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Abstract: Mutations of the CFTR gene cause cystic fibrosis (CF), the most common reces-

sive monogenic disease worldwide. These mutations alter the synthesis, processing, function, 

or half-life of CFTR, the main chloride channel expressed in the apical membrane of epithelial 

cells in the airway, intestine, pancreas, and reproductive tract. Lung disease is the most critical 

manifestation of CF. It is characterized by airway obstruction, infection, and inflammation that 

lead to fatal tissue destruction. In spite of great advances in early and multidisciplinary medi-

cal care, and in our understanding of the pathophysiology, CF is still considerably reducing the 

life expectancy of patients. This review highlights the current development in pharmacological 

modulators of CFTR, which aim at rescuing the expression and/or function of mutated CFTR. 

While only Kalydeco® and Orkambi® are currently available to patients, many other families 

of CFTR modulators are undergoing preclinical and clinical investigations. Drug repositioning 

and personalized medicine are particularly detailed in this review as they represent the most 

promising strategies for restoring CFTR function in CF.

Keywords: high-throughput screening, drug repositioning, personalized medicine, precision 

medicine, potentiators, correctors

Introduction
Cystic fibrosis and the CFTR gene
Cystic fibrosis (CF) is an inherited (recessive autosomal) chronic disease that affects 

the respiratory, digestive, and reproductive systems. Although intestinal symptoms 

are usually the first to occur during the life of the patient, it is the progressive lung 

damage, due to cycles of infection/inflammation, that finally leads to irreversible lung 

disease and death. With ~90,000 people diagnosed, a prevalence of 1/2,500 and about 

one carrier among 25 individuals, CF is the most common life-threatening Mendelian 

disorder worldwide. Advances in research and medical treatments have raised the life 

expectancy of CF newborns beyond 50 years; however, the current median age of 

survival for CF patients is still in the late 20s.

CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) 

gene, which was cloned and identified as the gene affected in CF in 1989.1 CFTR gene 

encodes the main anion channel expressed in the epithelium. Additionally, CFTR is 

also expressed in many other cells types (eg, fibroblasts,2 neurons,3 cardiomyocytes,4 
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and immune cells5–7), where its function is not always well 

known. Among the 2,000+ CFTR mutations identified so far 

(http://genet.sickkids.on.ca), only a fraction of them causes 

CF. These CF-causing mutations induce a decrease or a loss 

of function of CFTR at the plasma membrane. In the lung, 

the lack of CFTR leads to dehydration of the airway surface 

liquid and drives the cascade of pathological events charac-

teristic of CF (Figure 1).

Structure of CFTR
The CFTR gene contains 27 exons spanning 250 kb on the 

long arm of chromosome 7 (7q31.2).8,9 The encoded mRNA 

is ~6.5 kb long and is translated into a protein of 1,480 

amino acids. The CFTR protein belongs to the adenosine 

triphosphate (ATP)-binding cassette (ABC) transporters 

and functions as an adenosine 3′,5′-cyclic monophosphate 

(cAMP)-regulated chloride channel in a variety of polarized 

epithelial cells.10 The predicted protein structure is shown 

in Figure 2.

The R domain is a unique structural feature of CFTR as 

it is not found in other ABC transporters.11 The R domain is 

highly charged and contains multiple consensus sequences 

for protein kinase A phosphorylation12,13 as well as target 

sites for other kinases.14–16 Phosphorylation of the R domain 

of CFTR is necessary for channel activity: when unphos-

phorylated, the R domain inhibits CFTR.17,18 Although the 

phosphorylation of the R region is required, it is not sufficient 

for opening the CFTR channel13,19–21 nor for the interaction 

with multiple binding partners.22,23 Moreover, phosphoryla-

tion of the R domain also regulates the membrane stability 

of CFTR by modulating the balance between endocytosis 

and exocytosis.24

ATP binding and hydrolysis by the nucleotide-binding 

domains (NBDs) is a prerequisite to anion transport through 

CFTR channels.25,26 The two NBDs form a head-to-tail dimer 

Figure 1 Pathophysiology of CF lung disease and potential therapies targeting the basic defect or the symptoms.
Note: In the absence of conclusive data on gene therapy, CFTR modulators are the most proximal therapy for CF currently in development.
Abbreviations: CF, cystic fibrosis; CFTR, cystic fibrosis transmembrane conductance regulator; ENaC, epithelial sodium channel; mRNA, messenger RNA.
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Figure 2 Predicted topology of CFTR protein.
Notes: It is composed of two repeated units made of a MSD followed by a NBD. The 
two repeated units are linked by a R domain. The MSDs consist of six hydrophobic 
transmembrane helices (or TMD). Several transmembrane helices contain one or 
more charged amino acids that control anion permeability. Extracellular loop 4 
(between TMD7 and TMD8) contains two N-glycosylation sites.
Abbreviations: CFTR, cystic fibrosis transmembrane conductance regulator; 
MSD, membrane-spanning domain; NBD, nucleotide-binding domain; TMD: 
transmembrane domain; R, regulatory domain.
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with two ATP-binding sites located at the dimer interface.27 

Within this dimer, ATP binds to NBD1 but is hydrolyzed at 

the NBD2 ATP-binding site.27–29 ATP interaction with NBDs 

facilitates their dimerization and induces conformational 

changes in the membrane-spanning domains required for 

the gating of CFTR channel.26

CFTR function(s): not only a chloride 
channel
CFTR is the only ABC transporter functioning as an ion 

channel. The characteristic properties of CFTR-associated 

conductance are a linear current–voltage relationship and 

a single conductance of 6–11pS.30,31 Although CFTR may 

also transport negatively charged organic molecules such as 

gluconate32 and glutathione,33,34 it is mostly selective for mon-

ovalent anion. In vivo, it mainly transports Cl- and HCO
3
-.31,35 

Lack of apical Cl- secretion in CF epithelial cells had already 

been characterized several years before the discovery of the 

CFTR gene.36 Over the past few years, it has become appar-

ent that CFTR-dependent bicarbonate secretion, required 

for normal expansion of mucins (the main component of 

mucus), is also defective in patients with CF.37 Therefore, 

the role of CFTR in CF pathogenesis is both due to lack of 

Cl-, resulting in low hydration of the airway surface liquid, 

and decrease of HCO
3– transport, which maintain mucins in 

an aggregated and poorly soluble form.

In addition to the defective apical Cl- and HCO
3

- secre-

tion (due to the absence or dysfunction of CFTR), the hyper-

absorption of Na+ through hyperactive epithelial sodium 

channel (ENaC) is another hallmark of CF epithelia.36 The 

failure of mutated CFTR proteins to regulate ENaC activity 

is proposed to play a major role in the pathophysiology of 

CF lung disease.38–40 How does CFTR regulate ENaC and 

how much CFTR is needed to do so is still debated.41,42 It 

has been reported that CFTR and ENaC physically interact 

in several cell types.43–45 CFTR could also decrease the 

open probability of ENaC,46,47 possibly by protecting ENaC 

against endogenous proteolytic cleavage.48 Finally, CFTR 

could modulate ENaC stability at the plasma membrane49 or 

regulate the electric coupling between the two channels.50,51

CFTR controls many other ion channels and transport-

ers.52 Besides its own ability to transport Cl- and HCO
3

-, 

CFTR indirectly modulates the transports of these ions by 

regulating, for instance, several members of the solute carrier 

26 (SLC26) family.53 While some of these proteins function 

as Cl-/HCO
3
- exchange proteins and participate in pH regula-

tion, SLC26A9 is a chloride channel expressed in the apical 

membrane of epithelial cells and is constitutively active in 

human bronchial epithelial cells (HBECs).54–56 It contributes 

to cAMP-dependent chloride secretion and its activity is 

maximal when coexpressed with wild-type (WT) CFTR.55

Classes of CFTR mutations
Six classes of CFTR mutations have been described (Table 1). 

Mutations of classes I, II, III, and VI are considered as severe 

as they are associated with little to no CFTR protein at the 

plasma membrane, while mutations of classes IV and V 

generate milder phenotypes as they lead to only partial loss 

of CFTR activity.57,58

Class I mutations are nonsense mutations causing defects 

in mRNA splicing or premature insertion of a stop codon in 

the polypeptidic chain synthesis. They account for ~10% of 

the CFTR mutations worldwide and are particularly prevalent 

in the Ashkenazi Jewish population where they reach 50% of 

CFTR alleles, with W1282X being the most frequent muta-

tion of this population.59

Class II mutations cause defective protein processing and 

trafficking to the plasma membrane. Among these, the most 

common CF allele F508del-CFTR is found in ~70% of the 

patients (The Clinical and Functional Translation of CFTR 

[CFTR2]; http://cftr2.org). The deletion of the phenylalanine 

at position 508 of the CFTR protein causes CFTR misfolding 

and prolonged retention of the protein in the endoplasmic 

reticulum, followed by rapid degradation by the ubiquitin-

proteasome pathway.60,61

Class III mutations are relatively rare mutations char-

acterized by altered gating and reduced open probability of 

the channel. The G551D mutation, also known as the Celtic 

mutation, is the prototype of class III mutation and represent 

~2%–3% of CF alleles in north west and central Europe but 

is less common in other parts of Europe.62

Class IV mutant proteins are correctly inserted at the 

plasma membrane but the channel single conductance is 

altered. The most frequent class IV mutations encountered 

in patients are R117H (1.3%) and R347P (0.37%).

Class V (eg, A455E and 2789+5G→T) and VI (eg, 

4326delTC and 4279insA) mutations lead to reduced amount 

of CFTR protein at the plasma membrane, by affecting CFTR 

mRNA (stability, alternative splicing, etc) or increasing the 

turnover of the CFTR protein, respectively. 

Some CFTR mutations display more than one type of 

dysfunctions. For example, in addition to trafficking defect, 

F508del-CFTR also presents with characteristic defects of 

classes III and IV, with a reduced open probability63 and 

decreased membrane stability,64 respectively.
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First modulators and natural 
compounds
The expression and activity of CFTR channels are regulated 

by many intracellular signaling pathways. The most known 

modulator of the CFTR chloride channel is intracellular 

cAMP, and the activity of CFTR is mainly regulated via phos-

phorylation by various protein kinases and dephosphorylation 

by protein phosphatases.

Naturally occurring compounds inducing phosphoryla-

tion of the channel were among the first CFTR modulators 

identified.65 Alkylxanthines, such as caffeine, theophylline, 

and theobromine, are found in plants such as coffee or 

chocolate beans or tea leaves. Among them, 3-isobutyl-

1-methylxanthine inhibits phosphodiesterases (PDEs) to 

enhance CFTR phosphorylation by preventing its dephos-

phorylation.66–68 Patch clamp single-channel recordings 

also suggested that some xanthine derivatives can directly 

activate CFTR channel to increase open probability of the 

channel independently of cAMP levels,69 possibly through 

direct binding to NBD1.70

Soybeans and soy food (eg, tofu, soy flour, and soy milk) 

contain large amount of isoflavones,71 such as genistein 

(5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-

4-one). Genistein is a protein tyrosine kinase inhibitor that 

was found to activate CFTR, independently from protein 

kinase A or PDE activity.72 In contrast with 3-isobutyl-

1-methylxanthine,73 it does not inhibit PDE activity but it 

requires CFTR phosphorylation to increase open probability 

of the channel.72 This is particularly true to mutated protein 

F508del-74,75 and G551D-CFTR75 channels for which genis-

tein restores phosphorylation-dependent activation of the 

channel by direct binding to NBD1.76

Curcumin exhibits structural similarities to isoflavones 

and might bind directly to CFTR protein77 to rescue F508del-

CFTR trafficking in vitro.78,79 In vivo, curcumin increased 

survival rate of F508del-CFTR mice by preventing gastro-

intestinal obstruction in treated animals as compared with 

controls.80 Moreover, curcumin corrects CFTR-dependent Cl- 

transport across nasal and rectal epithelium of  F508del-CFTR 

mice.80 These effects are still controversial as many other 

studies failed to reproduce them.81,82

Resveratrol is a natural polyphenol compound with 

antioxidant and anti-inflammatory properties that has been 

shown to activate CFTR-mediated chloride transport in epi-

thelial cells in vitro83,84 and in vivo85–87 independently from 

[cAMP]
i
 or R domain phosphorylation.87 Two independent 

studies also demonstrated that resveratrol corrects F508del-

CFTR trafficking in CF cell lines88 and in CF mouse models.86 

However, doses required for such effects might be difficult 

to achieve in vivo.89

Very low cytotoxicity and high abundance of natural 

compounds in regular aliment make them an appealing 

therapeutic option. It seems difficult to achieve sufficiently 

high concentration of these compounds from food intake 

only; therefore, administering purified compounds at higher 

doses could be considered. They may not be selective enough, 

however, as they often regulate various cellular and biochemi-

cal functions.

Drug repositioning
The goal of drug repositioning is to identify new indica-

tions of marketed drugs in particular for rare and neglected 

diseases.90 They have multiple advantages over innovative 

treatments: they are considered safer, as they have already 

undergone extensive toxicology and safety assessment, they 

are often less expensive, and shortage is less likely to occur.

Iminosugars that interfere with N-glycosylation are 

approved for the treatment of Gaucher disease.91 Although 

strong in vitro92,93 and preclinical evidence92,94 demonstrated 

that N-butyldeoxynojirimycin (miglustat, Zavesca®) corrects 

both Cl- and Na+ transport by restoring the trafficking defect 

of F508del-CFTR, a Phase II clinical trial failed to demon-

strate significant changes in chloride transport measured by 

nasal potential difference (NPD), sweat chloride, or force 

expiratory volume in 1 second (FEV
1
) in CF patients.95

PDE5 inhibitors (iPDE5) and soluble guanylyl cyclase 

activators are currently approved for the treatment of erectile 

dysfunction96 and pulmonary hypertension.97 They both lead 

Table 1 Classes of CFTR mutations

Class Class I Class II Class III Class IV Class V Class VI

Type of defect No functional 
protein

Trafficking  
defect

Defective channel 
regulation

Decreased channel 
conductance

Reduced synthesis Decreased 
stability

Examples of 
mutations

G542X
W1282X
R553X
621+1G→T

F508del
N1303K
I507del
R560T

G551D
G178R
G551S
S549N

R117H
R347P
R117C
R334W

3849+10kbC→T
2789+5G→A
3120+1G→A
5T

4326delTC
Q1412X
4279insA

Abbreviation: CFTR, cystic fibrosis transmembrane conductance regulator.
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to increased intracellular cGMP content, although the final 

mechanism of action on CFTR is still unknown. Some data 

suggested two distinct effects: a cGMP-dependent increase 

in CFTR activity and a cGMP-independent effect on CFTR 

trafficking.98 Some in vitro studies required 1,000-fold greater 

concentration than what is used in the clinic to observe an 

effect on CFTR trafficking.98,99 In vivo preclinical studies 

have yet showed that improvement in chloride transport could 

be achieved with clinical doses of iPDE5, such as sildenafil 

and vardenafil, in CF mice.100,101 Outcomes of a Phase IIa 

open-label study aiming at investigating safety and efficacy 

of sildenafil in CF lung disease were recently published.102 

No change in sputum IL-8 was noted, but sputum neutrophil 

elastase content was significantly reduced after treatment. 

However, pharmacokinetic profiles of sildenafil suggested 

that CF patients may eliminate sildenafil at a faster rate than 

non-CF patients.

Similar to iPDE5, riociguat (BAY 63-2521) increases 

intracellular cGMP levels in a concentration-dependent man-

ner and in synergy with nitric oxide (NO).103,104 It is a soluble 

guanylate cyclase activator developed by Bayer, already 

approved for pulmonary arterial hypertension. A Phase II 

trial is currently ongoing for adult CF patients homozygous 

for F508del mutation (NCT02170025).

Ibuprofen has long been known for its anti-inflammatory 

properties, and has been showed to significantly slow the 

decline in FEV
1
 in CF patients.105 This effect was solely 

attributed to its anti-inflammatory effect. However, a 

recent in vitro study demonstrated that ibuprofen is also 

an efficient F508del-CFTR corrector via inhibition of 

cyclooxygenase-1.106

Approved for the treatment of cystinosis,107 cysteamine 

is a proteostasis regulator that restores autophagy, which is 

defective in CF.108,109 This is associated with a rescue and 

stabilization of F508del-CFTR at the plasma membrane.110,111 

Given orally together with epigallocatechin gallate (EGCG, a 

flavonoid derived from green tea, contained in dietary supple-

ments), cysteamine significantly reduced sweat chloride lev-

els and levels of pro-inflammatory markers TNF-α and IL-8 

during a small pilot study in homozygous F508del-CFTR 

patients.111 An open-label Phase II trial involving 34 patients 

met the primary end point of efficacy, with a significant reduc-

tion in sweat chloride concentration of -18.0 mmol/L, but no 

significant difference in FEV
1
 was observed.112

Escin, extracted from horse chestnut tree, possesses 

anti-inflammatory effects and is already used in patients 

with chronic venous insufficiency, hemorrhoids, and post-

traumatic edema.113 Escin significantly enhanced CFTR 

function in Fisher rat thyroid cells transfected with different 

CFTR class I mutants (G542X, W1282X) and in primary 

HBECs isolated from G542X/F508del and W1282/F508del 

patients.114 By contrast, escin failed to improve CFTR func-

tion in HBECs from a patient homozygous for F508del, 

demonstrating that Escin acts as a readthrough agent for 

nonsense mutations.

All these compounds are excellent illustrations that, as for 

many other rare diseases, CF therapy may benefit from drug 

repositioning as a strategy to speed up drug development.

Genotype-specific therapies
With the development of high-throughput screening (HTS) 

assays allowing rapid screening of thousands of small 

molecules, many families of chemical structures have been 

identified. Thanks to expanding knowledge of the structure 

and function of CFTR, and to increased understanding of 

the different functional consequences of CFTR mutations, 

structure–activity relationship and optimization of the most 

promising lead compounds have led to a series of potential 

pharmacological therapies for CF to correct CFTR defects at 

different levels.114–117 CFTR modulators can be categorized 

according to the class of mutation or dysfunction that they 

aim at targeting (Figure 3 and Table 2).

Therapies targeting class I
Development of premature termination codon (PTC) “read-

through” agents allow ribosomes to continue translation 

through class I nonsense mutations to produce full-length 

CFTR protein. Almost 20 years ago, aminoglycosides, such as 

gentamicin, were first described as a potential pharmacological 

approach for class I mutations.118–120 In addition to its potent 

bactericidal activity, gentamicin displayed beneficial effects 

on electrophysiological parameters assessed by NPD in vivo 

after topical nasal application121,122 or intravenous administra-

tion118,123 in CF patients with at least one class I mutation. 

However, high inter-individual variability in clinical benefits 

was observed, in particular between patients carrying only 

one and those carrying two nonsense mutations.124 In addition, 

high nephron- and oto-toxicity render per os or systemically 

administered aminoglycosides not well suited for long-term 

use. To tackle this, new series of synthetic aminoglycoside 

derivatives were developed through a systematic structure-

based approach.125,126 NB30, NB54, and NB124 had signifi-

cantly reduced toxicity125,127 and demonstrated superior in vitro 

readthrough activity in HBE cell lines or primary cells express-

ing at least one nonsense CFTR mutation.125,128 Moreover, when 

systemically administrated to cftr-/- mice  expressing human 
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CFTR-G542X,129 NB54 and NB124 restored CFTR activity 

measured ex vivo across intestinal epithelium to at least 5% 

of the current observed in WT animals.127,128

Through HTS, PTC Therapeutics™ (Dublin, Ireland) 

identified PTC-124 (3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-

3-yl]-benzoic acid), ataluren. It is an orally bioavailable small 

molecule inducing complete translation of proteins contain-

ing premature nonsense mutations without affecting the nor-

mal stop codons.130 In the initial Phase II trial, CF adults with 

at least one CFTR nonsense mutation received oral treatment 

with ataluren for 14 days followed by a washout period of 

14 days.131 CFTR function measured by NPD was restored 

and a small decrease in ENaC activity was also recorded. 

Moreover, patients presented with slight increase in FEV
1
 

and bodyweight, and some of them reported an improvement 

in pulmonary symptoms such as cough. A pediatric trial 

was conducted with children of age 6 and older, and dem-

onstrated similar improvements in CFTR function although 

it did not correlate with FEV
1
.132 Despite these encouraging 

data, ataluren did not provide a significant improvement in 

FEV
1
 of a Phase III placebo-controlled trial.133 Interaction 

with chronically inhaled tobramycin could be a cause, as the 

subgroup of patients not receiving inhaled aminoglycosides 

showed a more robust improvement in FEV
1
 (+5.7% pre-

dicted) together with fewer pulmonary exacerbations (-40%) 

in the ataluren group as compared to the placebo. Moreover, 

variable responses were found among patients with different 

genotypes suggesting that readthrough agents may not work 

for all class I mutations.

Therapies targeting class II
The aim of class II targeting compounds is to rescue the 

trafficking defect of mutant CFTR and therefore increase 

the quantity of mutated CFTR protein inserted in the plasma 

membrane. Soon after the identification of the CFTR gene, 

Denning et al61 demonstrated that low-temperature incubation 

(eg, 27°C) restores F508del-CFTR expression at the plasma 

membrane. This was the first evidence that the trafficking 

defect of F508del-CFTR could be modified to allow partial 

escape from the endoplasmic reticulum quality control and 

functional expression on the cell surface. Additional in vitro 

proofs of mutant CFTR druggability were obtained with 

chemical chaperones134,135 or the transcriptional regulator 

butyrate.136 In vitro, 4-phenylbutyrate (4-PBA), an analog of 

butyrate, corrects the trafficking defect of F508del-CFTR137 

by modulating the interaction with 70 kDa Heat shock protein 

(Hsp) family Hsc70.138 4-PBA was one of the first corrector 

to be tested in a pilot clinical trial for CF, where it slightly 

improved CFTR activity in nasal epithelium but did not 

reduce sweat chloride concentration.139

Preclinical stage
Phase I, Phase II, Phase III
Available to patients
(*in combination with Ivacaftor)

Combitherapy
Ivacaftor/lumacaftor
Ivacaftor/lumacaftor/N91115
Ivacaftor/N91115
Cysteamine/EGCG

Corrector
Lumacaftor*,tezacaftor
VX-152, VX-440
Sildenafil, riociguat
FDL-169
PTI-C1811 mRNA repair

QR-010

PTC readthrough
NB30, NB54, NB124
Ataluren
Escin

Amplifier
PTI-428

Potentiator
Ivacaftor
CTP-656
QBW251
GLPG1837/ABBV-974
FDL-176

Class III Class IV Class VI

Stabilizer
N91115

Endosome

Lysosome

Golgi

ER

Nucleus

Proteasome

Class I

Class II

Ub.
AAAA

AAAA

Class V

Figure 3 Overview of the most advance CFTR modulators in preclinical and clinical studies, with regard to the class of CFTR mutations and the primary defect of the 
corresponding mutant protein.
Abbreviations: CFTR, cystic fibrosis transmembrane conductance regulator; PTC, premature termination codon; EGCG, epigallocatechin gallate; ER, endoplasmic 
reticulum; Ub, ubiquitin; mRNA, messenger RNA.
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Table 2 Mechanisms of action of pharmacological modulators of CFTR available to CF patients or under preclinical development as 
mono- and/or combitherapies for CF

Classes of compounds Target Mechanism of action Pharmacological 
compounds

Monotherapies PTC read-through Class I (nonsense 
mutations)

Generate a full-length CFTR by complete 
translation of CFTR transcript

Ataluren
Escin
NB30, NB54, NB124

mRNA repair therapy All classes Repair the CFTR mRNA to generate a WT-
CFTR transcript

QR-010 (specific for 
F508del-CFTR)

Correctors Class II Rescue F508del-CFTR to the plasma membrane Lumacaftor, tezacaftor, 
VX-152, VX-440
Sildenafil, riociguat
FDL-169
PTI-C1811

Potentiators Class III
Class IV

Bind to CFTR to increase open probability Ivacaftor
CTP-656
QBW251
GLPG1837/ABBV-974
FDL-176

Combitherapies Corrector/potentiator Class II/III Rescue F508del-CFTR to the plasma 
membrane, increase CFTR open probability 

Lumacaftor/ivacaftor
Tezacaftor/ivacaftor
Lumacaftor/QBW251

Corrector 1/corrector 2/
potentiator

Class II/III Rescue F508del-CFTR to the plasma membrane 
via two distinct mechanisms and increase CFTR 
open probability

Tezacaftor/VX-152/ivacaftor
Tezacaftor/VX-440/ivacaftor

Corrector/stabilizer Class II Rescue F508del-CFTR to the plasma membrane 
and enhance rescued F508del-CFTR stability

Cysteamine/EGCG

Corrector/potentiator/stabilizer Class II/III/VI Rescue F508del-CFTR to the plasma 
membrane, increase CFTR open probability, 
and enhance rescued F508del-CFTR stability

Lumacaftor/ivacaftor/N91115

Potentiator/stabilizer Class VI Increase CFTR open probability and enhance 
rescued F508del-CFTR stability

Ivacaftor/N91115

Amplifier/other modulator(s) All classes Increase the amount of immature CFTR to 
provide more substrate for other modulators 
to act upon 

PTI-428/other(s)

Abbreviations: CFTR, cystic fibrosis transmembrane conductance regulator; CF, cystic fibrosis; PTC, premature termination codon; mRNA, messenger RNA; WT, wild type.

With the development of HTS assays and medicinal 

chemistry, many families of new chemical structures with 

corrector properties have emerged. Their corrector activities 

are exerted through direct modulation of protein folding140,141 

or cellular proteostasis,142 or may act as pharmacological 

chaperons.143 While many of the compounds available so 

far, such as corr-4a116 or VRT-325,141 will never progress 

beyond the status of “bench tools”, some hits have been 

identified and optimized in view of clinical assessments. 

The most advanced corrector for F508del-CFTR is VX-809 

(lumacaftor), developed by Vertex Pharmaceuticals (Boston, 

MA, USA). VX-809 restores F508del-CFTR trafficking by 

improving its folding and stabilizing membrane-spanning 

domain 1.144,145 Four weeks of oral lumacaftor as monotherapy 

in homozygous F508del-CFTR patients was demonstrated 

safe and well tolerated.146 Sweat chloride contents were 

significantly decreased with treatment in a dose-dependent 

manner. However, lumacaftor failed to demonstrate any 

therapeutic benefit for lung function as it did not change 

FEV
1
 nor modulate NPD parameters. This lack of clinical 

effect suggested that corrector-based monotherapies are not 

efficient enough to improve lung function because they do 

not target the other biological defects of F508del-CFTR, ie, 

decreased membrane stability and open probability.

Because in vitro studies showed that CFTR potentiator 

VX-770 (see ivacaftor, classes III and IV) improved the 

open probability of VX-809-rescued F508del-CFTR,145 a 

new Phase II147 and a Phase III148 studies with combination 

of lumacaftor and ivacaftor were conducted. Overall, the 

absolute increase in FEV
1
 was modest (+3%).148 Currently 

marketed as Orkambi®, the ivacaftor–lumacaftor combina-

tion has been heavily challenged because it seems no more 

efficient that conventional multitherapies149 for a price out-

rageously tenfold higher.150 More importantly, two in vitro 

studies evidenced negative interference between ivacaftor 

and several correctors including lumacaftor, as prolonged 

exposure of HBECs with ivacaftor decreases the stability of 

lumacaftor-corrected F508del-CFTR.151,152 This could explain 
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in part the modest improvement of lung function observed 

in patients taking lumacaftor/ivacaftor.

Vertex Pharmaceuticals is currently expanding its drug 

portofolio by developing more correctors such as VX-661 

(tezacaftor), for which they claimed slightly better clinical 

efficacy (+4.8% FEV
1
) than VX-809 when combined with 

ivacaftor in patients with two copies of F508del-CFTR.153 

Moreover, VX-661 showed additional benefit (+4.6% FEV
1
) 

in patients carrying both F508del- and G551D-CFTR muta-

tions and who were already taking ivacaftor.153

More next-generation correctors such as VX-152 and 

VX-440 will be evaluated in combination with VX-661/

ivacaftor as triple combinations (VX-152/VX-661/ivacaftor 

and VX-440/VX-661/ivacaftor) in homozygous F508del 

patients and patients with one F508del associated with a 

second mutation that results in minimal CFTR function. In 

vitro, these triple combinations resulted in an increase in 

chloride transport in HBECs approximately threefold higher 

than with lumacaftor/ivacaftor.

Other drug discovery companies have undertaken devel-

opment of correctors. Among them, PTI-C1811 (Proteostasis 

Therapeutics, Cambridge, MA, USA) and FDL-169 (Flatley 

Discovery Lab, Charlestown, MA, USA) act through differ-

ent mechanisms than VX-809 and are both claimed to have 

similar or superior in vitro activity when combined with 

potentiators.

Unlike CFTR correctors that act at the protein level, 

ProQR Therapeutics NV (Leiden, the Netherlands) devel-

oped QR-010, a single-strand modified RNA specifically 

designed to repair the F508del mutation at the mRNA level 

to generate a WT-CFTR transcript. In vivo in a preclinical 

mouse model, QR-010 demonstrated a robust increase in 

CFTR activity measured by NPD154 and a restoration of 

CFTR-dependent salivary secretion rates.155 QR-010 is 

now being tested in two clinical trials. In a Phase Ib study 

(NCT02532764), single and multiple ascending doses will 

assess QR-010 safety and tolerability in F508del homo-

zygous patients. The second study (NCT02564354) is 

exploratory proof-of-concept study in CF patients with at 

least one copy of F508del. It will explore whether intranasal 

administration of QR-010 can restore function of the CFTR 

protein as measured by NPD.

Therapies targeting class III and IV
Class III and IV mutations are considered mild because 

they produce full-length CFTR that inserts into the plasma 

membrane where it can correctly interact with other proteins. 

However, chloride transport is reduced because the open 

probability (class III) or the single conductance (class IV) 

of the channel is altered. Pharmacological compounds that 

enhance CFTR function at the cell membrane are called 

potentiators.

VX-770 (ivacaftor) was identified by HTS in epithelial 

cells expressing G551D-CFTR.156 Early clinical investiga-

tions enrolling patients with at least one G551D mutations 

provided encouraging efficacy data (as measured by NPD 

and sweat chloride concentration) in patients receiving 

150 mg ivacaftor twice a day, together with a safety profile 

comparable to the placebo group.157 Longer studies (STRIVE 

and ENVISION), up to 48 weeks, also demonstrated that 

patients aged 6 years and older treated with ivacaftor gained 

significantly more weight and their frequency of pulmonary 

exacerbation was reduced by 55% with ivacaftor as compared 

to placebo.158,159 During the KONNECTION study, ivacaftor 

resulted in significant improvement in FEV
1
 (+10.7% at 

8 weeks), sweat chloride, and body mass index in patients 

carrying one of the following non-G551D alleles: G178R, 

S549N, S549R, G551S, G970R, G1244E, S1251N, S1255P, 

or G1349D.160 Results were comparable to those observed 

during the STRIVE and ENVISION studies (+10.6% FEV
1
) 

in patients with G551D mutation.158,159

Because CF lung disease is progressive, treating patients 

as early as possible was the aim of the KIWI study which 

enrolled preschoolers (2.5–5 years old) with one G551D 

mutation. Ivacaftor seemed to be safe in that cohort, although 

extended results are awaited.161

During the initial screening, ivacaftor was shown to also 

potentiate activity of rescued F508del-CFTR.156 As expected 

with a potentiator, a clinical trial with ivacaftor for F508del/

F508del patients failed to support its use as a monotherapy 

for this class of patients.162 As of now, ivacaftor (Kalydeco®; 

Vertex Pharmaceuticals) is the only potentiator approved for 

CF patients aged 2 years and older who carry at least one of 

the following mutations: G551D, G1244E, G1349D, G178R, 

G551S, S1251N, S1255P, S549N, S549R or R117H. Ivacaftor 

is seen by the CF community as a proof of principle of clini-

cal benefit from a CFTR modulator, and its approval was a 

very significant milestone in CF treatment.

Concert Pharmaceuticals Inc. (Lexington, MA, USA) 

is applying deuterium chemistry to enhance the pharmaco-

kinetic properties of ivacaftor. This approach was tested in 

CF patients with class III mutations in a Phase I crossover 

comparison of deuterated ivacaftor (CTP-656) vs ivacaftor. 

CTP-656 demonstrated a longer half-life of the compound 

in plasma compared to ivacaftor, supporting the possibility 

to reduce the dosing to once a day.163
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QBW251 is a potentiator developed by Novartis Pharma-

ceuticals. In vitro data showed superior efficacy of QBW251 

as compared to ivacaftor when both are combined with luma-

caftor. Phase II trial (NCT02190604) has been conducted and 

some outcomes have been recently presented.164 CF heterozy-

gous patients with at least one class III to VI mutation were 

enrolled (including patients with one F508del mutation as 

it can be considered either as class II, III, or VI). A separate 

arm of the study enrolled only F508del-CFTR homozygous 

patients. Orally administered QBW251 (150 mg or 450 mg, 

twice a day) for 2 weeks was safe and well tolerated in the 40 

CF patients.164 In patients with a residual function, QBW251 

(450 mg) statistically increased FEV
1
 over placebo by 7.3%, 

an increase that is considered as clinically relevant for lung 

function and very similar to that observed with ivacaftor. As 

for ivacaftor, QBW251 monotherapy did not demonstrate any 

efficacy in patients with two copies of F508del.

The potentiator GLPG1837/ABBV-974 is codeveloped 

by Galapagos NV (Mechelen, Belgium) and AbbVie Phar-

maceuticals (North Chicago, IL, USA). Phase I has demon-

strated that single (up to 2 g) and multiple doses (up to 800 mg 

twice a day for 14 days) of GLPG1837/ABBV-974 were 

safe and well tolerated in healthy volunteers.165 Two Phase II 

open-label studies are ongoing and will explore GLPG1837/

ABBV-974 safety, tolerability, and efficacy in CF patients 

with G551D (SAPHIRA1) and S1251N (SAPHIRA2).

Therapies targeting class V and VI
Currently, there is no clinical data available for class 

V-specific therapies. For class VI, a new class of compounds 

increasing the half-life of CFTR protein at the plasma mem-

brane has recently attracted interest. VRT-325 and Corr-4a 

were prototypes for this type of compounds, so-called “sta-

bilizers”, which are meant to be complementary to existing 

and future CFTR modulators.

N91115, developed by Nivalis Therapeutics (Boulder, 

CO, USA), is an inhibitor of S-nitroglutathione (GSNO) 

reductase and aimed at increasing intracellular levels of 

GSNO. GSNO induces the S-nitrosylation of the cellular 

chaperone Hsp70/Hsp90 organizing protein which prevents 

the association of CFTR with Hsp70/Hsp90 organizing 

protein.166–168 N91115 was proven safe and well tolerated in 

CF patients with two F508del alleles.169 N91115 has recently 

received the status of Orphan Drug designation by the FDA 

and two Phase II clinical studies are ongoing (see “Combi-

therapies and personalized medicine” section). In the near 

future, potentiators may also prove useful to provide maximal 

activation of class VI mutants.

Combitherapies and personalized 
medicine
Many pharmacological agents are currently in develop-

ment to correct mutant CFTR activity in CF. These agents 

are becoming increasingly specific, and aim at targeting 

patients with particular genotype. The most advance treat-

ment for CF currently available for patients is ivacaftor. 

This is a typical example of personalized medicine where 

only individuals with specific mutations can be treated 

with this drug. Although ivacaftor provides a significant 

improvement in lung function, this may not be achievable 

in every CF patient with a single compound. More specifi-

cally, in patients carrying CFTR mutations displaying mul-

tiple dysfunctions, such as F508del-CFTR, combination of 

several molecules will likely lead to better clinical results. 

Here, the biological defects of F508del-CFTR could be 

ideally addressed by a triple combination of a corrector to 

increase the amount of F508del-CFTR protein expressed 

in the plasma membrane, a potentiator to enhance its open 

probability and a stabilizer to increase its half-life at the 

plasma membrane.

To tackle the membrane instability of rescued F508del-

CFTR, Nivalis is currently evaluating N91115 safety 

and efficacy in combination with lumacaftor/ivacaftor 

in homozygous F508del patients (NCT02589236) and 

with ivacaftor in patients with one F508del and a gat-

ing mutation (NCT02724527) in two Phase II clinical  

trials.

Another new class of compounds is currently investigated 

by Proteostasis Therapeutics. They are developing PTI-428, 

a CFTR amplifier, which aims to selectively increase the 

amount of immature form of CFTR protein to provide other 

CFTR modulators with more substrate to act upon.170 PTI-428 

received Fast Track designation from the FDA and a Phase I is 

ongoing to assess its safety, tolerability and pharmacokinetics 

in CF patients (NCT02718495).

In the near future, one can also envisage combitherapies 

with activators of alternative chloride channels or with inhibi-

tors of the ENaC.171

One of the biggest challenges to implement personalized 

medicine for CF will be to develop new in vitro models 

to better predict the individual response of patient to dif-

ferent combinations of treatments. Development and use 

of experimental materials based on patient tissues (such 

as airway and intestinal organoids or induced pluripotent 

stem cells) will hopefully provide new powerful assays to 

better anticipate the individual clinical benefit of CFTR 

modulators.
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Conclusion
Many classes of compounds restoring the function of CFTR 

mutants have been identified; however, most of them, such 

as natural compound curcumin, were never translated into 

therapy mainly because of lack of benefit to patients as well 

as off-target effects or low bioavailability. Drug repositioning, 

through the exciting examples of the cystamine/EGCG com-

bination or sildenafil, may speed up the development of novel 

therapies for CF. Currently, ivacaftor alone or in combination 

with lumacaftor are the only pharmacological modulators of 

CFTR approved for the treatment of CF. The combination 

lumacaftor/ivacaftor has been highly challenged as they do 

not seem to provide significant improvement in lung function 

as compared to conventional therapies. Ivacaftor targets only 

a specific CFTR mutant (G551D-CFTR) which is found in 

<2% of the patients, Finally, these two marketed therapies 

cost over USD 250,000/year (a tenfold increase as compared 

to usual multitherapies) for a modest improvement in the 

quality of life of patients. Thus, there is still a major and 

urgent need for new molecules and therapeutic approaches 

to be developed for treating CF.
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