alternative for the combination of evidence,
which is defined as below

m(A) = ∑
A1∩A2=A

m1(A1)m2(A2), (A 6= ∅, Θ)

m(Θ) = ∑
A1∩A2=Θ

m1(A1)m2(A2) + k

m(∅) = 0,

(5)

where k = ∑
A1∩A2=∅

m1(A1)m2(A2).

2.2. Negation of Evidence

The negation is an important way to express information. Recently, Deng and
Jiang [45] proposed a BPA negation calculation method based on maximum
uncertainty allocation.

Given a FOD Θ, for each focal element Ai, assuming m(Ai) = αi, the negation of m is
denoted as m̄:

(1) If Ai is a singleton θ, then m̄(Āi) = αi, where Āi=Θ−Ai;
(2) If Ai is not a singleton, then m̄(Āi) = αi, where Āi=∪∀θ∈Ai (Θ−θ).



Entropy 2021, 23, 1222 4 of 23

It can be seen from the above that, for an evidence m, the negation of m can be
calculated by

m̄(B) = ∑
Aisatis f ying( ∪

∀θ∈Ai
(Θ−θ))=B

m(Ai), (6)

where B ⊆ Θ.

2.3. Deng Entropy

Deng entropy [40] is a method to calculate the uncertainty of evidence, and it is
an extension of Shannon entropy [49]. The specific definition of Deng entropy is given
as follows

Ed = −∑
i

m(Ai) log
m(Ai)

2|Ai | − 1
, (7)

where |Ai| is the cardinality of A.
When dealing with a bayesian BPA, Deng entropy degenerates to Shannon entropy,

which is

Ed = −∑
i

m(Ai) log
m(Ai)

2|Ai | − 1
=−∑

i
m(Ai) logm(Ai). (8)

2.4. Correlation Coefficient

For a FOD with N elements, assuming that there are two BPAs are m1 and m2, respec-
tively, then the correlation coefficient between m1 and m2 is defined as follows [50]

rBPA(m1, m2) =
c(m1, m2)√

c(m1, m1)× c(m2, m2)
, (9)

where c(m1, m2) is defined as

c(m1, m2) =
2N

∑
i=1

2N

∑
j=1

m1(Ai)m2(Aj)

∣∣Ai ∩ Aj
∣∣∣∣Ai ∪ Aj
∣∣ , (10)

where | · | is the cardinality of a set.
The correlation coefficient rBPA(m1, m2) indicates the correlation between m1 and m2.

The larger the correlation coefficient, the higher the degree of correlation between m1
and m2.

2.5. Reinforcement Learning (RL)

RL does not require any data to be given in advance, which obtains the reward by the
continuous interaction between agent and environment. By employing the RL, a system
dynamically adjusts the parameters to maximize the accumulated reward [51,52]. In RL,
the return function is usually defined to represent the sum of the discounts of all rewards
observed by the agent after a certain state, i.e.,

Gt = (Rt+1 + γRt+2 + γ2Rt+3 + · · · ) =
∞

∑
k=0

Rt+k+1, (11)

where, γ is the discount factor (γ ∈ [0, 1)), which represents the weight relationship
between future rewards and immediate reward, and R is the immediate reward.

In RL, the value function is used to evaluate the expected return in a certain state,
which do not consider the actions taken at this time, only consider the current system state,
and defined as

V(s) = Eπ(Gt|St = s)
= Eπ(Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s).

(12)
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The Bellman equation of value function is given as follows

V(s) = Eπ(Rt + γvπ(s′)|St = s). (13)

V∗(s) is the optimal value function, i.e.,

V∗(s) = Eπ(Rt + γv∗(s′)|St = s). (14)

Since V(s) cannot evaluate the impact of a certain action on the system, a state-action
value function (Q value function) is proposed. Q value function is used to evaluate the
expected return in a certain policy. The policy is defined as π : S → A, defined as
π(a|s) = P(At = a|St = s). In other word, Q value function is the expectation of the
cumulative reward obtained when the agent in state s adopts action a, which is defined as

Qπ(s, a) = Eπ(Gt|St = s, At = a)
= Eπ(Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s, At = a).

(15)

The Bellman equation of Q value function is given as follows

Qπ(s, a) = Eπ(Rt+1 + γQπ(St+1, At+1)|St = s, At = a). (16)

Q∗(s, a) is the optimal Q value function, i.e.,

Q∗(s, a) = Eπ(Rt+1 + γQ∗(St+1, At+1)|St = s, At = a). (17)

We can obtain the optimal policy from V∗(s) and Q∗(s, a).

π∗ = arg max
a∈A

V∗(s) = arg max
a∈A

Q∗(s, a). (18)

3. The Proposed Method

In this section, a novel evidence combination method is proposed for adapting conflict
and making fusion decisions based on the uncertainty of evidence and RL. This method
defines information fusion as a RL task, and builds a fusion model using RL and the
uncertainty of original BPA and are calculated by the use of Deng entropy comprehensively.
Firstly, considering that the negation of BPA is also an important way to express informa-
tion, the uncertainty of original BPA and its negation. If we adopt the negation of BPA and
the original BPA as the judgment conditions. Then the judgment conditions are diversified,
which can help to obtain the correct processing results of different sensor information and
realize effective conflict management. If we adopt the original BPA as the judgment condi-
tion. Then the judgment condition is single, which may cause inaccurate processing results
of the sensor information. Thus, these two uncertainty degrees as the judgment conditions
are used to distinguish the information quality of evidence, so that consistent evidence
can be selected through RL. Next DCR is used to implement information fusion. Finally,
the decision result is obtained through a decision-making scheme based on correlation
coefficients. The overall information fusion and decision process of the proposed method
is shown in Figure 1.
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Figure 1. The overall framework of the proposed method.

3.1. Markov Decision Process (MDP)

In the fusion decision system, the next state is obtained by selecting an action un-
der the current system state. A MDP is built for the multi-sensor information fusion
decision system.

3.1.1. Action Set

Due to the impact of the actual environment, the multi-sensor information fusion
decision system may be of high conflict; therefore, it needs to set up a reasonable action
policy to realize the effective processing of conflicting data. In our proposed method,
the action set A is defined as

A = {a1, a2, a3} = {Retain, Delete, Waiting to process}. (19)

An evidence can be retained through action a1, whose information can be fused
later. A high-conflict evidence can be deleted through action a2, which can avoid the
adverse impact of conflicting evidence on fusion results. An evidence with a low degree
of conflict or with a small amount of information can be temporarily retained through
action a3, i.e., “waiting to process”. A “waiting to process” evidence will be operated in
the subsequent steps. After the first round of screening of all the evidence, the evidence
of “waiting to process” will process again. Specifically, all the evidence retained in the
first round is fused and denoted as FU . Then the evidence of “waiting to process” will be
reconsidered until the uncertainty of evidence obtained by combination is satisfied.

3.1.2. State Set

In RL, when an action is taken, the state of the system will change in another state.
In the fusion system, when the system action changes, the fusion result changes. Thus,
we define the current fused result as the system state, i.e.,

st+1 = mt+1=


mt ⊕ Dt+1, at+1 = Retain

mt, at+1 = Delete
mt, at+1 = Waiting to process,

(20)

where mt represents the fusion result at time t, Dt+1 is the sensor evidence at time t + 1,
and at+1 represents the action taken at time t + 1.
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Based on the above analysis, the system state set can be defined as

S = {s1, s2, · · · , st, st+1, · · · }. (21)

3.1.3. Reward

Reward is a feedback value given by the environment in a certain state s and certain
action a. In this paper, the environment is mainly containing the sensor information and
the fusion result at each time. The system uses reward value to determine the optimal
action at each time. In this paper, there are two cases. Case 1: The evidence is not in conflict,
then the fusion of evidence will generate consistent results. Case 2: The evidence is in
conflict, then the quality of fusion result is not guaranteed. In this paper, we use Deng
entropy to evaluate the quality of fusion results so as to set the reward function. The reason
is as follows.

According in Equation (7), Deng entropy uses m(A) log(2|A| − 1) to represent non-
specificity, which not only contains focal elements, but represents the power set of FOD.
Deng entropy is more sensitive to the change of focal elements. When the focal element
changes, the uncertainty of BPA also changes strongly. In RL, we use the uncertainty of
BPA to make policy for sensor information. The stronger the uncertainty, the stronger the
feedback signal for RL, the more conducive RL to make accurate policy.

The uncertainty of the original BPA is defined as E(m). At the same time Deng entropy
is also adopted to calculate the uncertainty of the negation of m, defined as E(m̄). These two
uncertainties are denoted as

E(m)=− ∑
A∈2Θ

m(A) log( m(A)

2|A|−1
)

E(m̄)=− ∑
A∈2Θ

m̄(A) log( m̄(A)

2|A|−1
)

(22)

Then E(m) and E(m̄) are jointly used to judge the quality of information. Specifically,
it can be divided into the following cases.

Case 1: If
{

E(mt+1) ≤ E(mt)
E(m̄t+1) ≤ E(m̄t)

, it indicates that the new state st+1 is with less un-

certainty from both positive and negative view of information, which should be given a
positive reward, since adding new evidence leads to more certain fusion result.

Case 2: If
{

E(mt+1) > E(mt)
E(m̄t+1) > E(m̄t)

, it indicates that the new state st+1 is with larger

uncertainty from both positive and negative view of information, which should be given a
penalty reward, since adding new evidence leads to more uncertain fusion result.

Case 3: If
{

E(mt+1) < E(mt)
E(m̄t+1) > E(m̄t)

or
{

E(mt+1) > E(mt)
E(m̄t+1) < E(m̄t)

, it indicates that the effect

of the new state st+1 cannot be determined, which will not be rewarded or penalized.
Therefore, the evidence in this case is waiting to be processed.

By setting the above three cases, we can adopt different policies for sensors (i.e., delete,
retain, or waiting to process), so as to delete the high conflict evidence and retain the
valid evidence.

Given the above analysis the reward function in this paper is defined as

Rt+1 =


20, E(mt+1) ≤ E(mt)&E(m̄t+1) ≤ E(m̄t)
0, E(mt+1) > E(mt)&E(m̄t+1) < E(m̄t)
0, E(mt+1) < E(mt)&E(m̄t+1) > E(m̄t)
−20, E(mt+1) > E(mt)&E(m̄t+1) > E(m̄t)

(23)

3.2. Q-Learning Algorithm Solution

After modeling the MDP, we adopt a model-free Q-learning algorithm to obtain the
optimal policy [53]. The main reasons are as shown as follows.
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Reason 1: The system in this paper is a discrete system, and Q-learning is suitable for
a discrete system.

Reason 2: The state-action space is small in this system. Hence the system does not
require a neural network to store state-action.

Reason 3: The state transition probability of the system is unknown, so a model-free
algorithm is needed.

Q-learning is used to find high-quality evidence by removing deletion of conflicting
BPAs, which is the main idea of obtaining the optimal fusion result. Specifically, at time t,
the system receives BPAs from different sensors, then it uses the action selection policy to
select an action at. Herein, a ε− greedy policy is utilized to select the action, which is to
explore new actions with a probability of ε, and select optimal action currently considered
with a probability of 1 − ε. The ε − greedy policy can ensure the balance between the
exploration and exploitation of the algorithm. The specific definition is as follows.

π∗(a|s) =
{

1− ε + ε
m , if a = arg max Q(s, a)

ε
m , if a 6= arg max Q(s, a),

(24)

where m represents all optional actions, and Q(s, a) represents the Q value of the Q value
function in state s and action a.

Then, the fusion system performs action at and obtains a new fusion result (i.e, a new
BPA). At time t, the uncertainty of original BPA and the negative BPA is measured by Deng
entropy, and compared with the uncertainty at time t − 1. A reward value at time t is
obtained according to the reward function. Equation (25) is used to calculate the current Q
value, and the Q value is stored in the Q table. We have

Q(st, at) = R(st, at) +
+∞

∑
t=1

γtR(st, at), (25)

where γ is the discount factor.
The fusion system selects actions according to the Q value function, then the system

state transfers to the next state st+1. With the continuous exploration of Q-learning, we use
Equation (26) to update the Q value function:

Q(st, at)← Q(st, at) + α[Rt + γ max
a∈A

Q(st+1, a)−Q(st, at)], (26)

where α ∈ (0, 1] is the learning rate.
Subsequently, the optimal action can be obtained through Equation (27). The system

will randomly select an action with a certain probability to ensure that the algorithm has a
certain degree of exploration. Finally, the optimal policy is obtained.

a∗ = max
a∈A

Q(s, a). (27)

According to the above process, the fusion system obtains the optimal action by
repeatedly calculating and updating the Q value. As a result, the BPAs in conflict are
deleted, consistent BPAs are retained, which can realize the adaptive online information
processing. After processing all the evidence, in this paper, the DCR is used to achieve
MSIF. The proposed method is outlined in Algorithm 1.
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Algorithm 1 The proposed evidence combination algorithm.

1: Input: BPAs from m sensors; state space S; action space A; discount factor γ; learning
rate α; episode number M.

2: Initialization Q(s, a) table.
3: for each episode do
4: for t = 1 to m do
5: Initialize state S;
6: Observe current state st, and choose an action at (use ε− greedy policy);
7: Take action at, calculate the negation of BPA, calculate the uncertainty degrees of

original BPA and its negation according to Equation (22), obtain the reward value
Rt according to Equation (23), then the system transfers to next state st + 1;

8: Utilize Equation (26) to update Q function;
9: Calculate fusion results according to Equation (4);

10: S← st + 1 is the final state.
11: end for
12: end for
13: Output: Multi-sensor information fusion result.

3.3. Decision Making Based on Correlation Coefficient

In this paper, a decision-making scheme based on the correlation coefficient is pro-
posed as follows.

A BPA m̂ whose mass is fully assigned to an element of FOD is called baseline BPA,
i.e, m̂(A) = 1, for any A ∈ Θ. Then, we calculate the correlation coefficient between each
baseline BPA and the BPA obtained by combination. The proposition corresponding to the
maximum correlation coefficient is the decision result.

X̂ = max
Ai∈Θ\{∅}

rBPA(m(·), m̂(·)), (28)

where X̂ is the final decision result, and rBPA(·) is the correlation coefficient.

4. Simulation Analysis and Application

To evaluate the effectiveness of the proposed multi-sensor information fusion decision-
making method, numerical examples are provided.

4.1. Numerical Example
4.1.1. Numerical Example 1

The example is adapted from [39]. In this example, there are five sensors simultane-
ously detecting a target. Assume FOD is Θ = {A, B, C}, which indicates that the target
is one among A, B, and C. BPAs obtained from the five sensors are m1, m2, m3, m4, m5,
respectively, as shown in Table 1.

Table 1. BPAs in the numerical example 1.

BPA m(A) m(B) m(C) m(A, C)

Sensor 1: m1 0.41 0.29 0.30 0
Sensor 2: m2 0 0.90 0.10 0
Sensor 3: m3 0.58 0.07 0 0.35
Sensor 4: m4 0.55 0.10 0 0.35
Sensor 5: m5 0.60 0.10 0 0.30
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The proposed method in this paper is used to perform multi-sensor information
fusion for the provided BPAs shown in Table 1. The detailed simulation parameters are
summarized in Table 2. The evidence processing results are shown in Table 3. From the
table, by using the proposed method, BPAs m1, m3, m4, and m5 are retained, while m2
is deleted because it is highly conflicting with other BPAs. During the process, we can
obtain the values of the negation of BPA. The detailed negation of the BPA is summarized
in Table 4.

Table 2. Simulation parameters for the numerical example 1.

Parameter Value

Discount factor (γ) 0.9
Learning rate (α) 0.1

Episode number (M) 100

Table 3. Results of online processing of BPAs for the numerical example 1.

BPA Sensor 1: m1 Sensors 2: m2 Sensor 3: m3 Sensor 4: m4 Sensor 5: m5

Processing result Retain Delete Retain Retain Retain

Table 4. The negation of the BPAs in the numerical example 1.

The Negation of BPA m(B, C) m(A, C) m(A, B, C)

m1 0.41 0.29 0.30
m1 ⊗m2 0 0.8969 0.1031
m1 ⊗m3 0.9213 0.0787 0

m1 ⊗m3 ⊗m4 0.9847 0.0153 0
m1 ⊗m3 ⊗m4 ⊗m5 0.9974 0.0026 0

In Table, m1 is the negation of m1, ⊗ is the fusion. According to the negation of BPA
in Table 4, we can obtain the uncertainty of the other side of the evidence, which effectively
enhances the expression of the uncertainty of the evidence.

Further, we compare the proposed method with four existing methods, including the
methods from Yager [31], Yuan et al. [39], Jiang et al. [42], and Ni et al. [43]. The fusion
results are shown in Table 5, which are also graphically shown in Figure 2. Then, by calcu-
lating the correlation coefficient of BPA m obtained by the combination with each baseline
BPA, m̂A(A) = 1, m̂B(B) = 1, m̂C(C) = 1, we have

rBPA(m̂A, m)=1, rBPA(m̂B, m) = 0.0026, rBPA(m̂C, m) = 0, (29)

Table 5. Fusion results of different methods for the numerical example 1.

Methods m(A) m(B) m(C) m(A, B) m(A, C) m(B, C) m(A, B, C)

Yager [31] 0.7732 0.0167 0.0011 0 0.0938 0 0.1152
Yuan et al. [39] 0.9886 0.0002 0.0072 0 0.0039 0 0
Jiang et al. [42] 0.9867 0.0008 0 0 0.0036 0 0

Ni et al. [43] 0.6513 0.1648 0.1730 0.0016 0.0096 0.0016 0
Proposed method 0.9974 0.0026 0 0 0 0 0
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(a) The belief value of different propositions.

(b) The belief value of A.

Figure 2. Comparison of fusion results for different methods in the numerical example.

It can be seen that the proposition with the largest correlation coefficient is A, so the
final decision result is A. Similarly, the decision results from other combination methods
can be obtained as shown in Table 6. According to Tables 5 and 6, by comparing these
methods, it is found that the proposed method has the largest belief value on m(A), which is
the most favorable for decision making.

Table 6. Decision-making results of different methods for the numerical example 1.

Methods rBPA(m̂A, m) rBPA(m̂B, m) rBPA(m̂C, m) Decision-Making Result

Yager [31] 0.9750 0.0532 0.0716 A
Yuan et al. [39] 1 0.0002 0.0086 A
Jiang et al. [42] 1 0.0008 0.0012 A

Ni et al. [43] 0.9378 0.2375 0.2530 A
Proposed method 1 0.0026 0 A

4.1.2. Numerical Example 2

Moreover, in order to fully demonstrate the importance of negative BPA in conflict
management and multi-sensor information fusion, a numerical example is used to illustrate.
The evidence of the numerical simulation example are shown in Table 7.
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Table 7. BPAs in numerical example 2.

BPA m(a) m(b) m(c) m(a, b) m(b, c)

ms1 0.7 0 0 0.3 0
ms2 0.4 0 0 0.3 0.3
ms3 0.55 0.2 0.05 0 0.2

The evidence in Table 7 is used to explain in detail that the negation of BPA contributes
to conflict management. Specifically, it can be divided into two cases. Case 1: only uses
the uncertainty of the original BPA for conflict management. Case 2: uses the uncertainty
of the original BPA and the uncertainty of the negative BPA for conflict management.
By comparing the fusion result in the two cases, the importance of the negative BPA for
conflict management and fusion results can be proved.

We can obtain the detailed negation of the BPA by calculating, which is summarized
in Table 8. Further, we can obtain the uncertainty degrees in the calculation process,
as shown follows.

Table 8. The negation of the BPAs in numerical example 2.

The Negation of BPA m(b, c) m(a, c) m(a, b) m(a, b, c)

ms1 0.7 0 0 0.30
ms1 ⊗ms2 0.7722 0.1139 0 0.1139
ms1 ⊗ms3 0.8209 0.1791 0 0

ms1 ⊗ms2 ⊗ms3 0.8425 0.1575 0 0

E(ms1) = 0.8813, E(ms1) = 2.8330
E(ms1 ⊗ms2) = 1.0020, E(ms1 ⊗ms2) = 2.7261
E(ms1 ⊗ms3) = 0.6781, E(ms1 ⊗ms3) = 2.2631
E(ms1 ⊗ms3 ⊗ms2) = 0.6283, E(ms1 ⊗ms3 ⊗ms2) = 2.2133

It can be seen that if only the uncertainty of the original BPA is considered, ms2 is
deleted, which is because E(ms1⊗ms2) = 1.0020 > E(ms1) = 0.8831. Since E(ms1⊗ms3) =
0.6781 < E(ms1) = 0.8813, ms3 is retained. We can know that, in this case, ms1 and ms3 are re-
tained, ms2 is deleted; therefore, the fusion result in this case is m(a) = 0.8209, m(b) = 0.1791.

If we not only consider the uncertainty of the original BPA, but also consider the
uncertainty of the negative BPA. Sensor ms2 is waiting to process in the first round of

processing result, which is because
{

E(ms1 ⊗ms2) = 1.0020 > E(ms1) = 0.8813
E(ms1 ⊗ms2) = 2.7261 < E(ms1) = 2.8330

. Since{
E(ms1 ⊗ms3) = 0.6781 < E(ms1) = 0.8813
E(ms1 ⊗ms3) = 2.2631 < E(ms1) = 2.8330

, ms3 is retained. When all the sensor infor-

mation is processed, ms2 is processed for the second round. At this moment, we can

find
{

E(ms1 ⊗ms3 ⊗ms2) = 0.6283 < E(ms1 ⊗ms3) = 0.6781
E(ms1 ⊗ms3 ⊗ms2) = 2.2133 < E(ms1 ⊗ms3) = 2.2631

, so in the second round

of processing result, ms2 is retained; therefore, the fusion result in this case is m(a) =
0.8425, m(b) = 0.1575.

From the above, we can see that if only the uncertainty of the original BPA is used for
conflict management, the result may be single. When there are existing conflicts between
one evidence and other evidence (i.e., in Table 7), this evidence will be deleted directly,
which will result in the loss of part of the information. When the uncertainty of negative
BPA is considered, the judgment conditions will be sufficient and the loss of information
can be fully reduced. The above discussions demonstrate the effectiveness and reliability of
negative BPA for conflict management. In addition, the fusion results show that the fusion
result with the negation of BPA is more accurate. Thus, we consider that the negation of
BPA can improve the belief value on m(a). It also demonstrates the effectiveness of the
proposed method.
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4.2. Application to Fault Diagnosis and Analysis
4.2.1. Application to Fault Diagnosis

An application from [54] about fault diagnosis is examined herein. Assuming a motor
rotor could have three different fault types, defined as, F1, F2, and F3. The fault information
is obtained through three sensors, under three different features, as shown in Table 9a–c.
In Table 9, mS1, mS2, and mS3 represent the evidence collected by the three sensors. In this
paper, the true fault type of the motor rotor is F2. By using the proposed method with the
setting of parameters in Table 10, the evidence processing results are shown in Table 11.
During the process, we can obtain the values of the negation of BPA, which are shown in
Table 12.

Table 9. BPAs for the application.

(a) BPAs for the application under feature 1.

BPA m(F2) m(F3) m(F1, F2) m(F1, F2, F3)

Sensor 1: mS1 0.8176 0.0003 0.1553 0.0268
Sensor 2: mS2 0.5658 0.0009 0.0646 0.3687
Sensor 3: mS3 0.2403 0.0004 0.0141 0.7452

(b) BPAs for the application under feature 2.

BPA m(F2) m(F1, F2, F3)

Sensor 1: mS1 0.6229 0.3771
Sensor 2: mS2 0.7660 0.2340
Sensor 3: mS3 0.8598 0.1402

(c) BPAs for the application under feature 3.

BPA m(F1) m(F2) m(F1, F2) m(F1, F2, F3)

Sensor 1: mS1 0.3666 0.4563 0.1185 0.0586
Sensor 2: mS2 0.2793 0.4151 0.2652 0.0404
Sensor 3: mS3 0.2897 0.4331 0.2470 0.0302

Table 10. Simulation parameters for the application.

Parameter Value

Discount factor (γ) 0.9
Learning rate (α) 0.1

Episode number (M) 80

Table 11. Results of online processing of BPAs for the application under different features.

BPA The First Round of Processing Results The Final Round of Processing Results

Feature 1
Sensor 1: mS1 Retain Retain
Sensor 2: mS2 Retain Retain
Sensor 3: mS3 Waiting to Process Delete

Feature 2
Sensor 1: mS1 Retain Retain
Sensor 2: mS2 Retain Retain
Sensor 3: mS3 Retain Retain

Feature 3
Sensor 1: mS1 Retain Retain
Sensor 2: mS2 Retain Retain
Sensor 3: mS3 Retain Retain

We can know from Tables 11 and 12, the BPAs for the application under feature 1,
the processing result of sensor 3 in the first round is waiting to process, and the final
round of processing result is deletion. It can be seen from the simulation results that
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the accuracy of the fusion result is improved when the evidence of sensor 3 is deleted,
which indicates that the negation of BPA can improve the accuracy of the fusion result.
The BPAs in the application under feature 2 and feature 3, which can provide a larger
amount of information, and the conflict between BPAs is small, hence sensor 2 and sensor
3 are retained.

Table 12. The negation of the BPAs for the application.

(a) The negation of the BPAs for the application under feature 1.

The Negation of BPA m(F1, F3) m(F1, F2) m(F1, F2, F3)

mS1 0.8176 0.0003 0.1821
mS1 ⊗mS2 mS2 0.9587 0 0.0432

mS1 ⊗mS2 ⊗mS3 mS3 0.9368 0 0.0632

(b) The negation of the BPAs for the application under feature 2.

The Negation of BPA m(F1, F3) m(F1, F2, F3)

mS1 0.6229 0.3771
mS1 ⊗mS2 0.8440 0.1562

mS1 ⊗mS2 ⊗mS3 mS3 0.9708 0.0292

(c) The negation of the BPAs for the application under feature 3.

The Negation of BPA m(F2, F3) m(F1, F3) m(F1, F2, F3)

mS1 0.3666 0.4563 0.1771
mS1 ⊗mS2 0.3145 0.5817 0.1038

mS1 ⊗mS2 ⊗mS3 0.2482 0.6863 0.0655

For the sake of comparison, results by the use of other methods are also obtained,
as shown in Tables 13 and 14 and Figures 3–5. It can be seen from Tables 13 and 14 that the
proposed method has the highest mass or belief on the true fault type F2 under each of the
three features. This is because the proposed method can delete the conflicting evidence
adaptively through RL, uncertainty degree of BPAs, and the negation of BPA, so as to
avoid the impact of the conflicting evidence on the overall fusion accuracy. In addition,
the proposed method can make full use of the sensor information to obtain the fusion
results. By contrast, in the fusion result of Yager’s method m(F3) is the largest under feature
3, which is inconsistent with the true fault type. As for Ni et al.’s method, the decision
result is F1 under feature 2, which is inconsistent with the true fault type. The other
methods can identity the true fault type but the mass or belief of the result is lower than
the proposed method.

In this paper, uncertainty of BPA and RL are combined to achieve multi-sensor in-
formation fusion. Thus, the analysis of the simulation results in this paper is enhanced
from the perspective of uncertainty. Deng entropy and the entropy of Pal et al. [55,56] are
used to measure the uncertainty of BPA, so as to judge its influence on the fusion result.
The fusion results under two different entropies are consistent; however, the use of Deng
entropy makes the convergence speed of the algorithm better than the entropy of Pal et al.
The algorithm converges when the number of episodes is 55 and 58, respectively. Due to
the small amount of information in this paper, there is little difference in convergence speed
between different algorithms; however, this phenomenon also shows the importance of
using Dun entropy to calculate BPA uncertainty.
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Table 13. Fusion results of different methods for the application.

(a) Fusion results of different methods for the application under feature 1.

Methods m(F1) m(F2) m(F3) m(F1, F2) m(F1, F3) m(F2, F3) m(F1, F2, F3)

Yager [31] 0 0.9387 0.0001 0.0526 0 0 0.0086
Yuan et al. [39] 0 0.2790 0 0.0003 0 0 0.7207

Jiang and Xie et al. [54] 0 0.8861 0.0002 0.0582 0 0 0.0555
Jiang and Wei et al. [42] 0.1178 0.8039 0.0356 0.0170 0 0 0.0257

Ni et al. [43] 0.1616 0.5051 0.1619 0.0587 0.0425 0.0425 0.0276
Proposed method 0 0.9587 0 0.0208 0 0 0.0205

(b) Fusion results of different methods for the application under feature 2.

Methods m(F1) m(F2) m(F3) m(F1, F2) m(F1, F3) m(F2, F3) m(F1, F2, F3)

Yager [31] 0 0.9876 0 0 0 0 0.0124
Yuan et al. [39] 0 0.9407 0 0 0 0 0.0593

Jiang and Xie et al. [54] 0 0.9621 0 0 0 0 0.0371
Jiang and Wei et al. [42] 0.0461 0.9365 0.0144 0 0 0 0.0030

Ni et al. [43] 0.3938 0.3525 0.1679 0.0487 0.0162 0.0162 0.0030
Proposed method 0 0.9708 0 0 0 0 0.0292

(c) Fusion results of different methods for the application under feature 3.

Methods m(F1) m(F2) m(F3) m(F1, F2) m(F1, F3) m(F2, F3) m(F1, F2, F3)

Yager [31] 0 0.2956 0.3034 0.1260 0 0 0.2750
Yuan et al. [39] 0.2414 0.6728 0 0.0852 0 0 0.0006

Jiang and Xie et al. [54] 0.3384 0.5904 0 0.0651 0 0 0.0061
Jiang and Wei et al. [42] 0.4421 0.5528 0.0005 0.0046 0 0 0

Ni et al. [43] 0.1787 0.5278 0.1787 0.0348 0.0348 0.0348 0.0097
Proposed method 0.2482 0.6863 0 0.0649 0 0 0.0006

Table 14. Decision-making results of different methods for the application.

(a) The correlation value under feature 1.

Methods rBPA(m̂F1 , mS1) rBPA(m̂F2 , mS2) rBPA(m̂F3 , mS3) Decision-Making Result

Yager [31] 0.0205 0.9983 0.0023 F2
Yuan et al. [39] 0.2158 0.5497 0.2156 F2

Jiang and Xie et al. [54] 0.0360 0.9940 0.0152 F2
Jiang and Wei et al. [42] 0.1569 0.9854 0.0507 F2

Ni et al. [43] 0.3225 0.8700 0.3141 F2
Proposed method 0.0124 0.9993 0.0053 F2

(b) The correlation value under feature 2.

Methods rBPA(m̂F1 , mS1) rBPA(m̂F2 , mS2) rBPA(m̂F3 , mS3) Decision-Making Result

Yager [31] 0.0031 0.9999 0.0031 F2
Yuan et al. [39] 0.0155 0.9982 0.0155 F2

Jiang and Xie et al. [54] 0.0095 0.9993 0.0095 F2
Jiang and Wei et al. [42] 0.0499 0.9986 0.0161 F2

Ni et al. [43] 0.7036 0.6337 0.3034 F1
Proposed method 0 0.9996 0.0099 F2
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Table 14. Cont.

(c) The correlation value under feature 3.

Methods rBPA(m̂F1 , mS1) rBPA(m̂F2 , mS2) rBPA(m̂F3 , mS3) Decision-Making Result

Yager [31] 0.1689 0.5675 0.6196 F3
Yuan et al. [39] 0.3574 0.9286 0.0002 F2

Jiang and Xie et al. [54] 0.5058 0.8583 0.0021 F2
Jiang and Wei et al. [42] 0.6248 0.7807 0.0007 F2

Ni et al. [43] 0.3244 0.8787 0.3244 F2
Proposed method 0.3552 0.9317 0.0002 F2

(a) The belief value of different propositions.

(b) The belief value of F2.

Figure 3. Comparison of fusion results for different methods under feature 1.



Entropy 2021, 23, 1222 17 of 23

(a) The belief value of different propositions.

(b) The belief value of F2.

Figure 4. Comparison of fusion results for different methods under feature 2.

(a) The belief value of different propositions.

Figure 5. Cont.
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(b) The belief value of F2.

Figure 5. Comparison of fusion results for different methods under feature 3.

4.2.2. Robustness Analysis

Since the fusion result application cannot fully reflect the robustness of the proposed
method, we focus on the analysis of the robustness in the application. Specifically, in order
to fully reflect the robustness of the method in this paper when conflict is increasing,
we adjust the evidence in application to fault diagnosis. When conflict is increasing,
we calculate the fusion result of the proposed method. For the evidence in Table 9a, we first
assign the belief value of m(F2) in sensor 2 to m(F1) at 0.05 intervals. Then, we assign the
belief value of m(F1, F2, F3) in sensor 3 to m(F3) at 0.05 intervals. In addition, the evidence
of sensor 1 remains unchanged. For the evidence in Table 9b, we first assign the belief value
of m(F2) in sensor 1 to m(F1) at 0.05 intervals. Then, we assign the belief value of m(F2) in
sensor 2 to m(F3) at 0.05 intervals. In addition, the evidence of sensor 3 remains unchanged.
For the evidence in Table 9c, we first assign the belief value of m(F1, F2) in sensor 2 to m(F1)
at 0.03 intervals. Then, we assign the belief value of m(F1, F2) in sensor 3 to m(F3) at 0.03
intervals. In addition, the evidence of sensor 1 remains unchanged. According to the above
discussion, the adjusted BPAs are shown in Tables 15–17.

In Tables 15–17, we adopt the conflict calculation method based on correlation coeffi-
cient proposed by the Jiang [50] to calculate the degree of conflict. The degree of conflict is
defined as:

Cij= 1− rBPA(mi, mj) = 1−
c(mi, mj)√

c(mi, mi)× c(mj, mj)
, (30)

where Cij represent the degree of conflict, mi and mj denote the evidence of the i-th

and j-th sensors, respectively, and c(mi, mj) =
2N

∑
p=1

2N

∑
q=1

mi(Ap)mj(Aq)
|Ap∩Aq|
|Ap∪Aq| is the degree

of correlation.
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Table 15. BPAs of different conflicts for the application under feature 1.

No. BPA m(F1) m(F2) m(F3) m(F1, F2) m(F1, F2, F3) Conflict Degree

1
Sensor 1: mS1 0 0.8176 0.0003 0.1553 0.0268 C12 = 0.0738

C13 = 0.3714
C23 = 0.1217

Sensor 2: mS2_1 0 0.5658 0.0009 0.0646 0.3687
Sensor 3: mS3_1 0 0.2403 0.0004 0.0141 0.7452

2
Sensor 1: mS1 0 0.8176 0.0003 0.1553 0.0268 C12 = 0.0958

C13 = 0.3640
C23 = 0.1012

Sensor 2: mS2_2 0 0.5158 0.0509 0.0646 0.3687
Sensor 3: mS3_2 0.05 0.2403 0.0004 0.0141 0.6952

3
Sensor 1: mS1 0 0.8176 0.0003 0.1553 0.0268 C12 = 0.1262

C13 = 0.3586
C23 = 0.0871

Sensor 2: mS2_3 0 0.4658 0.1009 0.0646 0.3687
Sensor 3: mS3_3 0.1 0.2403 0.0004 0.0141 0.6452

4
Sensor 1: mS1 0 0.8176 0.0003 0.1553 0.0268 C12 = 0.1663

C13 = 0.3559
C23 = 0.0860

Sensor 2: mS2_4 0 0.4158 0.1509 0.0646 0.3687
Sensor 3: mS3_4 0.15 0.2403 0.0004 0.0141 0.5952

5
Sensor 1: mS1 0 0.8176 0.0003 0.1553 0.0268 C12 = 0.2166

C13 = 0.3565
C23 = 0.1009

Sensor 2: mS2_5 0 0.3658 0.2009 0.0646 0.3687
Sensor 3: mS3_5 0.2 0.2403 0.0004 0.0141 0.5452

6
Sensor 1: mS1 0 0.8176 0.0003 0.1553 0.0268 C12 = 0.2771

C13 = 0.3613
C23 = 0.1338

Sensor 2: mS2_6 0 0.3158 0.2509 0.0646 0.3687
Sensor 3: mS3_6 0.25 0.2403 0.0004 0.0141 0.4952

7
Sensor 1: mS1 0 0.8176 0.0003 0.1553 0.0268 C12 = 0.3466

C13 = 0.3707
C23 = 0.1852

Sensor 2: mS2_7 0 0.2658 0.3009 0.0646 0.3687
Sensor 3: mS3_7 0.3 0.2403 0.0004 0.0141 0.4452

8
Sensor 1: mS1 0 0.8176 0.0003 0.1553 0.0268 C12 = 0.4231

C13 = 0.3852
C23 = 0.2535

Sensor 2: mS2_8 0 0.2158 0.3509 0.0646 0.3687
Sensor 3: mS3_8 0.35 0.2403 0.0004 0.0141 0.3952

Table 16. BPAs of different conflicts for the application under feature 2.

No. BPA m(F1) m(F2) m(F3) m(F1, F2, F3) Conflict Degree

1
Sensor 1: mS1_1 0 0.6229 0 0.3771 C12 = 0.0205

C13 = 0.0509
C23 = 0.0069

Sensor 2: mS2_1 0 0.7660 0 0.2340
Sensor 3: mS3 0 0.8598 0 0.1402

2
Sensor 1: mS1_2 0.05 0.5729 0 0.3771 C12 = 0.0271

C13 = 0.0677
C23 = 0.0129

Sensor 2: mS2_2 0 0.7160 0.05 0.2340
Sensor 3: mS3 0 0.8598 0 0.1402

3
Sensor 1: mS1_3 0.1 0.5229 0 0.3771 C12 = 0.0433

C13 = 0.0924
C23 = 0.0247

Sensor 2: mS2_3 0 0.6660 0.1 0.2340
Sensor 3: mS3 0 0.8598 0 0.1402

4
Sensor 1: mS1_4 0.15 0.4729 0 0.3771 C12 = 0.0713

C13 = 0.1263
C23 = 0.0439

Sensor 2: mS2_4 0 0.6160 0.15 0.2340
Sensor 3: mS3 0 0.8598 0 0.1402

5
Sensor 1: mS1_5 0.2 0.4229 0 0.3771 C12 = 0.1123

C13 = 0.1704
C23 = 0.0722

Sensor 2: mS2_5 0 0.5660 0.2 0.2340
Sensor 3: mS3 0 0.8598 0 0.1402

6
Sensor 1: mS1_6 0.25 0.3729 0 0.3771 C12 = 0.1666

C13 = 0.2250
C23 = 0.1108

Sensor 2: mS2_6 0 0.5160 0.25 0.2340
Sensor 3: mS3 0 0.8598 0 0.1402

7
Sensor 1: mS1_7 0.3 0.3229 0 0.3771 C12 = 0.2327

C13 = 0.2893
C23 = 0.1604

Sensor 2: mS2_7 0 0.4660 0.3 0.2340
Sensor 3: mS3 0 0.8598 0 0.1402

8
Sensor 1: mS1_8 0.35 0.2729 0 0.3771 C12 = 0.3074

C13 = 0.3617
C23 = 0.2210

Sensor 2: mS2_8 0 0.4160 0.35 0.2340
Sensor 3: mS3 0 0.8598 0 0.1402
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Table 17. BPAs of different conflicts for the application under feature 3.

No. BPA m(F1) m(F2) m(F3) m(F1, F2) m(F1, F2, F3) Conflict Degree

1
Sensor 1: mS1 0.3666 0.4563 0 0.1185 0.0586 C12 = 0.0167

C13 = 0.0118
C23 = 0.0007

Sensor 2: mS2_1 0.2793 0.4151 0 0.2652 0.0404
Sensor 3: mS3_1 0.2897 0.4331 0 0.2470 0.0302

2
Sensor 1: mS1 0.3666 0.4563 0 0.1185 0.0586 C12 = 0.0096

C13 = 0.0088
C23 = 0.0021

Sensor 2: mS2_2 0.3093 0.4151 0 0.2352 0.0404
Sensor 3: mS3_2 0.2897 0.4331 0.03 0.2170 0.0302

3
Sensor 1: mS1 0.3666 0.4563 0 0.1185 0.0586 C12 = 0.0050

C13 = 0.0089
C23 = 0.0073

Sensor 2: mS2_3 0.3393 0.4151 0 0.2052 0.0404
Sensor 3: mS3_3 0.2897 0.4331 0.06 0.1870 0.0302

4
Sensor 1: mS1 0.3666 0.4563 0 0.1185 0.0586 C12 = 0.0028

C13 = 0.0125
C23 = 0.0164

Sensor 2:mS2_4 0.3693 0.4151 0 0.1752 0.0404
Sensor 3: mS3_4 0.2897 0.4331 0.09 0.1570 0.0302

5
Sensor 1: mS1 0.3666 0.4563 0 0.1185 0.0586 C12 = 0.0033

C13 = 0.0203
C23 = 0.0298

Sensor 2: mS2_5 0.3993 0.4151 0 0.1452 0.0404
Sensor 3: mS3_5 0.2897 0.4331 0.12 0.1270 0.0302

6
Sensor 1: mS1 0.3666 0.4563 0 0.1185 0.0586 C12 = 0.0063

C13 = 0.0326
C23 = 0.0477

Sensor 2: mS2_6 0.4293 0.4151 0 0.1152 0.0404
Sensor 3: mS3_6 0.2897 0.4331 0.15 0.0970 0.0302

7
Sensor 1: mS1 0.3666 0.4563 0 0.1185 0.0586 C12 = 0.0119

C13 = 0.0499
C23 = 0.0698

Sensor 2: mS2_7 0.4593 0.4151 0 0.0852 0.0404
Sensor 3: mS3_7 0.2897 0.4331 0.18 0.0670 0.0302

8
Sensor 1: mS1 0.3666 0.4563 0 0.1185 0.0586 C12 = 0.0199

C13 = 0.0723
C23 = 0.0961

Sensor 2: mS2_8 0.4893 0.4151 0 0.0552 0.0404
Sensor 3: mS3_8 0.2897 0.4331 0.21 0.0370 0.0302

From Table 15, it can be seen that in the evidence under feature 1 after adjustment,
the conflict between sensor 1 and sensor 2 has been increasing. The conflict degree between
sensors 1 and 3 first decreases and then increases. The conflict degree between sensors
2 and 3 first decreases and then increases; however, it can be seen from the whole that
the degree of conflict between adjusted evidence is gradually increasing. From Table 16,
it can be seen that in the evidence under feature 2 after adjustment, the degree of conflict
between sensor 1, sensor 2, and sensor 3 has been increasing, and it is obvious. In the
evidence under feature 3, the belief value of the single subset is relatively small, and the
distribution of belief value is relatively uniform. For these reasons, we adjust the evidence
to a relatively small extent. Whereas, in Table 17, we can know that the conflicts between
the evidence is also changing significantly.

According to the evidence in Tables 15–17, the fusion results under different cases can
be obtained by using the proposed method in this paper, as shown in Table 18.

Table 18. Fusion results for the application.

(a) Fusion results under feature 1.

No. m(F1) m(F2) m(F3) m(F1, F2) m(F1, F3) m(F2, F3) m(F1, F2, F3)

1 0 0.9587 0 0.0208 0 0 0.0205
2 0 0.9549 0 0.0227 0 0 0.0224
3 0 0.9502 0 0.0251 0 0 0.0247
4 0 0.9445 0 0.0279 0 0 0.0276
5 0 0.9374 0.0002 0.0314 0 0 0.0314
6 0 0.9281 0.0003 0.0361 0 0 0.0355
7 0 0.9200 0 0.0025 0 0 0.0775
8 0 0.9129 0 0.0030 0 0 0.0841
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Table 18. Cont.

(b) Fusion results under feature 2.

No. m(F1) m(F2) m(F3) m(F1, F2) m(F1, F3) m(F2, F3) m(F1, F2, F3)

1 0 0.9708 0 0 0 0 0.0292
2 0 0.9661 0 0 0 0 0.0339
3 0 0.9603 0 0 0 0 0.0397
4 0 0.9529 0 0 0 0 0.0471
5 0 0.9433 0 0 0 0 0.0567
6 0 0.9304 0 0 0 0 0.0696
7 0 0.9127 0 0 0 0 0.0873
8 0 0.8875 0 0 0 0 0.1125

(c) Fusion results under feature 3.

No. m(F1) m(F2) m(F3) m(F1, F2) m(F1, F3) m(F2, F3) m(F1, F2, F3)

1 0.2482 0.6863 0 0.0649 0 0 0.0006
2 0.2715 0.6780 0 0.0500 0 0 0.0005
3 0.2837 0.6686 0 0.0371 0 0 0.0006
4 0.3148 0.6585 0 0.0262 0 0 0.0005
5 0.3347 0.6475 0 0.0172 0 0 0.0006
6 0.3534 0.6358 0 0.0103 0 0 0.0005
7 0.3708 0.6235 0 0.0051 0 0 0.0006
8 0.3869 0.6108 0 0.0018 0 0 0.0005

From Table 16, we can know that, with the conflict between evidence increasing,
the proposed method in this paper can still obtain accurate fusion results; however, the be-
lief value on m(F2) decreases as the conflict increases. This is mainly shown as follows.
In the evidence under feature 1, the belief value on m(F2) is reduced from 0.9587 to 0.9129.
In the evidence under feature 2, the belief value on m(F2) is reduced from 0.9708 to 0.8875.
In the evidence under feature 3, the belief value on m(F2) is reduced from 0.6863 to 0.6108.

As can be seen from the simulation results, the proposed method can obtain effective
fusion results; however, there are still some limitations in the fusion results. Specifically,
the belief values are particularly concentrated, mainly on m(F2) and m(F1, F2, F3). In this
case, if BPAs fluctuates greatly, the conflict between evidence will increase. Then the fusion
results made by the proposed method will fluctuate greatly; however, the simulation results
show that the proposed method can also obtain effective fusion results when conflict is
increasing. Thus, the robustness of the proposed method can be verified.

5. Conclusions

In this paper, we have investigated the multi-sensor online fusion problem, and
proposed a novel method on the basis of the uncertainty of BPA and RL. Specially, the
proposed method has measured the uncertain degrees of original BPA and its negation by
the use of Deng entropy. Then, the two uncertain degrees and RL have been combined
to achieve the online conflicting management. The above process has the advantages of
making full use of the information and reducing the loss of information. On the basis of
selected BPAs, DCR has been used for evidence combination. Finally, a decision scheme
based on the correlation coefficient has been adopted to obtain the decision-making result.
Simulation results of numerical example and application have demonstrated the effective-
ness of the proposed method. In a future study, the application of the proposed method
will be further investigated.

In addition to those problems listed above, there are many research issues beckoning
for further investigation. In this paper, we focus on the multi-sensor fusion decision-
making problem with a small amount of information, and ignore how to quickly and
accurately obtain the fusion result when the amount of sensor information is significant.
Nevertheless, the proposed method proposed provides an idea for the application of
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artificial intelligence in multi-sensor fusion. As a future work, we plan to use neural
networks and RL, and combine them with our proposed algorithm for an actual fusion
decision-making system.
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