
REVIEW
published: 28 October 2021

doi: 10.3389/fnmol.2021.759729

Edited by:

Wolfgang Hoyer,
Heinrich Heine University of

Düsseldorf, Germany

Reviewed by:
Homira Behbahani,

Karolinska Institutet (KI), Sweden
Balaji Krishnan,

University of Texas Medical Branch at
Galveston, United States

*Correspondence:
Somayra S. A. Mamsa

somayra.mamsa@
research.uwa.edu.au

Specialty section:
This article was submitted to
Brain Disease Mechanisms,

a section of the journal
Frontiers in Molecular Neuroscience

Received: 17 August 2021
Accepted: 29 September 2021
Published: 28 October 2021

Citation:
Mamsa SSA and Meloni BP

(2021) Arginine and Arginine-Rich
Peptides as Modulators of Protein

Aggregation and Cytotoxicity
Associated With Alzheimer’s Disease.

Front. Mol. Neurosci. 14:759729.
doi: 10.3389/fnmol.2021.759729

Arginine and Arginine-Rich Peptides
as Modulators of Protein Aggregation
and Cytotoxicity Associated With
Alzheimer’s Disease
Somayra S. A. Mamsa1,2* and Bruno P. Meloni2,3,4

1School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, WA, Australia, 2Perron Institute
for Neurological and Translational Science, QEII Medical Centre, Perth, WA, Australia, 3Centre for Neuromuscular and
Neurological Disorders, The University of Western Australia, Crawley, WA, Australia, 4Department of Neurology, Sir Charles
Gairdner Hospital, QEII Medical Centre, Perth, WA, Australia

A substantial body of evidence indicates cationic, arginine-rich peptides (CARPs)
are effective therapeutic compounds for a range of neurodegenerative pathologies,
with beneficial effects including the reduction of excitotoxic cell death and
mitochondrial dysfunction. CARPs, therefore, represent an emergent class of promising
neurotherapeutics with multimodal mechanisms of action. Arginine itself is a known
chaotrope, able to prevent misfolding and aggregation of proteins. The putative role
of proteopathies in chronic neurodegenerative diseases such as Alzheimer’s disease
(AD) warrants investigation into whether CARPs could also prevent the aggregation
and cytotoxicity of amyloidogenic proteins, particularly amyloid-beta and tau. While
monomeric arginine is well-established as an inhibitor of protein aggregation in solution,
no studies have comprehensively discussed the anti-aggregatory properties of arginine
and CARPs on proteins associated with neurodegenerative disease. Here, we review
the structural, physicochemical, and self-associative properties of arginine and the
guanidinium moiety, to explore the mechanisms underlying the modulation of protein
aggregation by monomeric and multimeric arginine molecules. Arginine-rich peptide-
based inhibitors of amyloid-beta and tau aggregation are discussed, as well as further
modulatory roles which could reduce proteopathic cytotoxicity, in the context of
therapeutic development for AD.

Keywords: arginine, aggregation, Alzheimer’s disease, peptides, amyloid-beta (Aβ), tau & phospho-tau protein

INTRODUCTION

Alzheimer’s disease (AD) is a progressive, neurodegenerative disease estimated to affect
over 44 million people worldwide, with a devastating impact on patients, their loved
ones and caregivers, as well as vast social and economic consequences (Alzheimer’s
Association, 2021). As the single biggest risk factor for AD is age, the prevalence of AD
continues to increase as the average life expectancy rises; by 2050, it is predicted that
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over 100 million people worldwide will have the disease
(GBD 2016 Dementia Collaborators, 2019). Clinically, AD is
characterised by memory loss, impaired cognition, changes in
mood, affect and behaviour, and a decline in the ability to carry
out everyday tasks. These symptoms arise gradually, developing
over the course of several years from mild cognitive impairment
to dementia of increasing severity. Due to the progressive and
insidious nature of AD, limited availability of tools for definitive
diagnosis (Gofton and Weaver, 2006), and a lack of efficacious
and disease-modifying therapeutics (Weller and Budson, 2018),
AD remains a significant issue in global health.

AD is characterised by the development of proteopathies,
specifically cytotoxic aggregates of amyloid-beta and tau. A range
of therapeutic approaches for AD-associated proteopathies
are therefore in various stages of development, including
enzyme inhibitors targeting the production pathway of
amyloid-beta (Kumar et al., 2018), gene silencing technologies
to limit the expression of pro-aggregatory mutant tau
proteins (Miller et al., 2004), kinase inhibitors aimed at
preventing the pro-aggregatory hyperphosphorylation of
tau, passive and active immunotherapies developed to
drive protein clearance, and small molecule inhibitors of
protein aggregation. These strategies are comprehensively
reviewed in the literature (Hardy and De Strooper, 2017;
Congdon and Sigurdsson, 2018; Pedrini et al., 2019). It
remains unclear whether the proteopathies observed in AD
are causative or consequential with regards to other aspects
of AD pathogenesis, such as inflammation, neurovascular
dysfunction, and metabolic disorders. Although the precise,
mechanistic contributions of protein aggregation to the
pathogenesis of AD are still contested, targeting protein
aggregation remains a central priority in drug development;
the recent approval of the amyloid-beta-lowering human
monoclonal antibody Aducanumab by the United States
Food and Drug Administration (FDA) represents the first
drug to be approved by the FDA for the treatment of AD in
18 years.

Broadly, peptide-based therapeutics represent a particularly
desirable class of candidates for pharmacotherapy, as peptides
can be designed with high target specificity and bioactivity,
and further optimised for increased safety, tolerability, efficacy
and stability through sequence and structural modifications
(Di, 2015; Räder et al., 2018; Evers et al., 2019). In the case
of protein aggregation, the sequence and structural features
of target proteins can be used to inform the rational design
of peptides for binding and inhibition. Additionally, methods
for screening peptide-based compounds are well-developed,
including a variety of predictive in silico tools for assessing
potential interactions between peptides and proteins (D’Annessa
et al., 2020). As a general class, peptide-based inhibitors of
protein aggregation developed for AD have been reviewed in
detail by Goyal et al. (2017), Kumar and Sim (2014), and
Funke and Willbold (2012). Despite their advantages, challenges
in the development of anti-aggregatory peptides include lack
of membrane permeability and difficulty in penetrating the
blood-brain barrier. Cationic arginine-rich peptides (CARPs)
demonstrate a particular ability to cross cellular membranes

as well as the blood-brain barrier (Mitchell et al., 2000;
Schmidt et al., 2010; Allolio et al., 2018), rendering them
popular ‘‘carrier’’ molecules for a range of therapeutic ‘‘cargo’’
such as oligonucleotides, peptides and proteins (reviewed by
Habault and Poyet, 2019). However, the aggregation-modulating
properties of arginine itself may be favourable for peptide
drugs targeting proteopathies. Here, we discuss the unique
properties of arginine in modulating protein aggregation, as well
as arginine-rich peptides, and peptides which have employed
arginine as a key residue, in targeting the proteopathies
associated with AD.

ARGININE

Structure and Physicochemical Properties
of the Arginine Monomer
Arginine is one of two basic amino acids, alongside lysine, which
is consistently protonated at physiological pH. The structure of
arginine is highly unique; arginine monomers are comprised of
a polar, hydrophilic head group conjugated to a hydrophobic
body, and an aliphatic side chain capped with a guanidino
group. At physiological pH, the carboxyl moiety of arginine is
deprotonated, while protonation of both the amino group into
an amide and the guanidino group into the cationic guanidinium
moiety, confers the overall cationicity of the molecule to a net
charge of +1. In proteins, the guanidinium moiety contributes
extensively to the intra- and inter-molecular associations of
arginine residues by imparting a strong capacity for electrostatic
interactions such as hydrogen bonding. The structure of arginine
in comparison to lysine is shown in Figure 1.

Guanidinium itself is a planar molecule comprised of three
amino groups conjugated to a central carbon atom; these three
amino groups facilitate the formation of bidentate hydrogen
bonds in three directions, enabling arginine to participate in a
higher number of electrostatic interactions compared to lysine.
Guanidinium also contributes to several distinctive properties of

FIGURE 1 | Structure of the arginine monomer in comparison to lysine.
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arginine and its behaviour in biological systems. The side chain
of arginine is able to remain protonated under all physiological
conditions and in even highly basic solutions (Xu et al., 2017),
as the guanidinium moiety carries a highly stable, delocalised
cationic charge with a pKa of 13.8 (Fitch et al., 2015) owing
to resonance stabilisation. Due to its remarkable chemistry
and emergent properties, guanidinium has been the subject of
extensive study. The high stability of guanidinium is attributed
to its Y-conjugated, quasi-aromatic structure with six delocalised
pi electrons, which was regarded by Gund (1972) as a novel
form of aromaticity. Additionally, the side chain of arginine is
conferred partial hydrophobicity by the hydration structure of
guanidinium; guanidinium is poorly hydrated above and below
its plane, retaining only in-plane hydration (Mason et al., 2003,
2004).

Emergent Properties, Self-association and
Clustering
Notably, the guanidinium moiety of arginine imparts a strong
tendency for self-association. While it is a basic tenet of
physical chemistry that ions with like charges repel each
other, guanidinium ions in solution are able to overcome
the Coulomb repulsion typically driving this effect and
form thermodynamically stable pairs (Vazdar et al., 2018).
This behaviour also extends to arginine; Shukla and Trout
(2010) observed the tendency of arginine monomers to form
clusters in solution, through three dominant modes of self-
association: guanidinium-to-guanidinium stacking; bonding of
the guanidinium moiety of an arginine monomer to the
carboxylate group of another; and bonding of the arginine
C-terminus to the N-terminus of an adjacent arginine monomer.
The ability of arginine to form stable clusters has largely been
attributed to the hydrogen-bonding ability of guanidinium (Li
et al., 2010).

Computational simulations have also demonstrated
like-charge pairing of di-arginine peptides through the
association of their side chains, while the NH4+-containing
side chains of di-lysine peptides do not exhibit any attraction
to each other (Vazdar et al., 2018), evidencing the critical role
of the guanidinium moiety in arginine-arginine interactions.
Longer, poly-arginine peptides are also attracted to each other in
solution. The self-association of polyarginine-10 (R10) peptides
was demonstrated by Tesei et al. (2017) through computational
modelling and experimentally confirmed by small-angle X-ray
scattering experiments. The guanidinium cations of arginine
side chains throughout R10 were found to associate with the
corresponding guanidinium groups on pairing R10 molecules
to form like-charge ion pairs, while the guanidinium cation of
the ninth residue was also found to bind the negatively charged
C-terminus of the adjacent R10 peptide through the formation
of an intermolecular salt bridge (Tesei et al., 2017; Vazdar
et al., 2018). The latter mechanism functions as an ‘‘adhesive
patch’’ between two R10 peptides, a binding motif absent in
the interactions between two molecules of the similarly cationic
peptide polylysine-10 (K10), which only repels itself in solution
(Tesei et al., 2017; Vazdar et al., 2018).

The formation of like-charge guanidinium pairing between
arginine residues is also likely to impart stability in the tertiary
structure of proteins; a number of biologically occurring protein
structures are known to contain arginine residues oriented
in close proximity to each other in three-dimensional space,
with these steric arrangements enabled by the formation of
guanidinium pairs within the structure (Tesei et al., 2017; Vazdar
et al., 2018).

At physiological pH, where arginine is protonated,
self-association of arginine also facilitates the formation of
dynamic arginine clusters bound to protein surfaces. In silico,
arginine ions bind to the surface of proteins such as lysozyme
through interactions mediated by their guanidinium and
carboxyl groups; while bound, the remaining guanidinium
or carboxyl group of each arginine monomer interacts in a
head-to-tail orientation with the carboxyl or guanidinium
group of another arginine molecule in solution, which itself
is able to interact with another arginine molecule through the
same mechanism (Vagenende et al., 2013). Arginine clusters
remain bound to proteins for a remarkably long period of
time, and are thus considered to ‘‘extend’’ the surface of the
protein they are bound to (Vagenende et al., 2013); indeed,
experimental results confirm that binding of arginine ions to a
protein in vitro results in a size increase of the protein detectable
by chromatography (Vagenende et al., 2013). Corollary to
this, it is expected that clusters of arginine can alter the
physicochemical properties of the protein they are bound to,
including charge and hydrophobicity, and could therefore
alter their properties in vivo, such as solubility, stability and
activity.

Effects of Arginine on Protein Aggregation
It is well-established that arginine modulates protein aggregation,
acting as a molecular cosolvent and ‘‘chemical chaperone’’
in solution (Sharma et al., 2013). Arginine is commonly
used as an additive to maintain protein stability in the
biopharmaceutical industry and has conventionally been
regarded as an aggregation suppressant (Golovanov et al.,
2004; Arakawa et al., 2006; Ghosh et al., 2009). Shiraki et al.
(2002) evaluated the effects of 15 amino acids on lysozyme
under the conditions of thermal unfolding- and dilution-
induced, aggregation; among them, arginine was found to be
the most effective suppressor of aggregation, increasing protein
solubility. Arginine has also proven particularly useful for
solubilising membrane proteins otherwise prone to aggregation
(Arakawa et al., 2011). Notably, the effects of arginine on
proteins in solution are unique even in comparison to guanidine
(Arakawa et al., 2007).

A number of experimental and computational studies have
aimed to develop a mechanistic understanding of the molecular
processes underlying the suppression of protein aggregation
by arginine. It was previously reported by Das et al. (2007)
that the self-association of arginine gives rise to hydrophobic
surfaces through alignment of its methylene groups, which are
then driven by the hydrophobic effect to bind the exposed
hydrophobic residues of unfolded and intrinsically disordered
proteins. Das et al. (2007) pertinently observed that the
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amyloid-beta peptide exhibits increased solubility and decreased
fibril formation in the presence of arginine, and concluded, from
their analyses, that these effects were due to hydrophobic surfaces
of arginine clusters masking the pro-aggregatory hydrophobic
residues of amyloid-beta monomers, preventing their self-
association. However, while arginine does form hydrophobic
columns along its crystallographic axis in crystal structures,
molecular dynamics simulations subsequently performed by
Shukla and Trout (2010) did not support the finding of
methylene alignment in solution. While Shukla and Trout indeed
confirmed the assembly of supramolecular arginine clusters,
observing the formation of dimers and higher order n-mers at
physiological pH, no hydrophobic surfaces were formed in these
clusters through methylene alignment as proposed by Das et al.
(2007).

Furthermore, Shukla and Trout (2010) also observed strong
preferential interactions between arginine and the aromatic
residues of their model proteins, mediated by cation-pi stacking;
these observations were consistent with previous results by
Arakawa et al. (2007), which demonstrated that while both
arginine and guanidine displayed a strong affinity for most
protein residues, their affinities were particularly strong for
aromatic residues, which are generally hydrophobic. Tsumoto
et al. (2004) had also previously observed that the aggregation-
suppressive effects of arginine, which could not be explained
through either surface tension effects or preferential interactions
alone, were substantially mediated through the interactions
of arginine guanidinium groups with the side chains of
protein tryptophan residues. In the folded state of proteins,
hydrophobic residues such as tryptophan are internalised or
‘‘buried’’ from the protein surface, while their externalisation
in protein unfolding promotes aggregation; thus, arginine
could indeed have a noticeable effect on the aggregation
of unfolded or disordered proteins by binding hydrophobic
surfaces and preventing their self-association, albeit through
different molecular mechanisms than those proposed by
Das et al. (2007).

Interestingly, however, Shukla and Trout (2010) reported
that interactions between arginine and aromatic residues were
insufficient to fully explain the effect of arginine on protein
aggregation; in their study, the overall effect on aggregation was
disproportionate when considering the relatively low number
of aromatic residues comprising their model proteins. This led
the authors to consider additional mechanisms, particularly the
accumulation of arginine molecules on protein surfaces to form
dynamic clusters; it was concluded that these clusters were
able to ‘‘crowd out’’ the model proteins, preventing their self-
association. Further research led to the classification of arginine
as a ‘‘neutral crowder’’ in this context (Baynes et al., 2005). A
comparative study by Schneider and Trout (2009) on the effects
of arginine hydrochloride and guanidine hydrochloride on the
aggregation of bovine serum albumin (BSA), lysozyme and α-
chymotrypsinogen revealed that arginine had a unique effect: it
was neither attracted to nor repelled from the protein surface.
However, Schneider et al. (2011) later described a shift in the
preferential interaction of arginine at high concentrations, from
neutral to highly excluded, concluding that the ‘‘neutral crowder’’

effect was not able to completely describe the behaviour of salt
forms of arginine such as arginine hydrochloride. Additionally,
in silico analysis by Li et al. (2010) demonstrated the ability
of arginine to solubilise hydrophobic and aromatic moieties by
forming a ‘‘cage-like’’ solvation layer around the molecules. The
mechanisms of aggregation suppression by arginine are therefore
complex, involving not only interactions between arginine and
proteins, but interactions between arginine and other arginine
molecules; this tendency to form self-associative assemblies is
an important factor in the aggregation-modulating effects of
arginine.

Continued studies over the past decade, however, have
demonstrated the effects of arginine on protein aggregation
vary depending on its context and concentration, and are not
always suppressive. Arginine potently inhibits the aggregation of
lysozyme (Matsuoka et al., 2007; Ito et al., 2011), and porcine
and mink growth hormones (Cirkovas and Sereikaite, 2011);
monomeric arginine prevents the oligomerisation of insulin
(Varughese and Newman, 2012; Březina et al., 2018; Haghighi-
Poodeh et al., 2020), and di-arginine peptides exhibit even
higher efficacy for suppressing insulin aggregation (Nuhu and
Curtis, 2015). At physiological pH, arginine hydrochloride also
suppresses the aggregation of immunoglobulin G1 (IgG1), with
this effect attributed to the interactions between arginine and
hydrophobic IgG1 residues (Fukuda et al., 2014). However,
arginine and its derivatives arginine amide and arginine
ethylester were found to alter the aggregation pathway of BSA,
inducing the formation of larger BSA aggregates (Borzova et al.,
2017) rather than inhibiting aggregation per se. Additionally,
high concentrations of arginine suppress the aggregation of α-
lactalbumin, while low concentrations are known to substantially
alter its aggregation pathway, resulting in a distinctive aggregate
morphology (Smirnova et al., 2013). These varied observations
indicate the effects of arginine on protein aggregation are more
complex and diverse than previously established. Thus, arginine
is perhaps best described as a ‘‘complex molecular cosolvent’’,
and the molecular context of arginine greatly influences the
manner in which it modulates the behaviour of proteins in
solution.

PROTEOPATHIES ASSOCIATED WITH
ALZHEIMER’S DISEASE

Until the 1990s, the dominant theory of AD focused on
the ‘‘cholinergic hypothesis’’ which posited the impairment
of cholinergic neurotransmission as the primary cause of
cognitive decline observed in patients with AD (reviewed by
Francis et al., 1999). However, subsequent bodies of evidence
have strongly implicated amyloid-beta deposition as a central
event in the development of AD, regarded as the ‘‘amyloid
cascade hypothesis’’ (first proposed by Hardy and Higgins, 1992;
reviewed by Barage and Sonawane, 2015, and more recently by
Ricciarelli and Fedele, 2017). The minimal correlation between
cerebral amyloid-beta load and the severity of cognitive decline
observed in patients with AD (Nelson et al., 2012), however,
has led to an increased focus on the role of tauopathy in
the pathogenesis of AD. Moreover, the presence of cerebral
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amyloid-beta plaques is not always concomitant with impaired
cognition (Arboleda-Velasquez et al., 2019). The development
of amyloid-beta pathology is therefore considered necessary,
yet insufficient, for the progression of AD. Broad evidence
from laboratory, preclinical and clinical studies suggests that
amyloid-beta aggregation can also drive the progression of
tauopathy (reviewed by Stancu et al., 2014; Hanseeuw et al.,
2019), which is increasingly believed to play a key role in
cognitive decline (Nelson et al., 2012; Di et al., 2016; Digma et al.,
2019). The precise, mechanistic roles of these proteopathies in
the aetiology and pathogenesis of AD are the subject of extensive
research and debate; however, pathogenic protein aggregation
remains strongly implicated in the disease (Lovestone and
McLoughlin, 2002; Thal and Fändrich, 2015; Jouanne et al., 2017;
Gandhi et al., 2019; Johnson et al., 2019). We will briefly outline
the characteristics of amyloid-beta and tau and their aggregation
pathways.

Amyloid-Beta
Amyloid-beta peptides are 38- to 43-residue peptides resulting
from the sequential cleavage of amyloid precursor protein (APP)
by the secretase family of enzymes (Crescenzi et al., 2002).
APP itself is heterogeneous, ranging from 110 to 140 kDa,
with three major isoforms (695, 751, and 770 residues in
length) determined by the splicing pattern of its expression
product, and is subjected to a range of post-translational
modifications including sulfation, phosphorylation, and N- and
O-linked glycosylation (Zheng and Koo, 2011). The generation of
amyloid-beta results from a cleavage pathway of APP commonly
referred to as the amyloidogenic pathway. This begins with
the cleavage of APP by beta-secretase (BACE1), generating
two fragments: a C-terminal fragment of APP referred to
as C99, and a secreted, soluble N-terminal fragment termed
sAPP-β. C99 is subsequently bound by the gamma-secretase
complex, comprised of four protein subunits: presenilin (PSEN;
PSEN1/PSEN2 isoforms), presenilin enhancer (PEN), Nicastrin,
and APH-1. Processing of C99 by gamma-secretase results in
a series of sequentially shorter cleavage products, until the
amyloid-beta peptide is released (O’Brien and Wong, 2011).
In the central nervous system, amyloid-beta is predominantly
secreted by neurons and astrocytes into the extracellular space
of the brain and physiologically cleared by the vascular system
and cerebrospinal fluid. In AD, clearance mechanisms for
amyloid-beta are impaired, leading to accumulation in the brain
parenchyma (Ramanathan et al., 2015). Multiple amyloid-beta
isoforms have been observed in the brain tissue of patients
with AD, including amyloid-beta1–40 (Aβ40), amyloid-beta1–42
(Aβ42), and amyloid-beta1–43 (Aβ43; Welander et al., 2009);
among them, Aβ42 is the primary constituent of neuritic plaques
observed in end-stage AD (O’Brien and Wong, 2011).

While physiological roles of amyloid-beta peptides have
been identified (Pearson and Peers, 2006; Morley et al., 2019),
the aggregation of amyloid-beta monomers has causally been
associated with neuronal toxicity (Yankner and Lu, 2009;
Pauwels et al., 2012; Prasansuklab and Tencomnao, 2013;
Carrillo-Mora et al., 2014). Amyloid-beta aggregates occur in
a variety of assemblies, from low molecular weight oligomers

(including dimers, trimers, tetramers, and pentamers) to higher
molecular weight oligomers (hexamers, nonamers, dodecamers;
Wolff et al., 2017), protofibrils, and fibrils, as well as amorphous
aggregates (Jiang et al., 2012). in vitro, the formation of these
aggregate species is affected by various factors including the
presence and concentration of specific ions, such as metals, as
well as pH and temperature (Valerio et al., 2008; Jiang et al., 2012;
Bin et al., 2013; Faller et al., 2013; Bhowmik et al., 2014; Zhao and
Ai, 2018). Amyloid-beta aggregation is illustrated in Figure 2.

Multiple regions of the amyloid-beta sequence are considered
pro-aggregatory. A report by Liu et al. (2004) described six
fragments of amyloid-beta1–40 (Aβ40), formed by residues
Aβ401–28, Aβ4012–28, Aβ4017–28, Aβ4010–20, Aβ4025–35, and
Aβ4017–40, which had a pro-aggregatory effect on the full-length
peptide. Hsu et al. (2018) later identified several key residues
involved in amyloid-beta aggregation: H14, E22, D23, G33,
G37, and G38. Enache et al. (2018) later characterised
the influence of key hydrophobic regions, particularly the
well-characterised hydrophobic core domain KLVFF, as well
as the C-terminal hydrophobic sequence IIGLMVGGVV
and a histidine-containing tetrad, VHHQ, on amyloid-beta
aggregation through atomic force microscopy and voltammetry.
New insights into the aggregation pathway of amyloid-beta
were also attained more recently by Nirmalraj et al. (2020) at
nanometer resolution. Aβ42 was shown to aggregate faster
than Aβ40 at all stages of assembly. Additionally, the study by
Nirmalraj et al. (2020) confirmed that oligomers are not simply
an intermediate aggregation species along a linear path to the
formation of mature fibrils; oligomers were present even at
timepoints where mature fibrils were detected. The pathological
effects of different aggregate assemblies have been the subject
of extensive research and debate (reviewed by Di Carlo, 2010),
however, it is widely accepted that soluble oligomers are a
highly cytotoxic species, preceding the development of end-stage
neuritic plaques (Resende et al., 2008; Larson and Lesné, 2012;
Sengupta et al., 2016; Chen et al., 2017).

Tau
Tau proteins are encoded by the MAPT gene on chromosome 7
(Neve et al., 1986); the pre-mRNA product of MAPT undergoes
a range of alternative splicing events, resulting in transcript
variants encoding six protein isoforms found in the central
nervous system (D’Souza and Schellenberg, 2000). These
isoforms range from 352 to 441 residues in length and are
comprised of four distinct functional domains: the N-terminal
projection domain (residues 1–165), proline-rich region (PRR;
residues 166–242), microtubule-binding domain (MTBD;
243–367), and C-terminal domain (368–441). The N-terminal
domain and MTBD are the primary sites affected by alternative
splicing, and the resulting isoforms can be categorised by the
number of repeat regions comprising the MTBD: 3R (three-
repeat) and 4R (four-repeat) tau (D’Souza and Schellenberg,
2000). The absence of an insert, or the presence of one or two
inserts, in the N-terminal projection domain also demarcates
each of the isoforms as 0N, 1N or 2N, respectively; the six
isoforms are thus referred to as 0N3R, 1N3R, 2N3R, 0N4R,
1N4R, and 2N4R, depending on their number of N-terminal
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FIGURE 2 | Amyloid-beta aggregation in Alzheimer’s disease (AD).

inserts and MTBD repeats. In the adult human brain, 3R and
4R isoforms of tau are present in equal abundance, and tau
aggregates found in AD are comprised of both three- and
four-repeat isoforms (Kolarova et al., 2012).

Physiologically, tau is involved in the assembly and
stabilisation of microtubules (Weingarten et al., 1975), as
well as in the regulation of intracellular trafficking (Vershinin
et al., 2007; Dixit et al., 2008). These activities are regulated
by post-translational modifications of the tau protein, which
include phosphorylation, glycosylation, deamidation, oxidation,
nitration, glycation, and ubiquitination. These modifications
to tau and their physiological consequences have previously
been reviewed in detail by Avila et al. (2004). Most pertinent
to the development of tau aggregates found in AD is tau
phosphorylation, which negatively regulates the binding of
tau to microtubules and the cellular membrane (Brandt et al.,
1995). Tau phosphorylation can occur at any of the multiple
serine, threonine and tyrosine residues found on the protein
(Williamson et al., 2002; Noble et al., 2013). Phosphorylation of
tau induces a conformational change in the protein, reducing
its ability to stimulate microtubule assembly (Jameson et al.,
1980). In AD, phosphorylation of tau is observed to be over
three times higher than in physiological conditions (Köpke et al.,
1993). Hyperphosphorylated tau detaches from microtubules,
aggregating in the cytosol, as illustrated in Figure 3. Tau
acetylation, which similarly increases the negative charge of tau,
has also been associated with AD (Irwin et al., 2012; Lucke-Wold
et al., 2017).

Tau aggregation primarily involves a shift in the conformation
of two hexapeptide regions in the protein, VQIVYK and VQIINK
(also referred to as PHF6 and PHF6* respectively), from a
random coil to a beta sheet structure (von Bergen et al.,
2005; Li and Lee, 2006; Eschmann et al., 2015). Oligomers
of tau aggregate further to form paired helical filaments
(PHFs) and, subsequently, the neurofibrillary tangles (NFTs)
observed in end-stage AD. Tau multimers in a variety of
conformations including straight filaments, twisted ribbons,
and small oligomeric aggregates have also been observed in

the brain tissue of patients with AD (Grundke-Iqbal et al.,
1986; Meraz-Ríos et al., 2010). Recent, comprehensive reviews
by Niewiadomska et al. (2021) and Shafiei et al. (2017) have
established oligomeric assemblies of tau as cytotoxic species.

CATIONIC ARGININE-RICH PEPTIDES AS
AGGREGATION INHIBITORS FOR
ALZHEIMER’S DISEASE

Inhibitory Peptides for Amyloid-Beta
Aggregation
Through phage display, Kawasaki et al. (2010) identified
libraries of three- and four-residue peptides capable of
inhibiting (Aβ42) oligomerisation, and found arginine-
containing peptides were enriched in both libraries; arginine
comprised two of three, and two-to-three of four, residues in
the majority of peptides identified, including RRRA, RRRL,
RFRK, RRY, and RPR. Kawasaki et al. (2011) also found
that while monomeric arginine and di-arginine were able
to bind Aβ42, they did not have significant effects on the
formation of Aβ42 oligomers, leading the authors to conclude
that these molecules were too small to effectively inhibit
Aβ42 oligomerisation. Together with the higher binding affinity
and inhibitory effect of SRPGLRR in comparison to the three-
and four-residue peptides, Kawasaki et al. (2011) concluded
the size of the compound could be an important factor in
the development of inhibitory peptides for amyloid-beta
aggregation.

Notably, among the arginine-rich peptides screened by
Kawasaki et al. (2011), RRRA and RRRL were found to
be comparatively weaker, yet still effective, inhibitors of
Aβ42 oligomerisation than RFRK. While the authors concluded
that the higher efficacy of RFRK as an aggregation inhibitor
was likely due to the phenylalanine residue of RFRK binding a
phenylalanine residue of amyloid-beta, thereby strengthening the
interaction between the inhibitor and amyloid-beta, an arginine
residue in the second position of either inhibitory peptide
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FIGURE 3 | Tauopathy in Alzheimer’s disease.

could also bind a phenylalanine residue of Aβ42 through its
aliphatic side chain, and ability to form cation-pi interactions
with aromatic residues. It is, therefore, possible that the increased
efficacy of RFRK was rather due to the cationicity of the lysine
residue in RFRK imparting a stronger capacity for inhibition
of Aβ42 aggregation than the terminal alanine and leucine
residues of RRRA and RRRL, respectively. Regardless, the
efficacy of RRRA, RRRL, RFRK, and SRPGLRR as inhibitors
of Aβ42 oligomerisation led Kawasaki et al. (2011) to consider
arginine an important residue for inhibiting Aβ42 aggregation.

Further work by Kawasaki and Kamijo (2012) demonstrated
that two additional hybrid peptides combining arginine
residues with organic moieties, Arg-Arg-7-amino-4-
trifluoromethylcoumarin (RR-AFC) and Arg-Arg-thiobenzyl
ester (ZRR-SBzl), were also able to inhibit amyloid-beta
aggregation. Recent in silico characterisation of RR-AFC
conducted by Barale et al. (2019) using molecular dynamics
simulation indeed evidenced the critical role of arginine
residues in the destabilisation of amyloid-beta protofibrils; in
particular, the arginine residues of RR-AFC were found to bind
amyloid-beta protofibrils through hydrogen bonding via their
guanidinium moieties.

Many peptide-based candidates rationally designed to
inhibit amyloid-beta aggregation have been derived from
the sequence of amyloid-beta itself, exploiting its propensity
for self-aggregation to facilitate targeted binding (Watanabe
et al., 2002; Austen et al., 2008; Viet et al., 2011; Arai et al.,
2014; Kino et al., 2015; Kumar et al., 2015; Cheng et al.,
2017; Lu et al., 2019; Jokar et al., 2020). The majority of
these peptides contain elements derived from amyloidogenic
sequences involved in beta-sheet formation (Moss et al.,
2003), such as the KLVFF (amyloid-beta16–20) and GGVVIA

(amyloid-beta37–42) motifs, and are thus termed beta-sheet
breakers (Soto et al., 1998). The design of these peptides
generally includes an amyloid-derived sequence for target
binding, conjugated to a flexible hydrophilic or cationic
element to disrupt aggregation. One such inhibitor was a
KLVFF-derived retro-inverso peptide, RI-OR2 (rGffvlkGr;
lower case denoting D-amino acids), which effectively reduced
Aβ42 aggregation in vitro (Parthsarathy et al., 2013). As RI-OR2
was not designed to penetrate the blood-brain barrier, it was
subsequently fused to the arginine-rich cell-penetrating TAT
peptide resulting in the hybrid peptide, RI-OR2-TAT (Ac-
rGffvlkGrrrrqrrkkrGy-NH2; net charge +11.0). Intriguingly,
experimental results from Parthsarathy et al. (2013) indicated
that RI-OR2-TAT not only had beneficial effects on the
aggregation and cytotoxicity of Aβ42 aggregation in cell
models and in a transgenic mouse model of amyloidogenesis
(APPSwe/PS1∆E9) in vivo, but also demonstrated greater
efficacy for inhibiting the aggregation of Aβ42 in vitro
compared to RI-OR2. The inhibitory effects of RI-OR2-
TAT on Aβ42 aggregation were evident at even the earliest
detectable stages of Aβ42 oligomerisation. Surface plasmon
resonance (SPR) experiments conducted by Parthsarathy
et al. (2013) further indicated RI-OR2-TAT had a higher
binding affinity for Aβ42 than RI-OR2 alone. It is likely
that the increased efficacy of RI-OR2-TAT as an inhibitor of
Aβ42 aggregation was mediated by the arginine content of
TAT, specifically through: (a) greater capacity for hydrogen
bonding imparted by the arginine residues of the TAT peptide,
facilitating a higher number of electrostatic interactions
between the inhibitory peptide and Aβ42; (b) increased
cationic charge of the RI-OR2-TAT peptide conferred by
the arginine-rich TAT component, driving further charge-
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based repulsion of bound Aβ42 monomers; and (c) the
increased length of the inhibitory peptide likely causing greater
steric and/or electrostatic interference between monomers
of Aβ42, preventing their self-association. Importantly, these
findings suggested that arginine-rich peptides could themselves
have a mechanistic role in modulating the development of
amyloid-beta aggregates beyond their use as ‘‘carrier’’ peptides
alone.

Cheng et al. (2017) later developed a bipartite peptide
comprised of polyarginine-8 (R8) conjugated to the sequence
of amyloid-beta25–35 (RRRRRRRRGSNKGAIIGLM; net charge
+9.0) which effectively reduced cerebral accumulation of
amyloid-beta and ameliorated cognitive deficits in the APP/PS1
double transgenic mouse model of AD. The design of the
peptide was comprised of the amyloid-beta25–35 self-recognition
element to facilitate binding to amyloid-beta monomers, with
the polyarginine component intended to drive charge-based
repulsion of the bound monomers from each other, preventing
their ability to aggregate.

More recently, Henning-Knechtel et al. (2020) designed two
cell-penetrating peptides comprised of a hydrophobic signal
sequence (MLRTKDLIWTLFFLGTAVS; NCAM1) conjugated to
a polycationic sequence (KKRPKP; PrP23–28) or an amyloid-
derived self-recognition motif sequence (KLVFF; Aβ16–20)
via a lysine residue to increase the cationic charge of the
peptide. The NCAM1-PrP peptide carried a higher overall
charge of +6 compared to the +4 charge of NCAM1-Aβ,
resulting from a higher proportion of cationic residues. While
both NCAM1-PrP and NCAM1-Aβ were found to inhibit
the aggregation of Aβ42 in vitro, NCAM1-PrP achieved
effective inhibition at substoichiometric concentrations, while
an equimolar concentration of NCAM1-Aβ to amyloid-beta was
required. As amyloid-beta is negatively charged at physiological
pH (net charge −2.7), the increased efficacy of NCAM1-PrP
as an aggregation inhibitor compared to the KLVFF-containing
NCAM1-Aβ peptide was attributed to its higher proportion of
cationic residues, reportedly essential in stabilising the dimers
formed between NCAM1-PrP and amyloid-beta. Additionally,
although NCAM1 itself was able to bind amyloid-beta, the
addition of a polycationic sequence was required to exert a
modulatory effect on aggregation, suggesting the overall charge
of an inhibitory peptide may be as important for preventing
the aggregation of amyloid-beta as structural specificity. Indeed,
Henning-Knechtel et al. suggested that the NCAM1-Aβ peptide
could be optimised through further addition of cationic residues,
thus it is conceivable that higher arginine content could increase
its efficacy. These results also support the idea that electrostatic
interactions between an inhibitory peptide and amyloid-beta are
sufficient to drive target binding in the absence of amyloid-beta-
derived sequence motifs, as was demonstrated by Parthsarathy
et al. (2013).

The effects of a short peptide comprised entirely of arginine,
polyarginine-9 (R9), were investigated by Fonar et al. (2018)
in the triple transgenic (3xTg) mouse model of AD which
harbours FAD mutations inducing the development of
both amyloid-beta and tau pathology. 3xTg mice treated
with R9 displayed a trend toward lower levels of cerebral

amyloid-beta compared to untreated controls, as well as a
trend toward reduced levels of oligomeric amyloid-beta in
hippocampal lysates, however, these findings did not reach
statistical significance. The effects of longer polyarginine
peptides on amyloid-beta pathology may be an interesting
area for further research; it is possible that increased cationic
charge imparted by longer stretches of arginine could impart
a greater capacity for electrostatic repulsion of amyloid-beta
monomers, thereby inhibiting aggregation. Additionally,
D-enantiomeric polyarginine peptides could potentially exert
a stronger effect due to the increased proteolytic stability
of D-amino acids (Feng and Xu, 2016) in comparison to
L-isoforms.

Among the most promising aggregation inhibitors targeting
amyloid-beta is the cationic arginine-rich RD2 peptide
(ptlhthnrrrrr; +6.2 net charge), demonstrated to eliminate
amyloid-beta oligomers in vivo, and rescue amyloid-beta
pathology and cognitive deficits in a transgenic mouse model
of AD (Schemmert et al., 2019; Zhang et al., 2019). RD2 is a
rationally-optimised derivative of an arginine-rich precursor
peptide, D3 (rprtrlhhrnr; +5.2 net charge), which was initially
identified through mirror- image phage display (Wiesehan et al.,
2003) and also shown to be effective in targeting amyloid-beta
(van Groen et al., 2008). A series of C-terminally amidated
D3 analogues were developed, outlined in Table 1, to identify a
candidate for further development (Klein et al., 2017). Notably,
increasing the charge of the inhibitory peptide was associated
with increased binding affinity to amyloid-beta (Ziehm et al.,
2016).

Continued characterisation of D3 analogues indicated
RD2 had the most favourable pharmacokinetic profile with
regards to half-life and oral bioavailability (Leithold et al., 2016).
Indeed, the initial success of RD2 in phase I clinical trials has led
to its ongoing development as a potential therapeutic candidate
for AD (Elfgen et al., 2021). The molecular mechanisms of both
D3 and RD2 were investigated in detail through computational
studies and experimental verification by Olubiyi et al. (2014),
revealing that both D3 and RD2 bind amyloid-beta with
high affinity, and reduce β-sheet formation, largely due to
electrostatic interactions between the arginine residues of the
inhibitory peptides and key anionic residues (E11, E22 and D23)
of amyloid-beta.

Inhibitory Peptides for Tau Aggregation
Peptide-based inhibitors of tau aggregation have focused
on the PHF6 and PHF6* regions of the MTBD, which are
well-characterised as pro-aggregatory sequences (Li and
Lee, 2006; Eschmann et al., 2015). Ralhan et al. (2017)
reported inhibition of PHF6 aggregation by the poly-
arginine-6 (R6) and R8 peptides, as well as the reversal of
PHF6 fibril formation by R6 which acted as a beta-sheet
breaker, inducing the disassembly of PH6 fibrils into
sparser aggregates. While early peptides targeting the
PHF6 region have shown effective inhibition of the isolated
hexapeptide in vitro, these peptides were unable to prevent
the aggregation of full-length tau (Sievers et al., 2011;
Zheng et al., 2011; Seidler et al., 2018), which additionally
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contains the amyloidogenic PHF6* sequence considered
to be a significant driver of tau aggregation. Seidler et al.
(2018) subsequently developed new inhibitory peptides
through combinatorial mutagenesis of the VQIINKKLD
motif. These peptides are comprised of 10 residues, outlined
in Table 2, and able to prevent aggregation of the full-length
tau protein. Importantly, to achieve this, the inclusion of
an arginine residue was required at the ninth position in
order to prevent self-association of one of the two main
interfaces involved in full-length tau aggregation: the
KKL region of the tau KVQIINKKLD sequence, termed
‘‘interface B’’.

Longer polyarginine peptides (R32 to R96) were
demonstrated by Nadimidla et al. (2017) to inhibit the
aggregation of both PHF6 and the PHF6*-containing
amyloidogenic tau fragment GKVQIINKLDL, as well as
aggregation of the full-length mutant tau protein P301L,
which is found in human tauopathies (Cosacak et al., 2017).
The aggregation of PHF6 and PHF6* peptides was also
inhibited, albeit to a lesser degree, by the cationic polymer
polyethylenimine (PEI), implicating the positive charge of these
compounds as a key factor in suppressing tau aggregation.
Tau is aggregated in the presence of heparin in vitro to model
the proaggregatory role of polyanionic molecules such as
heparan sulfate proteoglycans found in NFTs in vivo (Fichou
et al., 2018; Maïza et al., 2018); it is likely that, in addition to
interacting electrostatically with negatively charged stretches

of tau itself, strongly cationic compounds such as polyarginine
could inhibit the seeding and nucleation of tau aggregation
by complexing with essential polyanionic cofactors involved
in the aggregation process. Furthermore, post-translational
modifications which increase the negative charge of tau in vivo,
such as phosphorylation, acetylation and nitration, could
potentially increase the affinity of CARPs for tau, and their
ability to modulate its aggregation.

Zhang et al. (2020) subsequently reported an arginine-rich,
D-enantiomeric peptide termed p-NH (nitmnsrrrrnh; net charge
+4.1), discovered through phage display, was able to inhibit tau
aggregation in vitro and reduce tauP301S levels in transgenic mice.
In vitro, p-NH was shown to inhibit PHF6 aggregation in a
dose-dependent manner; this effect was optimal at an 8-fold
molar excess of the peptide over PHF6, but remained effective
at equimolar and substoichiometric concentrations. Remarkably,
p-NH was also able to reverse aggregation when added to
preformed PHF6 fibrils. Importantly, Zhang et al. (2020)
reported p-NH was able to interact directly with PHF6 through
hydrogen bond formation.

More recently, Aggidis et al. (2021) reported a D-
enantiomeric, retro-inverso peptide (rrrrrrrrGpkyk(ac)iqvGr;
net charge +11.0) based on the PHF6 sequence, termed RI-
AG03, able to prevent tau aggregation. As a retro-inverso
peptide, RI-AG03 was optimised for increased proteolytic
stability from the AG03 peptide, itself selected from a family
of peptides designed to inhibit tau aggregation (Aggidis, 2019)

TABLE 1 | Cationic arginine-rich peptides with modulatory effects on amyloid-beta aggregation.

Peptide Sequence (Net charge at pH 7) Effect Reference

R5 RRRRR (+5.0) Modulation of Aβ aggregation towards
the formation of large, amorphous, non-toxic aggregates

Gibson and Murphy (2005)

KLVFF-R5 KLVFFRRRRR (+6.0)
D3 rprtrlhthrnr (+5.2) Reduction of Aβ oligomers in vitro van Groen et al. (2008)
RFRK RFRK (+3.0) Inhibition of Aβ aggregation in vitro Kawasaki et al. (2011)
RRRL RRRL (+3.0)
RRRA RRRA (+3.0)
SRPGLRR SRPGLRR (+3.0)
RR-AFC RR-7-amino-4-trifluoromethylcoumarin (+3.0) Inhibition of Aβ aggregation in vitro Kawasaki and Kamijo (2012)
ZRR-SBzl RR-thiobenzyl ester (+3.0)
RI-OR2-TAT Ac-rGffvlkGrrrrqrrkkrGy-NH2 (+11.0) Inhibition of Aβ aggregation in vitro,

reduced cerebral Aβ load in vivo
Parthsarathy et al. (2013)

15M S.A. Ac-rklmqptrnrrnpnt-NH2 (+5.0) Modulation of Aβ aggregation towards
the formation of large, amorphous, non-toxic aggregates

Barr et al. (2016)

DB1 rpitrlhtdrnr-NH2 (+4.1) Inhibition of Aβ aggregation in vitro Klein et al. (2017)
DB2 rpittlqthqnr-NH2 (+3.1)
DB3 rpitrlrthqnr-NH2 (+5.1)
DB4 rprtrlrthqnr-NH2 (+6.1) No effect on Aβ aggregation in vitro
DB5 rpitrlqtheqr-NH2 (+3.1) Inhibition of Aβ aggregation in vitro
DB3DB3 rpitrlrthqnrrpitrlrthqnr-NH2 (+9.2)
RD2RD2 ptlhthnrrrrrptlhthnrrrrr (+11.4) Reduction of Aβ oligomers in vitro and in vivo Kutzsche et al. (2017)
RD2D3 ptlhthnrrrrrrprtrlhthrnr-NH2 (+11.4)
D3D3 rprtrlhthrnrrprtrlhthrnr-NH2 (+11.4)
R8-Aβ25–35 RRRRRRRR-GSNKGAIIGLM (+9.0) Reduced cerebral Aβ load in vivo Cheng et al. (2017)
R9 RRRRRRRRR (+9.0) Trend toward reduced Aβ oligomers in vivo Fonar et al. (2018)
RD2 ptlhthnrrrrr-NH2 (+6.2) Reduction of Aβ oligomers in vitro and in vivo Zhang et al. (2019)
NCAM1-PrP MLRTKDLIWTLFFLGTAVS-KKRPKP-NH2 (+6.0) Inhibition of Aβ aggregation in vitro Henning-Knechtel et al. (2020)
NCAM1-Aβ MLRTKDLIWTLFFLGTAVS-KKLVFF-NH2 (+4.0)

Lowercase letters denote D-enantiomeric residues.
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which are summarised in Table 2. The majority of the inhibitory
peptides developed by Aggidis (2019) significantly reduced
the aggregation of recombinant human tau ∆1–250, which
exhibits faster aggregation kinetics than full-length tau protein,
in a dose-dependent manner. Importantly, Aggidis (2019)
reported that increasing arginine content of the inhibitory
peptides, up to five residues, increased tau ∆1–250 solubility. An
interesting observation is that R8 alone was unable to prevent
tau ∆1–250 aggregation, in contrast to prior results indicating
the effective inhibition of PHF6 aggregation by R6 and R8
(Ralhan et al., 2017); taken together, these effects are consistent
with observations reported by Seidler et al. (2018) that PHF6*
aggregation is a significant driver of aggregation in larger tau
fragments.

CATIONIC ARGININE-RICH PEPTIDES AS
MODULATORS OF PROTEOPATHIC
CYTOTOXICITY

As the precise, mechanistic roles of amyloid-beta and tau
aggregates in the pathogenesis of AD remain unclear, CARPs
could also be beneficial by mitigating the cellular effects of
cytotoxic amyloids, rather than preventing the formation of
aggregates per se. As comprehensively detailed in a review

by Meloni et al. (2020), CARPs have favourable biological
effects in models of neuronal injury and disease, such as stroke
and traumatic brain injury, through multimodal mechanisms
of action. Here, we will discuss how the bioactive properties
of CARPs could be beneficial specifically in the context of
proteopathic cytotoxicity associated with AD.

Modulation of Cytotoxicity Through Effects
on Amyloid Formation
There are multiple potential mechanisms for CARPs to
confer cytoprotection against toxic aggregates of amyloid-beta
and tau. As described, the predominant approach has
focused on inhibiting aggregation; CARPs which have
demonstrated the ability to reduce amyloid-beta-induced
cytotoxicity in vitro by inhibiting aggregation include
those developed by Kawasaki et al. (2011), Parthsarathy
et al. (2013), Cheng et al. (2017) and Henning-Knechtel
et al. (2020). Additionally, Nadimidla et al. (2017), whose
work reported inhibition of tau aggregation through high
molecular-weight polyarginine peptides, demonstrated
increased rates of cell survival in cultures exposed to
cytotoxic concentrations of tau when treated with polyarginine
peptides.

TABLE 2 | Polyarginine and arginine-rich peptides with modulatory effects on tau aggregation.

Peptide Sequence (Net charge at pH 7) Effect Reference

R6 RRRRRR (+6.0) Inhibition of tau PHF6 aggregation in vitro Ralhan et al. (2017)
R8 RRRRRRRR (+9.0)
R32 R32 (+32.0) Inhibition of tau PHF6 and PHF6* aggregation

in vitro
Nadimidla et al. (2017)

R96 R96 (+96.0)
WINK DVQWINKKRK (+3.0) Inhibition of full-length tau aggregation in vitro Seidler et al. (2018)
MINK DVQMINKKRK (+3.0)
AG01 Ac-RGVQIINKGR-NH2 (+3.0) Reduction of tau ∆1–250 aggregation in vitro Aggidis (2019)
AG02 Ac-RGVQIVYKGR-NH2 (+3.0)
AG02R4 Ac-RRGVQIVYKGRR-NH2 (+5.0)
AG02R5 Ac-RGVQIVYKGRRRR-NH2 (+6.0)
AGR502 Ac-RRRRGVQIVYKGR-NH2 (+6.0)
AG02PR5 Ac-RRRGVQIVYKGRRRR-NH2 (+8.0)
AG02R6 Ac-RRRGVQIVYKGRRR-NH2 (+7.0)
AG02R9 Ac-RGVQIVYKGRRRRRRRR-NH2 (+10.0)
AG02TAT Ac-RGVQIVYKGRYGRKKRRQRRR-NH2

(+11.0)
AG02∆I Ac-RGVQK(Ac)VYKGR-NH2 (+3.0)
AG02∆V Ac-RGVQIK(Ac)YKGR-NH2 (+3.0)
AG03 Ac-RGVQIK(Ac)YKPGRRRRRRRR-NH2 (+10.0)
AG03-Cys Ac-RGVQIK(Ac)YKPGRRRRRRRRC-OH (+9.9)
AG03M Ac-RGV(m)QI(m)K(Ac)Y(m)KP(m)GRRRRRRRR-

NH2 (+10.0)
FAM-RI-AG03 Ac-k(FAM)rrrrrrrrGpkyk(ac)iqvGr-NH2 (+10.0)
Scrambled AG03 Ac-RGQPKIIK(Ac)YVGRRRRRRRR-NH2 (+10.0) No significant effect on tau ∆1–250 aggregation
R8 RRRRRRRR (+8.0)
TAT Ac-YGRKKRRQRRR-NH2 (+8.0)
p-NH NITMNSRRRRNH (+4.1) Reduction of tau PHF6 aggregation in vitro and

tau aggregation in vivo
Zhang et al. (2020)

RI-AG03 Ac-rrrrrrrrGpkyk(ac)iqvGr-NH2 (+10.0) Inhibition of tau PHF6 and tau
∆1–250 aggregation in vitro

Aggidis et al. (2021)

TAT-7H YGRKKRRQRRR-HHHHHHH (+8.7) Inhibition of tau Ser202 and
Thr205 phosphorylation

Kondo et al. (2021)

(Ac) and (m) denote residue acetylation and methylation, respectively. Lowercase letters denote D-enantiomeric residues.
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However, as the cytotoxicity of amyloid-beta aggregates
varies depending on the aggregate conformation, inhibiting
aggregation is not the only means of decreasing the concentration
of cytotoxic aggregate species. CARPs, through their ability
to electrostatically bind monomers of amyloid-beta, may
be able to bind and stabilise monomers in conformations
favouring non-oligomeric aggregation pathways. Gibson and
Murphy (2005) previously reported that polyarginine-5 (R5)
and KLVFF-R5 peptides broadly increased the aggregation of
amyloid-beta1–42 overall, resulting in the formation of larger
amyloid-beta1–42 aggregates with lower cytotoxicity. Barr et al.
(2016) reported that a 15-residue cationic peptide, with 20%
of its sequence comprised of arginine residues, reduced the
formation of soluble, cytotoxic amyloid-beta1–42 oligomers by
driving the aggregation pathway toward the formation of larger,
amorphous aggregates; these amorphous aggregates were also
observed to have lower cytotoxicity than the oligomers formed
by amyloid-beta1–42 alone. A potential therapeutic mechanism
for peptides targeting amyloid-beta could therefore involve the
reduction of cytotoxic, soluble oligomeric amyloid-beta species
by driving the aggregation pathway toward the formation of
non-toxic insoluble aggregate species, rather than aiming to
inhibit aggregation.

Potential Indirect Mechanisms of
Cytoprotection Against Amyloids
CARPs may be able to prevent the cellular conditions
favouring the formation of cytotoxic aggregates. For example,
a proteomic study of neuronal cultures treated with the
polyarginine-18 peptide (R18) showed overall levels of tau were
significantly decreased (MacDougall et al., 2019a, supplementary
information), however the mechanisms underlying this effect
are unclear. Arginine is also able to scavenge free radicals and
mitigate oxidative stress (Wascher et al., 1997; Haklar et al.,
1998), an ability that extends to polyarginine peptides (Marshall
et al., 2015). Oxidative stress has a synergistic relationship
with amyloid-beta pathology (reviewed in detail by Cheignon
et al., 2018), as well as tau phosphorylation and polymerisation
(reviewed by Zhao and Zhao, 2013). Reducing oxidative stress
could potentially therefore aid, indirectly, in preventing the
formation of aggregate species. Additionally, as oxidative stress
is believed to be one of the main mechanisms through which
amyloid-beta and tau aggregates induce toxic effects (Butterfield
et al., 2013), there may be a potential role for arginine and
CARPs in cytoprotection through the indirect, downstream
effects of rescuing oxidative damage, an area which requires
further investigation.

CARPs may also be able to prevent the development of
tauopathy through inhibition of tau hyperphosphorylation,
which is pro-aggregatory. The p-NH peptide developed by
Zhang et al. (2020) was reported to significantly reduce
tau phosphorylation at Thr181, Ser202, Thr231, Ser396, and
Ser404 in the human neuroblastoma N2a cell line. More recently,
a CARP developed by Kondo et al. (2021) termed TAT-7H
(YGRKKRRQRRR-HHHHHHH; net charge +8.7) was shown to
inhibit the phosphorylation of Ser202 and Thr205 in a neuronal

cell line differentiated from human tauP301S double knock-in
induced pluripotent stem cells.

Protein aggregates in AD also induce cytotoxicity through
mitochondrial damage; tau oligomers are believed to induce
mitochondrial damage via their detrimental effects on
intracellular transport networks (Shafiei et al., 2017), while
accumulation of amyloid-beta at the mitochondrial membranes
induces mitochondrial damage through mechanisms including
aberrant interactions with mitochondrial proteins, generation of
reactive oxygen species, and disruption of the electron transport
chain (reviewed in detail by Reddy et al., 2010, and Chen and
Yan, 2007). The ability of CARPs to preserve mitochondrial
function has been discussed at length in a review by MacDougall
et al. (2019b); thus, another area for future research would be
the potential for CARPs to preserve mitochondrial function and
mitigate cytotoxicity in models of amyloid-beta and tau-induced
neuronal injury. These mechanisms are summarized in Figure 4.

It is also possible that arginine-rich peptides, through
their extensive capacity for electrostatic interactions, may
be able to bind pre-formed aggregates and prevent their
deleterious cellular effects. It was recently discovered that
fibrillar formations of tau exhibit an altered interactome than
tau monomers and nano-aggregates. Ferrari et al. (2020)
demonstrated that tau fibrils preferentially interact with a
set of proteins containing disordered stretches significantly
enriched for arginine residues, with these aberrant interactions
mediated by pi-pi stacking interactions. Crucially, Ferrari et al.
(2020) found that the replacement of arginine residues in these
interacting proteins with lysine precluded their interactions with
tau fibrils. The proteins comprising the altered interactome of
tau fibrils were identified as predominantly belonging to three
functional clusters: RNA-binding proteins, regulators of protein
phosphorylation, and microtubule-associated proteins. It was
inferred that these interactions may, in part, be responsible for
the cytotoxicity of tau aggregates in AD (Ferrari et al., 2020).
It is possible that exogenous arginine-rich compounds may be
able to prevent cytotoxicity by competitively binding to tau
fibrils through the same mechanism, preventing tau fibrils from
associating with these aberrant interactors. Thus, the potential
effects of CARPs on the cytotoxicity of preformed tau aggregates
presents an interesting area for future research.

POTENTIAL ROLES FOR ARGININE IN
OTHER NEURODEGENERATIVE
DISEASE-ASSOCIATED PROTEOPATHIES

Monomeric arginine has demonstrated efficacy in preventing
the aggregation of alpha-synuclein. While alpha-synuclein
aggregation is predominantly associated with Parkinson’s disease
(reviewed comprehensively by Fields et al., 2019), alpha-
synuclein has also been implicated in AD (Kotzbauer et al.,
2001; Crews et al., 2009; Twohig and Nielsen, 2019). Arginine
was found to inhibit rotenone-induced aggregation of alpha-
synuclein in vitro, even inhibiting further aggregation even
when added past the stage of initial nucleation (Shristi,
2014). The inhibitory effects of arginine on alpha-synuclein
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FIGURE 4 | Summary of potential cytoprotective mechanisms of arginine and cationic arginine-rich peptides against amyloids.

aggregation were further confirmed in detail by Ghosh et al.
(2018), who demonstrated arginine-based inhibition of alpha-
synuclein aggregation both in vitro and in situ in live
cells. Ghosh et al. (2018) also evidenced the cytoprotective
effects of arginine on cultures treated with pre-aggregated
alpha-synuclein. Interestingly, the use of lysine, a similarly
cationic amino acid, was associated with increased alpha-
synuclein aggregation in vitro, while guanidinium hydrochloride
was associated with decreased viability of cells treated with
aggregated alpha-synuclein. These results indicate that while
the guanidinium moiety of arginine is essential to its activities,
the overall properties of arginine rather than either its general
cationicity or the guanidinium moiety in isolation, are key to
its anti-aggregatory and cytoprotective effects in the context of
alpha-synuclein aggregation.

Recently, the CARP RD2RD2 (ptlhthnrrrrrptlhthnrrrrr;
+10.4 charge) was investigated as a potential therapeutic
candidate for amyotrophic lateral sclerosis (ALS) in a mouse
model of mutant superoxide dismutase 1 (SOD1) expression
(Post et al., 2021). Administration of RD2RD2 was associated
with reductions in motor deficits and neuroinflammation,
although the precise molecular mechanisms underlying these
effects remain to be elucidated.

Minakawa and Nagai (2021) recently discussed arginine as
a modulator of aggregatory proteins containing polyglutamine
(polyQ) stretches, a pathogenic feature of neurodegenerative
diseases such as Huntington’s disease (HD) and spinocerebellar
ataxias (SCAs). Oligomers of polyQ proteins, as well as polyQ

protein monomers which are enriched for beta-sheet structure,
have previously been associated with cytotoxicity (Kayed et al.,
2003; Miller et al., 2011). When added to polyQ proteins in vitro,
monomeric arginine was found to prevent the aggregation of
polyQ proteins, including the initial transition from alpha-helical
to beta-sheet-enriched monomers, subsequent oligomerisation,
and the seeding of aggregation by pre-formed aggregates
(Minakawa et al., 2020). Arginine, arginine methyl ester and
arginine ethyl ester were also shown by Singh et al. (2019) to
prevent aggregation of a polyQ-containing Huntington exon
1 protein (mHTTex1) in vitro, and rescue motor deficits in a
model of HD in vivo. Minakawa et al. (2020) also investigated
the effects of arginine administration in vivo and found motor
deficits were rescued in multiple mouse and invertebrate models
of SCA. Notably, arginine was able to rescue motor deficits even
past the stage of initial symptom onset in a SCA1 mouse model
(Minakawa et al., 2020).

Aggregation of an mHTT protein was also suppressed by
a hybrid peptide, 8R10Q (RRRRRRRRQQQQQQQQQQ; net
charge +8.0) designed by He et al. (2019) through a principle
similar to the bipartite peptide designed for amyloid-beta
aggregation by Cheng et al. (2017): inclusion of a self-recognition
component (a ten-residue stretch of glutamine), conjugated to
a polyarginine component to drive charge-based repulsion of
bound monomers as well as increase solubility and membrane
permeability.

The effects of arginine and its derivatives on polyQ
aggregation and cytotoxicity are consistent with the advantages
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conferred by the structure and cationicity of arginine in amyloid-
beta and tau-targeting peptides, as well as the effects of CARPs
including polyarginine peptides on glutamic acid-induced
excitotoxicity (reviewed comprehensively by Meloni et al., 2020).
By evaluating a set of arginine derivatives with either N- or C-
terminal substitutions, Singh et al. (2019) inferred the guanidino
group of arginine was essential to its anti-aggregatory effect on
a polyQ peptide (polyglutamine-35; Q35) in vitro. Citrulline,
ornithine and lysine, which lack the guanidino moiety, were
unable to prevent Q35 aggregation, while arginine and arginine
ethyl ester prevented Q35 aggregation in a dose-dependent
manner (Singh et al., 2019).

PEPTIDYLARGININE CITRULLINATION
AND ARGININE-RICH THERAPEUTICS

Arginine molecules can be converted to citrulline by arginine
deiminase (ADI) through hydrolysis of their guanidinium
groups, causing the strongly basic, cationic arginine side chain
to be replaced by neutral urea. Whereas ADI converts free
arginine molecules, peptidylarginine deiminases (PADs) catalyse
the conversion of peptide-bound arginine residues to citrulline
residues (Wang and Wang, 2013). Citrullination affects the
ability of the residue to form hydrogen bonds, altering its
intermolecular interactions.

Increased PAD activity has been associated with AD (Acharya
et al., 2012; Wang et al., 2021); in particular, levels of PAD
II detected in the hippocampus were found to be significantly
higher in AD patients than in controls by Ishigami et al.
(2005), concomitant with the presence of citrullinated proteins
in AD-affected hippocampi. It is conceivable that higher levels
of PAD activity in AD could affect the overall efficacy of
CARP therapeutics through citrullination of their arginine
residues, however, this remains to be observed. Moreover,
understanding of PADs in AD more broadly remains limited.
Further research on peptidylarginine citrullination in AD is
required to hypothesise the potential effects of PADs on CARPs
as therapeutic candidates in this context. Additionally, as current
preclinical models of AD are unable to recapitulate all aspects of
AD pathogenesis, it is difficult to predict how overexpression of
PADs upregulated in human AD might affect CARPs shown to
be highly efficacious in animal models, such as RD2.

It is worth noting, however, that PAD activity is tightly
controlled by calcium ions (Lamensa and Moscarello, 1993;
Sambandam et al., 2004; Mondal and Thompson, 2019), and
PAD II is activated through elevated intracellular calcium
levels (Slade et al., 2015). CARPs themselves have previously
been shown to reduce intracellular calcium influx through
multiple mechanisms (Meloni et al., 2015a,b; Edwards et al.,
2017), including downregulation of the NMDAR subunit
NR2B. Therefore, it is possible that CARPs may be able to
prevent excessive activation of PADs in AD through upstream
inhibition of calcium influx. In summary, although PADs could
theoretically affect the ability of CARPs to exert beneficial effects
in AD through citrullination of their arginine residues, it is
difficult to predict whether this is likely to occur in vivo based
on the paucity of evidence; additionally, the putative effects of

CARPs on calcium signalling in states of neurological injury and
disease render this a complex area. Regardless, the favourable
safety profile of CARPs (Edwards et al., 2020) should allow
CARPs to be evaluated at varying dose levels for efficacy in
human AD.

CONCLUSION

Arginine has several distinctive properties, largely owing to
the unique structure and chemistry of the guanidinium group.
While monomeric arginine has long been regarded as a
potent inhibitor of protein aggregation, polypeptides enriched
for arginine residues also display interesting effects on the
formation and cytotoxicity of protein aggregates. Arginine
residues have substantial bioactive properties in the context
of modulating protein aggregation, and should therefore be
given particular consideration in the rational design of amyloid-
targeting therapeutic peptides.

The lack of effective therapeutic options for AD presents a
significant global health challenge. Peptide drugs are a rapidly
growing class of therapeutic candidates, and while their design
and optimisation carries a distinct set of challenges, they
hold promise in the treatment of AD through their potential
advantages of high target specificity and bioactivity. We have
identified a number of CARPs which effectively modulate the
aggregation pathway of amyloid-beta, as well as potential roles
of arginine in peptide-based therapeutic design for targeting tau
oligomerisation.

Interestingly, CARPs have also demonstrated significant
neuroprotective effects in models of stroke and traumatic
brain injury, particularly by targeting excitotoxicity, which is
also a pathological feature of AD (reviewed by Wang and
Reddy, 2017). The complex and multifactorial nature of AD
pathogenesis particularly warrants therapeutic candidates with
multiple mechanisms of action. The potential for CARPs
to modulate proteopathies associated with AD, therefore,
warrant further investigation. CARPs could potentially target
the formation and/or deleterious cellular effects of amyloids
in AD through diverse roles: decreasing the concentration of
soluble, cytotoxic oligomers by either preventing aggregation
or driving aggregation toward the formation of non-cytotoxic
species; mitigating oxidative stress, which is known to drive the
formation of cytotoxic amyloids; and preserving the function of
mitochondria, which are a site of cellular damage from amyloids.
These possibilities present several lines of inquiry for further
research.
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