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Abstract

Background: Type 1 regulatory T (Tr1) cells, characterized by the secretion of high levels of the anti-inflammatory cytokine
interleukin-10 (IL-10), play an important role in the regulation of autoimmune diseases and transplantation. However,
effective strategies that specifically induce Tr1 cells in vivo are limited. Furthermore, the pathways controlling the induction
of these cells in vivo are not well understood.

Methodology/Principal Findings: Here we report that nasal administration of anti-CD3 antibody induces suppressive Tr1
cells in mice. The in vivo induction of Tr1 cells by nasal anti-CD3 is dependent on IL-27 produced by upper airway resident
dendritic cells (DCs), and is controlled by the transcription factors aryl hydrocarbon receptor (AHR) and c-Maf. Subsequently,
IL-21 acts in an autocrine fashion to expand and maintain the Tr1 cells induced in vivo by nasally administered anti-CD3.

Conclusions/Significance: Our findings identify a unique approach to generate Tr1 cells in vivo and provide insights into
the mechanisms by which these cells are induced.
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Introduction

The generation of functional regulatory T cells in vivo is a major

goal for the treatment of immune-mediated diseases. Tr1 cells are

regulatory T cells characterized by a cytokine profile that is distinct

from T helper 1 (Th1), Th2, Th3 and Foxp3+ regulatory T cells (Treg)

[1]. Tr1 cells do not constitutively express the transcription factor

forkhead box p3 (Foxp3), which is a lineage specific marker for both

naturally occurring and induced CD4+CD25+ regulatory T cells [2].

Upon T-cell receptor (TCR) mediated activation, Tr1 cells produce

high levels of IL-10 and transforming growth factor-beta (TGF-b),

low levels of interferon-gamma (IFN-c) and almost no IL-2 or IL-4.

The mechanism of in vitro suppression by Tr1 cells is linked to

IL-10 [3,4] as neutralization of IL-10 by monoclonal antibodies

typically reverses suppression. Upon TCR stimulation, Tr1 cells

can mediate bystander suppression by the local release of IL-10

and TGF-b that act on both antigen presenting cells (APCs) and T

cells to suppress co-stimulatory molecule expression and pro-

inflammatory cytokine production, respectively [5].

Tr1 cells can be generated in vitro from naı̈ve precursors in

response to different cytokine milieus. Early studies in which

antigen-specific Tr1 cells were induced in vitro by repeated TCR

stimulation in the presence of high doses of IL-10 suggested that

IL-10 plays an important role in Tr1 cell differentiation [1].

However, it has been recently shown that IL-10 does not play a

crucial role during the differentiation of Tr1 cells in vivo [6]. We

[7] and others [8] have identified a critical function for IL-27 in

the induction of Tr1 cells. Specifically, we found that DC-derived

IL-27 is required for the differentiation of IL-10-secreting Tr1

cells, this process is amplified by TGF-b [6,7].

Although the generation of Tr1 cells potentially constitutes a new

therapeutic approach for immune-mediated diseases, methods for

the induction of Tr1 cells in vivo are still missing. Here we report that

nasal anti-CD3 triggers the differentiation of suppressive Tr1 cells by

a mechanism dependent on the production of IL-27 by upper

airway-resident DCs. Furthermore, the generation of Tr1 cells in

vivo is controlled by AHR and c-Maf in T cells, and the autocrine

effects of IL-21. Thus, nasally administered anti-CD3 might

constitute a new approach for the therapeutic induction of Tr1 cells.

Results

Nasal administration of anti-CD3 induces suppressive Tr1
cells

We used tiger mice [9] carrying a green fluorescent reporter

(GFP) reporter inserted immediately before the polyadenylation

site of the il10 gene to investigate the effect of nasal administration

of anti-CD3 on CD4+ IL-10+ T cells. We found that the

frequency of CD4+CD25-GFP(IL-10)+ cells was upregulated

following nasal treatment with anti-CD3 (Figure 1A). Upon
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Figure 1. Nasal anti-CD3 induces suppressive Tr1 cells. A. Tiger mice were nasally treated with IC (clear bars) or anti-CD3 (filled bars) and
72 hrs after the last nasal dose GFP(IL-10) expression by CD4+ T cells in CLN was examined by flow cytometry. This experiment was repeated 4 times
with same results. B and C. CD4+CD25-GFP-, CD4+CD25+GFP- or CD4+CD25-GFP+ T cells were sorted from CLN of Tiger mice nasally treated with IC
(clear bar) or anti-CD3 (filled bar). Sorted T cells were stimulated in vitro with plate bound anti-CD3 and anti-CD28 antibodies (1 mg/ml each) and IL-10
(B) and (C) IFN-c were detected in the supernatants by ELISA. Error bars represent standard deviations and P values were calculated by t-test. D. The
percentage of CD4+CD25-LAP+ T cells that express IL-10 following nasal anti-CD3 was assessed by intracellular staining. Each symbol represents an
individual mouse. E. FACS-sorted Tr1 cells (CD4+CD25-GFP(IL-10)+, clear bar) from CLN of nasal anti-CD3 treated Tiger mice or IL-27 in vitro
differentiated Tr1 cells (filled bar) were used in a standard suppression assay with naı̈ve CD4+CD25-GFP- responder T cells at various ratios. To test the
role of IL-10 in in vitro suppression, IC or anti-IL-10 (50 mg/ml) neutralizing antibodies were added to co-cultures at 1:1 ratio.
doi:10.1371/journal.pone.0023618.g001
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activation with anti-CD3 in vitro, FACS sorted CD4+CD25-

GFP(IL-10)+ T cells secreted IL-10 and IFN-c (Figure 1B). This

cytokine pattern is consistent with a Tr1 cell phenotype [10], and

was not seen when CD4+CD25-GFP(IL-10)- naive T cells or

CD4+CD25+GFP(IL-10)- T cells were sorted from anti-CD3

treated mice and activated in vitro (Figure 1B).

We have previously shown that the suppressive T cells induced

by the oral administration of anti-CD3 are characterized by the

expression of membrane-bound TGF-b (LAP). In accordance with

our previous observations, we found that the CD4+CD25-GFP(IL-

10)+ T cells induced by the nasal administration of anti-CD3 were

mostly LAP+ (Figure 1c).

We next studied the suppressive activity of the CD4+CD25-

GFP(IL-10)+ T cells induced by nasal treatment with anti-CD3.

We found that CD4+CD25-GFP(IL-10)+ T cells isolated from

anti-CD3 treated mice suppressed the proliferation of responder

CD4+CD25-GFP- T cells (Figure 1D). The suppressive activity

of the CD4+CD25-GFP(IL-10)+ T cells induced by the nasal

administration of anti-CD3 was mediated by IL-10, because it

could be abrogated with IL-10 specific antibodies (Figure 1D).

Similar results were observed when we analyzed the suppressive

activity of CD4+ GFP(IL-10)+ Tr1 cells induced in vitro with IL-

27 (Figure 1D). Taken together these data demonstrate that nasal

anti-CD3 generates suppressive LAP+ Tr1 cells.

IL-27 secreted by upper airway-resident DCs is required
for the induction of Tr1 cells by nasal anti-CD3

DCs play an important role in the activation and polarization of

T cells in vivo [11]. Indeed, we and others have recently described

that DC-derived IL-27 [7,8] and TGF-b[6,7] play a critical role

for in the differentiation of Tr1 cells. To investigate the role of

DCs in the generation of Tr1 cells in vivo, we studied the effect of

nasal anti-CD3 on the production of cytokines by CD11c+ and

CD11b+ cells in the cervical lymph node (CLN). We found that

nasal administration of anti-CD3 induces a unique cytokine profile

in CD11c+ DCs, characterized by the expression of IL-10, TGF-b
and IL-27 (Figure 2A). This profile was not observed in CD11b+
macrophages (Figure 2B) or splenic or mesenteric lymph node-

derived DCs (not shown).

We thus examined the requirement for upper airway resident

DCs in the generation of IL-10-secreting LAP+ Tr1 cells, using

transgenic mice in which the CD11c promoter controls the

expression of a diphtheria toxin receptor (DTR)-GFP cassette

[12]. Nasal administration of diphtheria toxin (DT) led to a

significant depletion of CD11c+ DCs in the CLN but not in spleen

(Figure 2C). Moreover, depletion of CLN resident DCs by nasal

DT abolished the generation of the IL-10-secreting CD4+CD25-

LAP+ T cells induced by nasal anti-CD3 (Figure 2D).

To further investigate the role of DCs in the differentiation of

IL-10-secreting Tr1 cells, we co-cultured naı̈ve (CD4+CD25-GFP-

) Tiger T cells with CD11c+ DCs or CD11b+ macrophages

harvested from the CLN of mice treated with nasal anti-CD3. Co-

incubation with DCs from mice treated with nasal anti-CD3

upregulated the expression of GFP (IL-10) and LAP in T cells

(Figure 2E). We then used neutralizing antibodies to IL-27 and/

or TGF-b to investigate the mechanisms of Tr1 induction by DCs

taken from anti-CD3 treated mice. We found that the induction of

GFP (IL-10) and LAP expression by Tr1 cells in vitro was

dependent both on DC-derived IL-27 and TGF-b signaling as

neutralizing antibodies to IL-27 and/or TGF-b suppressed the

expression of both GFP (IL-10) and LAP by Tr1 cells (Figure 2F).

Taken together, these findings suggest that local DCs promote the

generation of LAP+ Tr1 cells by nasal anti-CD3 via the secretion

of IL-27 and TGF-b.

Tr1 cells induced by nasal anti-CD3 express ahr, cmaf, il21
and il21r

The transcription factor c-Maf plays an important role in the

regulation of il10 expression [13,14,15,16]. We have recently

shown that c-Maf interacts with the transcription factor AHR to

control the expression of il10 and the autocrine Tr1 growth factor

il21 [17]. AHR and cMAF also cooperate to control the expression

of human IL10 [18]. To investigate the molecular mechanisms

leading to the differentiation of Tr1 cells in vivo in response to the

nasal administration of anti-CD3, we studied the expression of maf,

ahr, il21 and il21r; was also analyzed the expression of il10, ifng and

foxp3. Naı̈ve T cells and CD4+CD25-GFP(IL-10)+ Tr1 cells were

FACS-sorted from tiger mice treated with nasal anti-CD3, Foxp3+
nTregs were isolated from Foxp3 GFP knock-in transgenic mice

[19], and gene expression was analyzed by quantitative PCR. We

found that freshly isolated CD4+CD25-GFP(IL-10)+ Tr1 cells

induced by treatment with nasal anti-CD3 consistently expressed

high levels of il10 and also some ifng, however foxp3 expression was

undetectable (Figure 3A). Moreover, freshly isolated Tr1 cells

from nasal anti-CD3 treated mice expressed significant levels of ahr

(Figure 3B) and maf (Figure 3C) as well as il21 (Figure 3D) and

il21r (Figure 3E). Thus the Tr1 cells induced by treatment with

nasal anti-CD3 express the transcription factors AHR, c-Maf, and

also the autocrine growth factor IL-21.

AHR signaling and IL-21 mediate the induction of Tr1
cells by nasal anti-CD3

To investigate the role of AHR in the generation of Tr1 cells in

vivo we generated tiger mice carrying a mutant AHR protein that

shows a reduced affinity for its ligands (Ahrd) [20]. We thus studied

the frequency of Tr1 cells in the CLN following nasal anti-CD3 in

tiger and Ahrd/tiger mice. Figure 4A shows that induction of

GFP(IL-10)+ Tr1 cells by nasal anti-CD3 is completely abolished

in the Ahrd/tiger mice, thus AHR signaling is essential for the

generation of Tr1 cells in vivo in response to nasally administered

anti-CD3.

IL-21 is an autocrine growth factor for Tr1 cells [21,22]. We

have recently reported that AHR and c-Maf directly control the

production of IL-21 during the differentiation of Tr1 cells [17].

Thus, based on the expression of il21 and il21r by Tr1 cells

induced in response to the nasal administration of anti-CD3, we

investigated the role of IL-21 in the generation of Tr1 cells in vivo.

We first studied the effect of treating tiger mice with anti-CD3 co-

administered nasally with recombinant IL-21 or vehicle as control.

We found that the nasal co-administration of anti-CD3 with

recombinant IL-21 led to a significant increase in the generation of

Tr1 cells (Figure 4B). We then analyzed the induction of Tr1 cells

by nasal anti-CD3 in IL-21R 2/2 and wild type mice. We found

a significant impairment in the induction of Tr1 cells triggered by

nasal anti-CD3 in IL-21R 2/2 mice (Figure 4C). Thus, IL-21

plays an important role in the induction of Tr1 cells in vivo as a

result of treatment with nasal anti-CD3.

Tr1 cells induced by nasal anti-CD3 in an IL-27-
dependent manner control systemic autoimmunity

To investigate the role of IL-27 in the induction of Tr1 cells by

nasal anti-CD3, we backcrossed IL-27 receptora-deficient mice

onto the lupus prone lpr background (IL-27R2/2/lpr).

Figures 5A and 5B show that the generation of LAP+ Tr1 cells

following nasal administration of anti-CD3 is dependent on IL-27,

as no upregulation of LAP was seen in IL-27R2/2/lpr mice.

Concomitant with the deficient generation of LAP+ Tr1 cells, we

found that CD4+ T cells from IL-27R2/2/lpr mice given nasal

In Vivo Tr1 Cell Generation Requires DCs and AHR
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anti-CD3 produced significantly higher amounts of IFN-c and IL-

12 upon in vitro stimulation with anti-CD3 (Figure 5B).

We next investigated the role of IL-27 and LAP+ Tr1 cells

induced by nasal anti-CD3 in the control of systemic autoimmu-

nity. IL-27R2/2/lpr mice developed spontaneous fatal autoim-

munity significantly earlier than MRL/lpr mice (Figure 5C,

compare green and black lines). This accelerated development of

fatal autoimmunity was associated with a progressive increase in

serum IgG autoantibodies to double stranded DNA (dsDNA)

(Figure 5D). Moreover, nasal anti-CD3 (three 5-day courses of

0.5 mg/day given at alternative weeks) significantly prolonged the

survival of MRL/lpr but not of IL-27R2/2/lpr mice (Figure 5C,

compare red and blue lines). Taken together, these data suggests

that IL-27 is required for the generation of suppressive LAP+ Tr1

cells following nasal administration of anti-CD3.

To confirm that the lack of protective effect of nasal anti-CD3 in

IL-27R2/2/lpr mice is linked to the defective induction of LAP+
Tr1 cells (Figures 5A and 5B) we performed adoptive transfer

experiments. The transfer of CLN CD4+ T cells from wild type

mice treated with nasal anti-CD3 protected IL-27R2/2/lpr

recipients from the development of fatal autoimmunity

(Figure 5E, compare blue and red lines). This protection was

associated with a significant reduction in the production of IgG

anti-dsDNA autoantibodies (Figure 5D). The suppression of

systemic autoimmunity in this adoptive transfer system was

dependent on LAP+ Tr1 cells, as protection was reversed by

Figure 2. In vivo induction of Tr1 cells is dependent on mucosal DC-derived IL-27 and TGF-b. A. CD11c+ DCs or B. CD11b+ macrophages
were positively selected from CLNs following nasal IC (clear bars) or anti-CD3 (filled bars) and used in quantitative RTPCR. This experiment was
repeated 3 times with same results. Error bars represent standard deviations and P values were calculated by t-test. C. CD11c DTR-GFP mice were
nasally treated with PBS or 500 ng of DT. CLNs and spleens were harvested 24 hrs following nasal DT. 10 mM frozen sections were stained with
Toprol-3. Pictures were taken at 640 magnification. D. CD11c DTR-GFP mice were nasally treated with anti-CD3 or DT followed anti-CD3. 72 hrs
following nasal treatment, CLN cells were stained with anti-CD4, anti-CD25 and anti-LAP antibodies for FACS. LAP staining on gated CD4+CD25- T
cells is shown. E. B6 mice were nasally treated with anti-CD3. CD11b+ macrophages (left column) or CD11c+ DCs (right column) were positively
selected from CLN at 72 hrs after the last nasal dose. Co-cultures of macrophages or DCs and CD4+CD25-GFP- naı̈ve Tiger T cells were stimulated with
LPS (1 mg/ml) or FLT3 ligand (1 mg/ml) respectively and plate bound anti-CD3 (1 mg/ml) for 96 hrs. Cells were stained with anti-LAP antibody. FACs
plots shown here were on gated CD4+ lymphocytes. Representative FACs plots of 3 independent experiments are shown here. F. B6 mice were
nasally treated with anti-CD3. CD11c+ DCs were positively selected from CLN 72 hrs after the last nasal dose. Co-cultures of DCs and CD4+CD25-GFP-
naı̈ve Tiger T cells were stimulated with 1 mg of FLT3 ligand and plate bound anti-CD3 in the presence of 10 mg/ml neutralizing antibody to TGF-b
and/or IL-27 for 96 hrs. Cells were stained with anti-LAP antibody. Representative FACs plots of 3 independent experiments are shown here.
doi:10.1371/journal.pone.0023618.g002
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depletion of LAP+ T cells prior to cell transfer (Figure 5E,

compare yellow and red lines).

We found similar effects when the recipients of LAP+ Tr1 cells

were investigated in terms of autoantibody production

(Figure 5D) and IFN-c and IL-12 production (Figure 5F).

Thus, IL-27 mediates the induction of LAP+ suppressive Tr1 cells

following the nasal administration of anti-CD3 in the context of

ongoing inflammation.

Discussion

Tr1 cells are regulatory T cells that do not express Foxp3 and

suppress tissue inflammation, graft-versus-host disease and auto-

immunity in an IL-10 dependent manner. IL-27 plays a major role

in the differentiation of IL-10-secreting Tr1 cells [7,23]. Indeed,

we have recently demonstrated that IL-27 induces the expression

of the transcription factors AHR and c-Maf, which cooperate to

control the expression of il10 and of the autocrine Tr1 growth

factor il21 [17]. AHR and cMaf also cooperate to control the

expression of human Il10 [18].

Here we show that nasal administration of an anti-CD3

monoclonal antibody induces suppressive Tr1 cells. We found

that the induction of Tr1 cells is dependent on local DCs that

express IL-27, IL-10 and TGF-b as site-specific depletion of DCs

abolishes Tr1 cell generation by nasal anti-CD3. To our

knowledge, this is the first demonstration of an essential role of

upper airway-resident DCs in the generation of Tr1 cells in vivo.

Accumulating evidence suggests that resident DCs in mucosal

tissues possess unique features not shared by DCs in peripheral

lymphoid tissues [24]. Most notably is their ability to generate

regulatory T cells that suppress airway and gut inflammation in

mouse models of asthma [25] and inflammatory bowel disease

[26]. In support of these findings, it has been demonstrated that

resident DCs in lamina propria and mesenteric lymph nodes are

critical for the generation of Foxp3+ regulatory T cells in the gut

[27,28,29].

The upper airway mucosal DCs may be controlled by local

signals produced by the bronchial and intestinal epithelia. For

instance, in co-culture studies it has been shown that products of

epithelial cells condition DCs to promote Th2 immunity in an

allogeneic response [30]. It is possible that in the face of

continuous challenge from environmental antigens, mucosal

epithelial cells secrete cytokines that condition DCs modified to

promote the differentiation of Tr1 cells. Thus, similar to DCs

present in gut-associated lymphoid tissue [31,32], we show here

that DCs present in the nasal-associated lymphoid tissue also play

a physiologic role in the generation of regulatory T cells.

We used the Ahrd/tiger mouse to investigate the molecular

mechanisms that mediate the induction of Tr1 cells by nasal anti-

CD3. We found that Tr1 cells induced by nasal anti-CD3 express

high levels of ahr, c-Maf, il21 and il21r. Furthermore, we

demonstrated that AHR and IL-21 are needed for the differen-

tiation of Tr1 cells induced with nasal anti-CD3: Tr1 differenti-

ation is defective in Ahrd/tiger and IL-21R deficient mice following

Figure 3. Tr1 cells induced by nasal anti-CD3 express ahr, cmaf, il21 and il21r. A. Naive CD4+ T cells (CD4+CD25-GFP(IL-10)-), nTregs
(CD4+CD25+GFP(foxp3)+) sorted from Foxp3-GFP knock-in mice, ex vivo Tr1 cells (CD4+CD25-GFP(IL10)+) sorted from CLN of nasal anti-CD3 treated
Tiger mice and in vitro differentiated Tr1 using plate bound anti-CD3 and anti-CD28 plus 50 ng/ml IL-27 were used in quantitative RTPCR reactions.
Expressions of IL-10, IFN-c and foxp3 mRNA were normalized to expression of b-actin. B. AHR, C. cMAF, D. IL-21 and E. IL-21R mRNA expression by
CD4+GFP(IL-10)- T cells or CD4+GFP(IL-10)+ Tr1 cells. These experiments were repeated 3 times with same results.
doi:10.1371/journal.pone.0023618.g003
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nasal anti-CD3, and the administration of nasal anti-CD3 together

with recombinant IL-21 significantly boosts the induction of Tr1

cells. These findings are consistent with our recent in vitro studies

[17,18], and demonstrate that AHR and Il-21 mediate the

induction of Tr1 cells triggered by nasally administered anti-CD3.

Moreover, they suggest that recombinant IL-21 can be used as an

adjuvant to potentiate the induction of suppressive Tr1 cells by

nasally administered anti-CD3.

In summary, our data supports a model in which upon

stimulation by nasal anti-CD3, resident DCs conditioned by the

nasal epithelia secrete IL-27, which promotes the differentiation of

Tr1 cells. IL-27R ligation triggers the synthesis of AHR and c-

MAF, which then bind and transactivate the il10 and il21

promoters [17,18]. Finally, IL-21 acts in an autocrine fashion to

further upregulate cMAF expression thus expands Tr1 cells in vivo

[13,17,22] (and fig.6). Our results identify a previously unknown

function of mucosal DCs in the upper airways and demonstrate

that nasal anti-CD3 is a unique approach to generate functional

suppressive Tr1 cells in vivo that control ongoing autoimmunity.

These findings identify nasal anti-CD3 as a novel therapeutic

approach for the treatment of autoimmune diseases.

Materials and Methods

Mice
B6, MRL/lpr, DTR-GFP CD11c, Foxp3-GFP knock-in, Ahrd

and tiger mice were purchased from Jackson Laboratory (Bar

Harbor, Maine, USA). IL-27 receptor deficient (IL-27R2/2) mice

were a generous gift from Vijay K. Kuchroo (Harvard Medical

School). IL-21 receptor deficient (IL-21R2/2) mice were a

generous gift from Warren Leonard (NIH) and Derry Roopenian

(Jackson Laboratory). IL-27R2/2/lpr and Ahrd/tiger mice were

bred and maintained at our facility at the Harvard Institutes of

Medicine. Only female mice were used in lupus studies. All mice

were housed in specific pathogen-free environment according to

the animal protocol guidelines of the Committee on Animals of

Harvard Medical School (Protocol No. 02683), which also

approved the experiments.

Antibodies, antigens and nasal treatment
Antibodies specific to CD3 (145-2c11) and CD28 (37.51) (BD

Biosciences, CA, USA) were used to stimulate T cells in vitro.

Neutralizing anti-mouse IL-10 (JES5-2A5), TGF-b (1D11), IL-4

Figure 4. The induction of Tr1 cells by nasal anti-CD3 requires AHR and IL-21 signaling. A. Tiger or Ahrd/tiger mice were nasally treated
with IC or anti-CD3 and 72 hrs after the last nasal dose GFP(IL-10) expression by CD4+ T cells in CLN was examined by flow cytometry. Each symbol
represents an individual mouse. B. Tiger mice were nasally treated with IC or anti-CD3 alone or together with recombinant mouse IL-21 (4 mg/day). C.
WT or IL-21R2/2 mice were nasally treated with IC or anti-CD3.
doi:10.1371/journal.pone.0023618.g004
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(11B11), IL-12 (C17.8), IFN-c (R46A2) or relevant isotype control

antibodies were purchased from BioXCell, NH, USA. Neutraliz-

ing anti-mouse IL-27p28 and IL-21 antibody and mouse

recombinant IL-4, IL-6, IL-12, IL-21 and TGF-b was purchased

from R&D Systems, MN, USA. Fluorescent anti-mouse antibodies

used in flow cytometry were CD4-specific (H129.19), CD25-

specific (PC61) and IL-10 (JES5-16E3) (BD Biosciences). For Fcc
receptor blocking we used CD16/CD32-specific antibody (all

from BD Biosciences). Anti-mouse LAP monoclonal antibody

(16B4) was a kind gift from Taka Oida (Center for Neurologic

Disease). Anti-mouse Foxp3 (FJK-16s) antibody was purchased

from Ebiosciences, CA, USA. In studies of Tr1 cell generation in

vivo, mice were nasally treated with 5 consecutive doses of 0.5 mg

hamster IgG CD3-specific antibody (clone 145-2C11) or hamster

IgG control antibody (BioXCell) dissolved in PBS. Diphtheria

toxin was purchased from Sigma-Aldrich. LPS and FLT3 ligand

were purchased from R&D Systems.

T cell proliferation
Cells were cultured in triplicates at 1.56106/ml in the presence

of various amounts of antibodies or alone in 96-well round bottom

microtiter plates (Corning, NY, USA) for 96 hrs at 37uc with 5%

CO2 in a humid incubator. CD4+ T cells were separated from

murine lymphoid organs using MACS CD4 purification kit

(Miltenyi Biotec). The purity of selected cells was checked by flow

cytometry. In all experiments, selection efficiency was over 90%.

For cell sorting CD4+ T cells or whole lymphocytes were stained

with fluorescent anti-mouse LAP, CD4 and CD25 monoclonal

antibodies (all at 0.5 mg per million cells). CD4+ CD25- or + LAP-

or + GFP- or + T cells were sorted using a FACSVantage SE (BD

Biosciences). The purity of each population was .95% by flow

cytometric analysis. Tr1 and Th subset in vitro differentiation was

carried out in the present of plate bound anti-CD3 and anti-CD28

and relevant cytokine for 48 hrs followed by passage and 2

additional rounds of 48 hr culture. Tissue culture medium was

RPMI-1640 with 4.5 g/L glucose and L-Glutamine (BioWhit-

taker, MD, USA) supplemented with 2% penicillin and strepto-

mycin (BioWhittaker) and 1% fetal calf serum. Cultures were

pulsed with 0.25 mci tritiated thymidine ([3H]d Thd; PerkinElmer,

MA, USA) for the last 6 hrs. [3H]d Thd incorporation was

measured using a liquid scintillation beta counter (Wallac,

PerkinElmer).

Figure 5. Tr1 cells induced by nasal anti-CD3 in an IL-27-dependent manner control systemic autoimmunity. A. 8 wks old female MRL/
lpr or IL-27R2/2/lpr mice were nasally treated with 0.5 mg IC or anti-CD3. CLN cells were harvested at 72 hrs after the last nasal dose and stained
with anti-CD4 and anti-LAP antibodies. B. CD4+ T cells were isolated by positive selection and stimulated with plate bound anti-CD3 and anti-CD28
antibodies (1 mg/ml each) for 96 hrs. Culture supernatant was used in detection of IL-2, IL-5, IL10, IL-12 and IFN-c by ELISA. C. 4-wk old MRL/lpr or IL-
27R2/2/lpr mice (n = 10) received three 5-day courses of 0.5 mg IC or anti-CD3 given at alternative weeks. Survival of mice following treatment was
followed for 40wks. D. Serum was collected from MRL/lpr, IL-27R2/+/lpr, IL-27R2/2/lpr or IL-27R2/2/lpr recipients of CD4+LAP- or CD4+ T cells. IgG
anti-dsDNA autoantibodies were detected by ELISA. E. 8 wk old female MRL/lpr mice were nasally treated with anti-CD3 for 5 consecutive days.
72 hrs after the last nasal dose CD4+ (red line) or CD4+LAP- (yellow line) T cells were sorted from CLN cells and adoptively transferred (16106 cells/
mouse) to 4-wk old IL-27R2/2/lpr recipients (n = 10). Survival of recipients was followed for 40wks and compared to MRL/lpr (black line), IL-27R2/+/
lpr (blue line) or IL-27R2/2/lpr (green line) mice (n = 10) without cell transfer. F. CD4+ T cells from IL-27R2/2/lpr recipients of CD4+LAP- (clear bars)
or CD4+ (filled bars) T cells were stimulated with plate bound anti-CD3 and anti-CD28 antibodies for 96 hrs. IL-12 and IFN-c in culture supernatant
was detected by ELISA.
doi:10.1371/journal.pone.0023618.g005
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Immunofluorescent staining
Frozen sections of cervical lymph node or spleen (5 mM) were

air dried from 280uc for 30 mins and then fixed in 100% alcohol

for 1 min. Sections were washed twice with PBS and non-specific

binding sites were blocked with 10% normal rat serum in PBS for

1 hr at RT. Following 2 further washes with PBS, tissue sections

were stained with Toprol-3 (Invitrogen, CA, USA). Tissues

sections were analyzed by confocal microscopy.

Cytokine detection
The level of cytokines produced in vitro by cell cultures was

determined using BD OptEIA ELISA and reagent set (BD

Biosciences). Samples were tested in triplicate using the manufac-

turer’s recommended assay procedure. Cell culture supernatant

was harvested at different time points (48 hrs for IL-10; 96 hrs for

IL-2, IL-5, IL-12 and IFN-c) for the detection of cytokines.

Flow cytometry
Cells were washed (1200 RPM, 5 mins at 4uc) with PBS

containing 2% bovine serum albumin in PBS (PBS/BSA,

BioWhittaker). Fcc receptors were blocked by incubation with

anti-CD16/CD32 antibody for 30 mins at 4uc. Cells were washed

twice before being stained with fluorescent anti-mouse cell surface

molecule antibodies (1 mg/106 cells/test) or relevant IC antibody

for 30 min at 4uc in dark. After staining, cells were washed again

with PBS/BSA before flow cytometry (FACScanTM, Becton

Dickson, NJ, USA). For intracellular staining, cells

(106106 cells/ml) in culture medium containing 1 ml GolgiSTOP

(BD Biosciences) were stimulated with PMA (50 ng/ml) and

ionomycin (1000 ng/ml) for 4 hrs at 37uc with 5% CO2 in a

humid incubator. After incubation cells were fixed and permea-

bilized before being stained. All FACs data was analyzed using

FlowJo software (TreeStar).

Serum ELISA
Autoantibodies were measured as described previously (14).

Briefly, double stranded DNA (dsDNA) was used at 20 mg/ml. For

the detection of total IgG, 50 ml/well of HRP-conjugated rat anti-

mouse antibody (BD Biosciences) at 0.001 mg/ml was added and

incubated at 37uc for 1 hr.

Quantitative RTPCR
RNA was extracted from FACS-sorted cells or in vitro

differentiated cells using RNAeasy columns (Qiagen, CA, USA).

cDNA was transcribed as recommended (Applied Biosystems, CA,

USA). The amount of cDNA was measured and equal amount of

cDNA from samples was used for quantitative RTPCR. All primer/

probe mixtures were obtained from Applied Biosystems. Taqman

analysis was performed on AB 7500 Fast System (Applied

Biosystems). Gene expression was normalized to b-actin expression.

Adoptive transfer
To test the in vivo regulatory function of LAP+ T cells we

transferred freshly isolated whole CD4+ or CD4+ T cells depleted

of LAP+ cells from nasal anti-CD3 treated MRL/lpr donors to 4-

wk old IL-272/2/lpr recipients. Each recipient received 16106 T

cells intravenously. We followed the recipients for 40 weeks and

recorded their survival rate.

Figure 6. A model for Tr1 cell generation by nasal anti-CD3. Nasal anti-CD3 triggers T cell activation via TCR/CD3 complex. T cell activation in
the presence of IL-27 secreted by local DCs in the CLN leads to activation of AHR and cMAF, which cooperate to transactivate the il10 and il21
promoters and promote IL-10 and IL-21 production. IL-21 then acts as a Tr1 growth factor in an autocrine fashion.
doi:10.1371/journal.pone.0023618.g006
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Statistical analysis
Statistical differences in cell proliferation and cytokine levels

were derived from 2-way ANNOVA test. We used Students’t-test

on circulating IgG levels. The Wilcoxon rank sum test was used for

all pair-wise group comparisons. A P value less than 0.05 is

considered significant.
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