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Abstract: Even though prebiotic chemistry initially deals with simple molecules, its composition
rapidly gains complexity with oligomerization. Starting with, e.g., 20 monomers (such as the
20 proteinogenic amino acids), we expect 400 different dimers, 3,200,000 pentamers, or more than
1013 decamers. Hence, the starting conditions are very messy but also form a very powerful pool of
potentially functional oligomers. A selecting structure (a “selector” such as membrane multilayers
or vesicles) may pick and accumulate those molecules from the pool that fulfill a simple function
(such as the suitability to integrate into a bilayer membrane). If this “selector” is, in turn, subject to a
superimposed selection in a periodic process, the accumulated oligomers may be further trimmed to
fulfill more complex functions, which improve the survival rate of the selectors. Successful oligomers
will be passed from generation to generation and further improved in subsequent steps. After
thousands of generations, the selector, together with its integrated oligomers, can form a functional
unit of considerable order and complexity. The actual power of this process of random formation and
selection has already been shown in laboratory experiments. In this concept paper, earlier results are
summarized and brought into a new context.
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1. The Creative Potential of Messy Prebiotic Chemistry

If we talk about a chemically messy environment, we usually have complex, chaotic
systems in mind that contain a large variety of chemical compounds [1,2]. In principle, the
full chemical space of small organic molecules, even with some restrictions in molecular size
and contributing elements, contains millions of molecules [3,4]. Oligomers and polymers
consisting of repetitive units with some limited variety form an interesting fraction of
this chemical space [5]. This fraction is very likely to have special relevance for prebiotic
chemistry for the simple reason that recent biological systems still make extensive use of it;
proteins, nucleic acids, and carbohydrates are the most prominent examples. Other types of
such polymers may have contributed in the past [6]. An interesting example is polyesters
possibly formed by a variety of hydroxycarboxylic acids in analogy to proteins assembled
from different amino acids [7,8]. In any case, we know that different types of polymers are
actually the basis for the chemical variability of life.

Therefore, in order to find a potential way out of prebiotic “messiness”, a good starting
point is to think of a basic set of chain-forming molecules. If we choose the 20 proteino-
genic amino acids for this purpose, we can expect 20 × 20 = 400 different dimers after
the first condensation reaction. A further 4 condensation reactions lead to 205 = 3.2 ×
106 pentamers, and 9 condensation reactions lead to more than 1013 different decamers.
Hence, by oligomerization, the corresponding subset of the chemical space explodes into
a huge variety. On the other hand, one has to consider the low concentrations of the
oligomers in the thermal equilibrium. With knowledge of the average rate constants of
condensation (kc) and hydrolysis (kh), these equilibrium concentrations cn for oligomers
with n repetitive units are determined by a set of differential equations [9]. For a situation
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with up to six units, the reactions that summarize all steps of formation and degradation
for each oligomer An—with A1 being the amino acid monomer—are listed in the following
(water as a reaction partner is omitted in all cases for simplicity):

condensation reactions (with rate constant kc) hydrolysis reactions (with rate constant kh)
A1 + A1 -> A2 x2 (1) A2 -> A1 + A1
A1 + A2 -> A3 x2 (1) A3 -> A1 + A2 x2 (2)

A1 + A3 -> A4 x2 (1) A4 -> A1 + A3 x2 (2)

A1 + A4 -> A5 x2 (1) A4 -> A2 + A2
A1 + A5 -> A6 x2 (1) A5 -> A1 + A4 x2 (2)

A2 + A2 -> A4 x2 (1) A5 -> A2 + A3 x2 (2)

A2 + A3 -> A5 x2 (1) A6 -> A1 + A5 x2 (2)

A2 + A4 -> A6 x2 (1) A6 -> A2 + A4 x2 (2)

A3 + A3 -> A6 x2 (1) A6 -> A3 + A3

(1) These reactions have to be considered with a factor of two since each amino acid (or
peptide) on the left side of the equation offers two possible reaction sites, -COOH and
–NH2.

(2) These reactions have to be considered with a factor of two since the hydrolysis can
occur at two different positions, each leading to an equivalent pair of products.

This reaction network leads to a set of differential equations, each characterized by
averaged (second-order) rate constant kc for the condensation reactions and a correspond-
ing (pseudo-first-order) rate constant kh for the hydrolysis reactions [9]. These coupled
differential equations can be numerically solved, leading to a time development of the
concentrations cn, as shown in Figure 1. If we start with c1(t) = c0 at t = 0, the concentration
c1(t) of the monomers hardly changes over time; the reduction by approximately 20%
with respect to the starting concentration c0 is hardly visible on the logarithmic scale. The
concentrations of the oligomers, on the other hand, vary dramatically. They start out at
zero, then increase in the course of the condensation reactions, and finally approach the
equilibrium values asymptotically over time. For the given settings of the rate constants,
the equilibrium concentrations decrease by approximately an order of magnitude for each
additional monomer unit. For the dimer, the equilibrium concentration c2 may still be
in the range of 0.1 c0, which in practical experiments could be easily detected by NMR
spectroscopy [10]. The equilibrium value for the hexamer, on the other hand, is expected
near c6 = 3 × 10−6 c0, where in practice, it can only be observed by sensitive analytics.

Based on this estimation, one may be tempted to disregard the presence of the hex-
amers that only form about one-millionth of the mass of the total organic constituents in
the given model system. However, this fraction has something like a powerful creative
potential. It contains a theoretical set of 206 = 64,000,000 different sequences. With ongoing
condensation and hydrolysis processes, it forms a dynamic pool of potentially functional
peptides. Even though their individual concentration may be astronomically small, they
may be selected and accumulated out of the dynamic pool, while they will be constantly
resupplied by the full set of equilibrium reactions summarized in Equations (1)–(6) in
Ref. [9]. The situation could be seen as a representation of the infinite monkey theorem [11];
it is like a herd of monkeys repeatedly typing six consecutive letters representing the amino
acid sequence of the hexamers. At this point, it just needs an efficient selector to pick out
the meaningful or functional ones. Over time, the functional sequences will be typed again
and again and just need to be collected.
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Figure 1. Time development of the relative concentrations of monomer (c1) and oligomers (c2–c6) ac-
cording to the given reaction network, starting with a monomer solution at t = 0 [9]. The approximated
time scale is dferived from NMR experiments at 120 ◦C [10], where kc = 5.24 × 10−3 L/(mol·min)
and kh = 5.76 × 10−2 L/min.

Creative pools of this kind are especially active in high-temperature environments,
such as near primordial volcanic islands [12], in hot springs [2,13,14], or tectonic fault
zones [15–17]. The formation of chain molecules by condensation is significantly accelerated
by periodic variation of the water activity. Such a repetitive switching between high and
low water concentration can be induced by wet–dry cycling (as it would naturally occur at
the shores of a hot pond in a daily rhythm) or by pressure variations connected to a phase
transition of carbon dioxide resulting in a corresponding change in water solubility [16].
Caused by the periodic change of the water activity, the system remains in a constant
non-equilibrium state, with longer oligomers being favored under dry conditions.

2. The Potential Nature of a “Selector”

Which system could have the power to actively select useful sequences out of this
creative pool? In principle, any structure capable of molecular recognition and somehow
complementary to this sequence would be suitable [2]. Selectively binding to an oligomer
with a particular sequence, such a “selector” could form a stable complex that prevents hy-
drolysis of the oligomer and, therefore, efficiently removes it from the cycle of condensation
and hydrolysis [13,14]. Consequently, the oligomer with this particular sequence would
accumulate and reach concentrations far above the equilibrium values depicted in Figure 1.
Of course, the question remains: where should the complementary sequence come from?
It necessarily must have at least the same degree of complexity as the collected oligomer.
Consequently, it would have to be formed by a separate process in advance.

Alternatively, and with significantly reduced selectivity, the growing oligomer could
be encapsulated or bind to the surface of a mesoscopic structure formed by amphiphiles.
Membrane structures such as multilayers, micelles, or vesicles could have this capability
and act as efficient selectors for specific sequences of biopolymers such as polypeptides or
nucleic acids [18–25].
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Another principle for selection could be simple amphiphilic interactions between
the selector and the particular oligomer. Membrane multilayers, micelles, or vesicles
tend to integrate those oligomers that reflect the amphiphilicity profile of their main
constituents [9,16,26]. With a suitable geometry of the hydrophilic and hydrophobic part of
the oligomer chain, intermolecular interactions build-up and a negative enthalpy change
occurs; hence the integration process would be energy driven. The dissipation of this energy
would compensate for the loss in entropy that is connected to i) the integration process and
ii) the selection of a particular fraction of the oligomers (the latter would correspond to the
entropy of mixing that would occur if this fraction returns into the original pool). Integrated
oligomers reside in a protected environment, being efficiently shielded against hydrolysis
or elution. Consequently, they are being selected and accumulated, while the others either
remain part of the cycle of hydrolysis and condensation or cross-phase boundaries [9]. An
example of such a selector, membrane vesicles in a two-phase environment of supercritical
CO2 and water in a high-pressure environment, is shown in Figure 2.
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Figure 2. Example of a membrane structure acting as a selector for amphiphilic oligomers. Left:
oligomers primarily made up of hydrophilic units (blue) form a cycle of condensation and hydrolysis
in the aqueous phase. Right: oligomers made up primarily of hydrophobic units (red) tend to transfer
into a hydrophobic environment, e.g., a separate phase of supercritical carbon dioxide. Center:
amphiphilic oligomers integrate into membrane vesicles where they are protected against hydrolysis
and phase transfer and accumulate over time.

Membrane multilayers, micelles, and membrane vesicles are mesoscopic structures
that form spontaneously whenever amphiphilic molecules occur at a suitable concentra-
tion [27,28]. Under hydrothermal conditions, the occurrence of those molecules is very
likely. The simplest pathway to their prebiotic generation would be the formation of
aliphatic chains with an oxidized initial methyl group by Fischer–Tropsch chemistry [29].
Molecules of this kind were detected in meteorites [30] as well as in recent tectonic fault
systems [31] and in remnants of very old hydrothermal environments [17]. Therefore, one
can consider membrane multilayers, micelles, or membrane vesicles as especially likely first
selectors for prebiotic oligomers. This is even more so since all these structures are highly
dynamic [27]. They easily form and disintegrate under cyclic conditions such as wet–dry
cycling or periodic phase transitions [26], and they may have even undergone steps of
self-organization on their own [32,33]. In addition, and this may be the most important
aspect, they themselves can be subject to a second stage of selection.
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3. The Selection of the Selector

Thus far, the accumulation of the oligomers would just follow one predetermined
selection principle: the amphiphilicity profile. In this case, the selected oligomer would be
of the same complexity as the selector itself, so no progress would be achieved. However,
the selector itself may be subject to a superimposed selection process [9,26]. In the simplest
case, its thermal stability could depend on the interaction with the integrated oligomer. This
interaction may follow three different stages of complexity in its development (Figure 3):
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Figure 3. Three stages of the influence of the integrated oligomer on the survival of the membrane
vesicle: (a) destabilizing effect, (b) stabilizing effect, (c) additional stabilizing function, e.g., the
formation of pores leading to the relaxation of osmotic pressure [26].

(a) Oligomers with sequences of type (a) have a destabilizing effect on the membrane
multilayer, the micelle, or the vesicle. In this case, the amphiphilic structure would
come apart sooner than the competing ones, the amphiphiles would assemble at other
surfaces, and the oligomers would be released. In the following, they are subject to
hydrolysis just like the other oligomers in the pool and gain only a small temporary
advantage.

(b) Oligomers with sequences of type (b) stabilize the membrane multilayer, the micelle, or
the vesicle. The increase in thermal stability could derive from particular interactions
between the oligomer and the adjacent amphiphiles. In this case, the lifetime of the
structure would be extended, leading to extended protection of the oligomers with
sequences of type (b) due to the reduced access of water molecules [26]. Hence, the
sequences (b) would accumulate much more efficiently than the sequences (a).

(c) Oligomers with sequences of type (c) induce a more complex stabilizing function on
the membrane multilayer, the micelle, or the vesicle. This effect goes beyond a simple
thermodynamic stabilization by selective interactions. Instead, it compensates for de-
structive influences that shorten the lifetime of the amphiphilic structure. An example
may be osmotic pressure, which regularly occurs during membrane formation. If an
oligomer with a sequence (c) is capable of forming a transmembrane pore [26], this
osmotic pressure can be released, leading to extended membrane longevity. Other spe-
cific functions may be the induction of a specific membrane curvature, the induction
of a specific membrane mobility, or the accumulation of charges on the membrane
surface. All these functions induced by sequences (c) could further extend the lifetime
of the selector and hence give them an additional selective advantage.

The accumulation of the sequences (b) and (c) over time raises the chance that they will
combine by condensation, leading to longer oligomers with superior survival strategies for
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the amphiphilic structures. After the stabilized selectors finally disintegrate, the oligomers
of types (b) and (c) will be released into the pool, from where they will (at least partially)
be collected by newly created selectors, creating a short-term molecular memory for the
stabilized and functional structures. In all cases, the selection of the selectors leads to an
increase in complexity far beyond the one that is observed for the basic selector itself and
the oligomers that are initially accumulated.

The actual power of the overall development lies in the superposition of two selection
processes (Figure 4). The original “creative pool” of oligomers (Figure 4, center) perma-
nently delivers random sequences but also contains some chemical memory for successful
stabilization and functionalization. The selector (in Figure 4, represented as membrane vesi-
cles) picks out and integrates suitable oligomers and, by itself, is submitted to a selection
process. In the course of this development, the selector develops more and more complex
survival strategies.
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Figure 4. Superposition of two selection processes on the example of membrane vesicles. The vesicles
(“selectors”) collect oligomers from a central pool of condensation and hydrolysis. At the same time,
they themselves are being selected for stability. “Successful” selectors accumulate oligomers with
stabilizing and functional properties. In the end, a function like the relaxation of a given concentration
gradient (triangles) may even become a source of free energy, representing a starting point for energy
metabolism.

In laboratory experiments, these conditions led to three kinds of effects caused by a
particular selected oligomer with the sequence KSPFPFAA [26]:

(i) Thermal stabilization of the vesicle membrane;
(ii) An increase in the permeability of the vesicle membrane;
(iii) A decrease in the vesicle size.

All these effects can be interpreted as possible survival strategies for the vesicles.
This is obvious in the case of the effect (i). In the case of (ii), the selection advantage
may be given by the relaxation of the destructive osmotic pressure. In the case of (iii),
the vesicles may reduce the risk of being mechanically destroyed by bubble formation
and shear. A molecular dynamic simulation of the resulting membrane structure with the
selected peptide KSPFPFAA is shown in Figure 5 [34]. Within a period of less than 0.5 µs,
the oligomers form intra-membrane clusters with a hydrophilic pore in the center. This
pore facilitates the passage of water molecules and, possibly, ions through the membrane,
thereby reducing the osmotic pressure load.
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Figure 5. Membrane structure resulting from an experiment with superimposed selection processes
in a molecular dynamics study [26,34]. Within 450 ns, the particularly successful oligomer KSPFPFAA
adopts a stretched-out conformation across the membrane (a), starts to agglomerate in clusters (b),
and forms pores with increased water permeability (c) [34].

4. Spontaneous Formation of Order and Complexity

The peptide cluster shown in Figure 5 is already of remarkable structural complexity.
Nevertheless, it is obviously being formed in a spontaneous process from comparably
simple molecules, all of them typical for a hydrothermal environment. It represents
experimental evidence for the power of the described combination of random formation of
oligomers with a two-step selection process.

The thermodynamic driving force is basically the increase of the overall entropy, its
rate dS/dt given by a balance equation [35]:

dS
dt

=
diS
dt

+
deS
dt

(1)

where diS/dt stands for the entropy increase of internal irreversible processes connected to
periodic phase transitions together with all the chemical reactions they induce while the
reaction mixtures inside the system are permanently kept in a non-equilibrium state. The
term deS/dt denotes the entropy flow rate due to the exchange of matter and energy with
the environment, which is positive as well since processes like water evaporation or carbon
dioxide flow are spontaneous on a large scale even if no internal processes occur.

In the proposed superimposed two-stage process, a tiny fraction of this overall entropy
gain dS/dt is being sacrificed to generate local structural order by small-scale selection.
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Focusing on this small local structure, the overall progress regarding complexity and
order [36] may be illustrated, as shown in Figure 6. The molecules formed initially by
hydrothermal chemistry (1) are low in complexity and occur in a diluted and mixed state,
so they are low in structural order as well. As soon as those molecules form oligomers
(2), the complexity rises dramatically (according to Kolmogorov’s definition of complexity,
more bytes are needed for their description [37]), whereas the structural order remains
more or less unchanged. This is basically the messy environment we are starting with. At
this point, a primary selection process by a “selector” (3) reduces complexity but at the
same time increases order (represented by a suitable sequence), the increase corresponding
to the negative mixing entropy. The secondary selection process of the “selector” itself
(4) follows the same pattern, leading to an even more significant increase in order due to
the formation of distinct membrane structures, as illustrated in Figure 5. Eventually, even
the most stable vesicles will disintegrate, thereby losing a large part of the original progress
in complexity and order (5). However, some of the successful oligomers will remain in
the pool; therefore, the following sequence will not have to start from scratch. Instead, the
next step will begin at position (5) in the diagram. If the superimposed selection process
is repeated in numerous subsequent generations, the overall development will follow the
path (6), indicated on the right of Figure 6. Therefore, the endpoint of the superimposed
selection will gradually shift along the diagonal in the diagram. In essence, it is this
development of rising order and complexity along this diagonal which can lead to specific
survival mechanisms and, eventually, to something like a primitive functional unit [36].
Peptides grown by the condensation of randomly formed short oligopeptides [38] may
further support the early functionality, especially since they may have developed catalytic
functions [39].
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5. Conclusions

The described interaction between two superimposed selection processes has a con-
siderable power to turn a “messy” environment (in a chemical sense) into a system that
contains complex functional structures. During this process of random formation and
selection, the system’s order and complexity increase gradually, eventually leading to
structural functionality. The overall driving force is represented by the entropy increase
of the vast majority of system components, which is only slightly reduced by the selected
fractions of increased structural order. Overall, the superimposed selection process can
lead to a significant degree of complexity and function of local structures.
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