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Abstract
Habitat loss and fragmentation are widely acknowledged as the main driver of the de-
cline of giant panda populations. The Chinese government has made great efforts to 
protect this charming species and has made remarkable achievements, such as popu-
lation growth and habitat expansion. However, habitat fragmentation has not been re-
versed. Protecting giant pandas in a large spatial extent needs to identify core habitat 
patches and corridors connecting them. This study used an equal-sampling multiscale 
random forest habitat model to predict a habitat suitability map for the giant panda. 
Then, we applied the resistant kernel method and factorial least-cost path analysis to 
identify core habitats connected by panda dispersal and corridors among panda oc-
currences, respectively. Finally, we evaluated the effectiveness of current protected 
areas in representing core habitats and corridors. Our results showed high scale de-
pendence of giant panda habitat selection. Giant pandas strongly respond to bamboo 
percentage and elevation at a relatively fine scale (1 km), whereas they respond to 
anthropogenic factors at a coarse scale (≥2 km). Dispersal ability has significant ef-
fects on core habitats extent and population fragmentation evaluation. Under me-
dium and high dispersal ability scenarios (12,000 and 20,000 cost units), most giant 
panda habitats in the Qionglai mountain are predicted to be well connected by dis-
persal. The proportion of core habitats covered by protected areas varied between 
38% and 43% under different dispersal ability scenarios, highlighting significant gaps 
in the protected area network. Similarly, only 43% of corridors that connect giant 
panda occurrences were protected. Our results can provide crucial information for 
conservation managers to develop wise strategies to safeguard the long-term viability 
of the giant panda population.

K E Y W O R D S
factorial least-cost path, multiscale habitat selection, Qionglai mountain, random forest, 
resistant kernel, UNICOR

T A X O N O M Y  C L A S S I F I C A T I O N
Conservation ecology; Landscape ecology; Landscape planning; Spatial ecology

http://www.ecolevol.org
https://orcid.org/0000-0002-9541-231X
https://orcid.org/0000-0002-2870-8751
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
mailto:jiajingbo2011@163.com


2 of 17  |     SUN et al.

1  |  INTRODUC TION

The giant panda (Ailuropoda melanoleuca) is a rare and protected 
wildlife endemic to China and a flagship species of biodiversity con-
servation globally (Swaisgood et al., 2010). The giant panda once 
roamed throughout most of the lowlands of eastern and southern 
China, northern Vietnam, and northern Myanmar (Pan et al., 2014). 
Due to human activity, climate change, and natural disasters, the 
habitat of giant pandas has been continuously lost and fragmented. 
Currently, giant pandas are only distributed in part of mountainous 
areas in Sichuan, Shaanxi, and Gansu (State Forestry Administration, 
2015). The Chinese government has made great efforts to protect 
this charming species by establishing 67 reserves, Grain to Green 
Project, and Natural Forest Protection Program (Wei et al., 2015). 
These conservation efforts have led to some achievements, in-
cluding population growth and habitat expansion (State Forestry 
Administration, 2015). Results of the Fourth National Giant Panda 
Survey (hereinafter the fourth survey) revealed that there is an esti-
mated population size of 1,864 individuals in the wild and showed a 
16.8% population increase compared to the third survey, which was 
conducted from 1998 to 2001(State Forestry Administration, 2015). 
Based on the observed population increase, the International Union 
for Conservation of Nature (IUCN) changed the status of the giant 
panda from “endangered” to “vulnerable” (Swaisgood et al., 2016). 
However, the panda habitat is becoming increasingly fragmented 
(Xu et al., 2017), and small populations will face high extinction 
risks (Kong et al., 2021). According to the fourth survey, the panda's 
range is estimated to be subdivided into about 33 subpopulations 
separated by mountain ranges, rivers, roads, forest clearings, and 
human settlements (State Forestry Administration, 2015). Despite 
the enormous efforts that have been put in panda conservation, 
approximately 46% of the habitat (33% of the panda population) 
remains unprotected (State Forestry Administration, 2015). It is ur-
gently needed for a knowledge-based metapopulation management 
strategy for the long-term viability of giant panda subpopulations 
(Wei et al., 2012). Establishing and protecting core habitat patches 
and the connectivity networks that connect them is one of the ways 
to ensure the long-term survival of large terrestrial mammals at a 
regional scale (Kaszta et al., 2020). Additionally, it is unlikely to pro-
tect all the landscape with limited financial resources, large human 
populations, and complicated land ownership, making it crucial to 
identify core habitats and corridors. Several previous studies have 
identified habitat connectivity for giant pandas in different moun-
tain ranges using least-cost path analysis or circuit theory (Li et al., 
2010; Qi et al., 2012; Wang et al., 2021). Researchers usually first 
mapped habitat patches based on habitat suitability and then sim-
ulated corridors among patches in these studies. There were some 
shortcomings in them. For example, it is a simplification using habitat 
patches as source points rather than species occurrences, besides 
few studies took giant panda dispersal ability into account, though 
these two aspects are foundations for reliable prediction of corridor 
networks (Cushman et al., 2012, 2013). Furthermore, it was hard to 
prioritize corridors in these assessments given corridor construction 

and restoration are projects that consume both huge manpower and 
money (Kang & Li, 2016). Therefore, there is a need to apply more 
comprehensive approaches to map corridors.

Landscape resistance is a crucial component in connectivity 
modeling. It is challenging to quantify resistance to movement in a 
large extent because movement data are usually unavailable. Given 
the lack of movement or genetic data, habitat suitability is frequently 
used as a proxy to reflect landscape resistance (Zeller et al., 2012). 
Therefore, habitat suitability models may have essential impacts on 
resistance estimation. Research on the habitat of giant pandas facil-
itates our understanding of the resource needs and ongoing threats 
and is also a necessary basis for conservation decision-making (Hull 
et al., 2014). The habitat selection of animals is multidimensional, 
and the response of animals to different environmental factors often 
occurs at multiple hierarchical levels and over a range of spatial and 
temporal scales (Timm et al., 2016; Wiens, 1989). When describ-
ing the relationship between species and habitat, it is necessary to 
determine the suite of the covariates relevant to habitat selection 
by the species and determine the scale of interaction between spe-
cies and habitat (Graf et al., 2005). Incorrect insight into the nature 
and significance of relationships between species responses and 
environmental variables may result from ignoring scale in habitat 
modeling (McGarigal et al., 2016). As an iconic species of global bio-
diversity conservation, the research on giant pandas and their hab-
itats has received extensive attention (Bai et al., 2020; Hull et al., 
2014, 2016; Wei et al., 2015). Surprisingly, almost all of these studies 
were conducted using a single-scale model framework that all co-
variates are measured at the same spatial scale. These spatial scales 
are frequently determined arbitrarily by researchers or justified 
based on expert biological knowledge of the giant panda, such as 
20 * 20 m plot size or 250 * 250 m raster cell size (e.g., Feng et al., 
2009; Wang et al., 2010). Modeling habitat suitability under a mul-
tiscale modeling framework is superior to the single-scale models 
in terms of model predictive ability and proportion of deviance ex-
plained for some species (Bellamy et al., 2013; Timm et al., 2016). 
In addition, the multiscale analysis provided new insight on the 
relationship between species response and habitat covariates that 
single-scale model did not detect (Mateo-Sánchez et al., 2014; Timm 
et al., 2016; Wasserman et al., 2012). Therefore, studying habitat 
selection using a multiscale framework is of significance for deep-
ening our understanding of the relationship between giant pandas 
and their habitat and formulating more targeted conservation and 
management strategies.

For more than a decade, traditional statistical methods such as 
logistic regression have been the dominant method in multiscale hab-
itat modeling (McGarigal et al., 2016). However, in ecological model-
ing, well-defined issues, such as complicated nonlinear interactions, 
spatial autocorrelation, high-dimensionality, nonstationarity, and 
scale, make it difficult for the collected ecological data to meet the 
assumptions of traditional statistical models (e.g., independence, ho-
mogeneity of variance, and multivariate normality), thereby reducing 
the robustness of the model results (Olden et al., 2008). In the face 
of these problems, the advantages of machine learning methods 
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gradually emerge and are increasingly widely used in habitat mod-
eling (Evans et al., 2011). Among them, the random forest model 
stands out because it can deal with a large number of predictors 
and find sound signals from data with noise. Random forest is an 
algorithm that developed out of classification and regression tree 
(CART) and bagging approaches (Breiman, 2001). It builds a classi-
fication and regression tree through repeated resampling to form a 
weak classifier and ensemble many weak classifiers to develop into a 
strong classifier. Many studies have shown that random forest out-
performs traditional statistical methods in terms of model predic-
tive ability (Cushman et al., 2017; Cushman & Wasserman, 2018; Mi 
et al., 2017), whereas there are few applications of random forest in 
giant panda habitat modeling, in which the most commonly used are 
maximum entropy model and habitat suitability index model (e.g., 
Songer et al., 2012; Xu et al., 2006).

This study tries to identify core habitats and corridors for giant 
pandas using the improved method by combining multiscale random 
forest habitat modeling and connectivity analysis. There are three 
specific objectives of this study: (1) we combine an extensive giant 
panda occurrence dataset and the multiscale random forest habitat 
modeling framework to delineate a habitat suitability map for giant 
pandas in the Qionglai mountain; (2) we used resistant kernel ap-
proaches and factorial least-cost path analysis to identify core hab-
itats and corridors; and (3) we assessed the representation of the 
predicted core habitats and corridors in the protected area network. 
Although using giant panda in the Qionglai mountain as a case study, 

the approaches are expected to provide crucial information for con-
servation managers to develop more effective conservation strate-
gies for other wildlife species.

2  |  METHODS

2.1  |  Study area

The Qionglai mountain is located in the west of the Sichuan Basin 
and is the geographical boundary between Sichuan Basin and 
Tibetan Plateau. The study area comprises eight counties with a 
total area around 15,712  km2 (between 102.26° E and 103.82° E 
longitude and 29.82°N and 31.72°N latitude; Figure 1). There are 
six major vegetation/elevation zones in the Qionglai mountain range 
(Xu et al., 2006): (1) subtropical evergreen broad-leaf forests below 
1,600 m; (2) mixed forests of evergreen and deciduous broad-leaf 
forests between 1,600 and 2,000 m; (3) coniferous and broad-leaf 
mixed forests between 2,000 and 2,600 m; (4) subalpine coniferous 
forests between 2,600 and 3,600 m; (5) scrub meadows and alpine 
talus vegetation between 3,600 and 4,400 m; (6) screes and perma-
nent snow belts above 4,400 m. Many rare wild animals coexist with 
giant pandas in the Qionglai mountain range, such as golden snub-
nosed monkey (Phinopithecus roxellana), red panda (Ailurus fulgens), 
sambar (Cervus unicolor), takin (Budorcas taxicolor), among others 
(Zhang et al., 2017).

F I G U R E  1 The geographic extent of 
the study area and distribution points of 
the giant panda in the Qionglai Mountain
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The Qionglai mountain is where the giant panda was scientifi-
cally discovered (Hu, 2001). It also is the second-largest tract of the 
habitat of the six mountain ranges occupied by giant pandas and is 
home to about 30% of the entire wild giant panda population (State 
Forestry Administration, 2015). The Qionglai panda population is 
estimated to be divided into five subpopulations, including Xiaojin, 
Wolong-Caopo, Xiling-Jiajin, Baishahe, and Sanhe, by major roads 
(e.g., G350, S210, G318) (Forestry Department of Sichuan Province, 
2015). There are seven established protected areas in the study area 
(Figure 1), three of which are administrated at the national level: 
Wolong, Fengtongzhai, and Longxi-Hongkou; the remaining four are 
at the provincial level: Anzihe, Heishuihe, Labahe, and Caopo.

2.2  |  Presence and pseudo-absence points of 
giant pandas

The giant panda occurrence data used in this study were from the 
fourth survey conducted between 2011 and 2014 (Tang et al., 2015). 
Based on the third panda survey (1999–2003) results, the survey area 
in the fourth survey was classified into key survey areas (2 km2 sur-
vey cell size) and general survey areas (6  km2  survey cell size). In 
each survey cell, one line-transect generally greater than 0.75 km 
was placed to cover all types of panda habitat. Walking along line 
transects, investigators collected evidence of giant panda occur-
rences, including feces, foraging sites, dens, footprints, or entities, 
and used GPS (Global Position System) to record the coordinates of 
these occurrences (Tang et al., 2015). To reduce the effect of spatial 
autocorrelation between occurrence points on model performance, 
we used “SDMtoolbox” to spatially filter panda occurrences (Brown 
& Anderson, 2014); the filter radius was set to 1.2 km according to 
the average home range size of giant pandas estimated based on 
GPS collar study in Wolong reserve (4.4 ± 1.2 km2; Hull et al., 2015). 
This means the minimum distance among the filtered occurrences 
is 1.2 km. Finally, 403 out of 528 giant panda occurrences were re-
tained for modeling (Figure 1).

The survey results of giant pandas only include the occurrence 
points and do not include the absence data of giant pandas. In fact, 
due to the elusive behavior of giant pandas and dense vegetation, 
it is not practical to confirm the absence of giant pandas in a 2 km2 
or 6 km2 survey cell (Viña et al., 2010). To apply the random for-
est model in the absence of reliable absence points, we generate 
a set of pseudo-absence points based on the giant panda occur-
rence locations (Wang et al., 2010). To fully unleash the power 
of random forest, we used a random selection of geographically 
stratified pseudo-absences approach recommended by (Barbet-
Massin et al., 2012). The pseudo-absences should lie outside the 
3-km radius buffer zone (based on the maximum territory size 
of the giant panda, which is around 30 km2; Hu, 2001) of panda 
occurrences. The pseudo-absences are also limited in areas with 
elevation <4,000 m and slope <50°as giant pandas often avoid 
high elevation and steep areas (Wang et al., 2010). The minimum 
distance among pseudo-absences is also set to 1.2 km to alleviate 

spatial autocorrelation. We randomly select ten sets of the same 
number of pseudo-absences as available presences (403 in this 
study) because random forest model is sensitive to class imbalance 
(Barbet-Massin et al., 2012).

2.3  |  Environmental variables

According to previous studies, we selected a set of environmental 
variables that may affect giant panda habitat selection or distribu-
tion (Viña et al., 2010; Wang et al., 2010; Xu et al., 2006). These 
variables can be summarized into four categories: topographic, land 
cover, vegetation, and anthropogenic disturbance (Table 1).

Topographic variables included elevation, degree of slope, as-
pect, and terrain ruggedness index. A 90-m resolution digital ele-
vation model (DEM) product was downloaded from the Shuttle 
Radar Topography Mission (SRTM; http://srtm.csi.cgiar.org). We 
calculated these four topographic variables using the Gradient and 
Geomorphometric Modeling Toolbox in ArcGIS (Evans et al., 2014). 
To avoid the circular issue of aspect, we transformed the aspect 
from the range 0–360 to the range 0–1 using the method developed 
by Roberts and Cooper (1989).

We obtained the land cover product from the Copernicus Global 
Land Service (Buchhorn et al., 2020), with a spatial resolution of 100 m 
(https://land.coper​nicus.eu/globa​l/produ​cts/lc, 2015). The original 
land cover product has 22 categories which were reclassified into 7 
categories including: crop, shrub, grass, closed broadleaf forest (can-
opy cover >70%; CBF), closed needle leaf forest (canopy cover >70%; 
CNF), open forest (canopy cover <70%; OF), and nonvegetation area. 
We then used FRAGSTATS v4.2 (McGarigal, 2002) to calculate four 
landscape-level metrics (Aggregation Index, AI; Edge Density, ED; 
Patch Density, PD; Shannon Diversity Index, SHDI) and two class-level 
metrics for the two dominant forest types (i.e., CNF and CBF) (Largest 
Patch Index, LPI_; Percentage of Landscape, PLAND_; Table 1) to char-
acterize landscape composition and configuration.

We used a remotely sensed measure of net primary productiv-
ity (NPP) obtained from the MODIS (Moderate Resolution Imaging 
Spectroradiometer) satellite image at 500-m resolution (Running et al., 
2004). We calculated a 4-year average of NPP from 2011 to 2014 to 
be consistent with the time of the panda survey. We also included 
the bamboo distribution as a vegetation variable as the giant panda 
is primarily dependent on bamboo (Hu et al., 1985). Ground-based 
surveys are unavailable for detailed information on bamboo's spatial 
distribution across large extents. Then, we modeled bamboo distribu-
tion using the method developed by Tuanmu et al. (2010). This method 
extracts 11 phenology metrics from a time series of MODIS satellite 
images and combines these metrics with the maximum entropy mod-
eling (MaxEnt; a machine learning-based species distribution model) 
to model the probability of bamboo presence. We used this method 
to model the probability of bamboo presence and converted it to a 
binary map of bamboo distribution (i.e., bamboo vs. no bamboo) using 
the threshold that maximizes the summation of model sensitivity and 
specificity (Liu et al., 2013). Finally, we calculated the proportion of 

http://srtm.csi.cgiar.org
https://land.copernicus.eu/global/products/lc
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bamboo coverage within a range of moving windows. See the bamboo 
modeling details in Appendix A and a binary distribution map for bam-
boo in Figure A1.

We calculated the Euclidean distance to the village, major road, 
and minor road for spatial measures of anthropogenic disturbance. 
We also calculated the density of villages and roads (major and minor) 
across various spatial scales. Shapefile of villages and roads were ob-
tained from an open database from the National Basic Geographic 
Database (www.webmap.cn; 2015).

All variables were projected to the 48N UTM projection and 
resampled to a 250-m spatial resolution in ArcGIS (ESRI, 2014). 
Categorical variables were resampled using the nearest neighbor-
hood method, whereas continuous variables were resampled using 
the bilinear interpolation method.

2.4  |  Multiple scale variables

Scale optimization plays a vital role in habitat modeling (McGarigal 
et al., 2016). We transformed all variables but the distance-based 

variables (i.e., distance to villages or roads) to multiple scale vari-
ables. We considered six spatial scales in the present study, in-
cluding 1,000, 2,000, 3,000, 4,000, 5,000, 6,000 m; these scales 
correspond to a spatial extent of 3.14–113 km2, which include the 
average size of giant panda home range (Hull et al., 2015) and the 
minimum area requirements of a giant panda population (114.7 km2; 
Qing et al., 2016). Landscape metrics were calculated in FRAGSTATS 
(McGarigal, 2002) using the moving window option at the six spa-
tial scales, while other variables were calculated of their focal mean 
at different radii using the “Multi-scale Maxent Toolbox” in ArcGIS 
(Bellamy & Altringham, 2015).

2.5  |  Multiscale random forest habitat model

We used the random forest approach developed by Evans and 
Cushman (2009) to model habitat suitability for the giant panda 
in the Qionglai mountain. We conducted the random forests 
using the two-step multiscale optimization framework sug-
gested by McGarigal et al. (2016). First, for each presence and 

TA B L E  1 Predictor variables used in the analysis and their optimal scale identified by univariate random forest

Category Variables Description Source
Optimal 
scale (km)

Topographic ELE Focal mean of elevation NASA’S SRTM v4 1

SLP Slope position 5

ASP Slope aspect transformed to range 0–1 using 
methods in Roberts and Cooper (1989)

6

TRI Terrain ruggedness index 5

Vegetation NPP Net primary productivity MODIS MOD17A3 product 1

BAM Percentage of bamboo coverage Predicted from MaxEnt using 
MODIS phenological metrics

1

Land cover 
(Landscape 
level)

AI Aggregation index for the full landscape mosaic 
within a moving window

FRAGSTATS analysis of the 
reclassified Copernicus land 
cover map

4

ED Edge density for the full landscape mosaic within a 
moving window

1

PD Patch density for the full landscape mosaic within a 
moving window

1

SHDI Shannon's diversity index for the full landscape 
mosaic within a moving window

2

Land cover (class 
level)

LPI_CNF Largest patch index of the closed needle leaf 
forests within a moving window

FRAGSTATS analysis of the 
reclassified Copernicus land 
cover map

4

PLAND_CNF Percentage of the closed needle-leaf forest within a 
moving window

2

LPI_CBF Largest patch index of the closed broad-leaf forest 
within a moving window

1

PLAND_CBF Percentage of the closed broad-leaf forest within a 
moving window

1

Anthropogenic Disvil Euclidean distance to the nearest village 1:250,000 National Basic 
Geographic DatabaseDismajor Euclidean distance to the nearest major road

Disunpaved Euclidean distance to the nearest minor road

Densvil The density of villages within a moving window 4

Densrd The density of all roads within a moving window 2

http://www.webmap.cn
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pseudo-absence dataset, we run univariate random forest mod-
els to identify the optimized scale for each variable. Presence and 
pseudo-absence points of giant pandas were used as response 
variables and were tested against one scale of each environmental 
variable at a time. The optimized scale of each variable was deter-
mined based on the model with the lowest out-of-bag (OOB) error 
rate. We used the scale with the highest frequency of selected 
optimal scale in the ten univariate random forest models as the 
final optimal scale for that variable. The scale-optimized variables 
were further tested for multicollinearity and for those pairs with 
a Pearson correlation coefficient higher than 0.85, one variable 
was removed.

Second, utilizing the suite of scale-optimized variables from the 
first step, we constructed a multivariate random forest model to 
predict the probability of giant panda occurrence. To identify the 
most parsimonious model, we used Model Improvement Ratio (MIR; 
Murphy et al., 2010) to retain only the most important variables. The 
MIR employs the permuted variable importance, represented by a 
decrease in OOB error standardized from zero to one. The variables 
are subset using 0.1 increments of MIR value in model selection, 
with all variables above the threshold retained for each model. This 
subset is always conducted on the original model's variable impor-
tance to avoid over-fitting (Svetnik et al., 2004). We compared all 
subset models and selected the lowest total OOB error as the final 
model. Before any random forest modeling, we evaluated the min-
imum number of trees needed by evaluating 2,000 bootstrap sam-
ples and observed when the OBB error rate stopped improving. The 
result showed that OOB error rate ceased to improve after 200 trees 
(Figure A3), but we used 500 trees in all models to be conservative as 
Evans et al. (2011) recommended. Model building and selection were 
performed using the R package “rfUtilities” (Evans & Murphy, 2014) 
and “randomForest” (Liaw & Wiener, 2002). Model predictions for 
the random forest model were generated by creating a habitat suit-
ability map using a ratio of the majority in the votes matrix. We re-
peated the above steps for the ten presence and pseudo-absence 
datasets. The final habitat suitability prediction is averaged over 
the ten models (Barbet-Massin et al., 2012; Valavi et al., 2021); this 
method is called equal-sampling random forest. We also plotted the 
partial plots for the selected variables by plotting the range of a vari-
able against the estimated probability while keeping other variables 
at their mean.

2.6  |  Model evaluation

We assessed the predictive performance of the equal-sampling 
multiscale random forest model using the area under the total op-
erating characteristic curve (AUC). AUC is a threshold-independent 
evaluation metrics, it measures the ability of the model to discrimi-
nate presences from pseudo-absences (Pearce & Ferrier, 2000). 
Presences and pseudo-absences of giant pandas were randomly 
divided into a training set (70%) and a validation set (30%). This pro-
cedure was repeated ten times, and we calculated the mean AUC.

2.7  |  Landscape resistance layer

A study has shown that the relationship between the resistance spe-
cies moving in the landscape and the habitat suitability is usually 
an exponential function rather than a linear function (Keeley et al., 
2016). We converted the predicted habitat suitability map from mul-
tiscale random forest to the landscape resistance layer using an ex-
ponential function (Equation 1):

where R is the resistance value, and HS is the predicted habitat suitabil-
ity. We then rescaled the resistance values to the range between 1 and 
100 using linear interpolation, such that the resistance values equal 1 
when HS is 1 and 100 when HS is 0. Such transformation means that 
most pixels in the studied landscape receive low resistance values, and 
only areas with very low habitat suitability receive high resistance val-
ues (Keeley et al., 2016).

2.8  |  Identification of core habitats and corridors

We used the resistant kernel method (Compton et al., 2007) and fac-
torial least-cost path analysis (Cushman et al., 2009) in the universal 
corridor network simulator (UNICOR) (Landguth et al., 2012) to create 
two connectivity predictions: resistant kernels and factorial least-cost 
paths. The resistant kernel method calculates the cumulative resist-
ance cost-weighted dispersal kernel around each source point up to a 
threshold (usually determined by species movement ability), then sum-
ming all kernels to create a surface of expected density of dispersing 
organisms at any location in the landscape (Compton et al., 2007). This 
surface is a function of source points, landscape resistance, and dis-
persal ability (Cushman, McRae, et al., 2013). The factorial least-cost 
path analysis uses Dijkastra's algorithm to calculate the least-cost path 
from every species occurrence to every other occurrence location in 
the landscape (Landguth et al., 2012). These simulated least-cost 
paths were then buffered based on kernel density estimation, and the 
Gaussian function was selected in our study. All buffered least-cost 
paths were summed to produce a map of corridor intensity. The value 
of a pixel in this map represents the frequency of least-cost paths 
passing through it.

We used the spatially filtered giant panda occurrences as source 
points and the transformed habitat suitability map as the resis-
tance layer. A previous study demonstrated that dispersal ability 
has a significant effect on the estimation of population connectivity 
(Cushman et al., 2013). However, we do not have a certain knowledge 
of giant pandas’ dispersal ability. To account for uncertainties regard-
ing giant panda dispersal ability, we used three distance thresholds in 
the resistant kernel analysis: 6,000, 12,000, 20,000 cost units, which 
indicate movement distance of 6, 12, 20  km, respectively, in ideal 
low resistance habitat. We selected 6 km because the biggest home 
range recorded was about 30 km2 (Hu, 2001); if the home range was 
seen as a circle, its diameter is approaching 6 km. In addition, genetic 

(1)R = 1000(−1∗HS)
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studies indicated that the spatial extent of the genetic structure of 
one population occurred within about 12 km (Hu et al., 2010; Zhan 
et al., 2007). Furthermore, Pan et al. (2014) and Zhan et al. (2007) re-
ported several giant panda dispersal events with a distance exceed-
ing 20 km. For factorial least-cost paths analysis, we set the upper 
limit of dispersal ability to 50,000 cost units to model long-distance 
connections, as the maximum dispersal distance recorded was 50 km 
(Swaisgood et al., 2010). We used the resistant kernel maps to iden-
tify core habitats for the giant panda, as in Cushman, Landguth, et al. 
(2013). We defined core habitats as contiguous areas with resistant 
kernel values greater than 5% of the highest value.

2.9  |  Effectiveness of protected areas

To assess the effectiveness of the current protected area network on 
protecting core habitat patches and corridors for the giant pandas in 
the Qionglai mountain, we quantified the extent and proportion of 
predicted core habitats and corridors within protected areas.

3  |  RESULTS

3.1  |  Scale optimization

The univariate random forest optimization analysis showed that op-
timized scales vary by variables (Table 1; Figure A2); bamboo cover, 
elevation, net primary productivity, patch density, and largest patch 
index of closed broad-leaf forest were all strongly related to giant 
panda occurrence at fine scale (1,000 m), while aspect, terrain rug-
gedness index, village density, percentage of closed needle-leaf for-
est were strongly related at much coarser scale (≥4,000 m). Four 
variables (PLAND_CBF, ED, PLAND_CNF, SLP) were screened due 
to their high correlation with other variables.

3.2  |  Multivariate random forest model

We selected the most parsimonious model based on MIR for each 
presence and pseudo-absence dataset. The most significant vari-
ables were the percentage of bamboo cover, elevation, and net 
primary productivity, while other variables had a relatively low influ-
ence on giant panda occurrence (Figure A4).

Our equal-sampling multivariate random forest model showed 
that predicted giant panda occurrence probability had a nonlinear 
relationship with most variables while had an approximately linear 
relationship with the percentage of bamboo and the largest patch 
index of closed broadleaf forest (Figure 2). Elevation showed a uni-
modal relationship with giant panda occurrence probability, peaking 
at 2,600 m. Percentage of bamboo cover, largest patch index of CBF, 
and net primary productivity showed a positive association with 
giant panda occurrence. In contrast, village density and road density 
showed a negative relationship.

The equal-sampling multiscale random forest model showed an 
excellent predictive performance with a mean AUC value of 0.941 
(SD =  0.014). The habitat suitability map (Figure 3a) produced by 
averaging ten predictions showing the predicted occurrence of giant 
pandas in the Qionglai mountain. Areas of low resistance to giant 
panda movement were concentrated mainly in the mid-elevational 
part of the landscape (Figure 3b). Areas of high resistance were ei-
ther in low elevation areas dominated by anthropogenic disturbance 
such as farmlands or in higher elevation areas where massive energy 
was required for giant pandas to move.

3.3  |  Core habitats and corridor network

We presented resistant kernel simulation results for the giant panda in 
the Qionglai mountain at three dispersal scenarios (i.e., 6,000, 12,000, 
20,000 cost units; Figure 4). Our connectivity simulation showed that 
high predicted rates of panda movement were mainly concentrated in 
the northern and central parts of the study area and a relatively small 
area in the southern region. Dispersal ability showed a significant ef-
fect on population connectivity simulation for the giant panda, with 
a broader range of connected area produced at high dispersal abil-
ity scenario (20,000 cost units; Figure 4c) than at low dispersal abil-
ity scenario (6,000 cost units; Figure 4a). Under the 6,000 cost units 
scenario, the giant panda population in the Qionglai mountain was 
predicted to be broken up into more than ten core patches (three large 
patches and several small patches; Figure 4a). Under the 12,000 cost 
units scenario, there were predicted to be two large patches and a few 
small patches (Figure 4b). Under the highest dispersal ability scenario 
(i.e., 20,000 cost units), most of the giant panda population was pre-
dicted to be connected within one dominant patch while a few small 
patches were isolated (Figure 4c). However, patches on each side of 
G318 could not be connected under all dispersal scenarios.

The extent of predicted core habitats varied between 3,451 km2 
and 5,450  km2 along with dispersal ability, with more remarkable 
dispersal ability indicating a more significant predicted core habitats 
extent (Table 2).

The extent and percentage of protected core habitats differed 
along with dispersal ability scenarios. The area of protected core hab-
itats varied between 1,485 km2 and 2,074 km2, with the protection 
rate ranging between 43% and 38% (Table 2).

The factorial least-cost paths map (Figure 5) showed that domi-
nant pathway density lies in the mountain area's northern and cen-
tral parts. The extent of simulated corridors was 3,234 km2, of which 
protected areas covered 1,394 km2 (43%).

4  |  DISCUSSION

This study presents one example of a scale-optimized habitat selection 
model and the only example we are aware of for the endangered giant 
panda at a mountain extent. We quantitatively assessed population 
connectivity for the giant panda in the Qionglai mountain, combining 
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the species distribution and connectivity modeling technique. The ap-
proach applied in this study can be used to identify primary resource 
requirement, limiting factors, and the spatial scales that giant panda 
strongly associated with habitat components. Our results provide 
crucial information to assist giant panda conservation management, 
including identifying the distribution and strength of core habitat and 
areas as corridors that facilitate connectivity among core habitats.

4.1  |  Scale dependence of habitat selection

Scale is a vital component to consider in ecological research, and grain 
size is one of its key facets (Connor et al., 2018). Connor et al. (2018) 
showed that predictor grain size significantly impacts species distribution 

model accuracy and area of species presence prediction. But there are 
differences between their study and ours. They constructed species dis-
tribution models using variables that are all calculated within the same 
size moving window (i.e., same spatial scale) at one time (Connor et al., 
2018). Strictly, their study should be considered as multiple single-scale 
models rather than multiscale models because in the latter different 
variables can be included in the final model at variable scales (McGarigal 
et al., 2016). The missing step between them is scale optimization. 
Scale optimization is critical for robust habitat models, which is crucial 
in developing conservation and management strategies for endangered 
species (Timm et al., 2016) like giant pandas. A few studies have demon-
strated that multiscale habitat models can improve model performance 
and deepen our understanding of the relationship between species and 
habitat (Mateo-Sánchez et al., 2014; Timm et al., 2016). For example, 

F I G U R E  2 Partial dependency plots 
representing the marginal effect of habitat 
variables on predicted occurrence of 
giant panda. The gray area indicates the 
95% confidence interval, and the red line 
indicates the mean average
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including a variable in a habitat model with an inapposite scale may re-
sult in misleading variable importance (Connor et al., 2018).

Consistent with other studies on habitat selection of carnivores 
(Khosravi et al., 2019; Macdonald et al., 2019; Mateo-Sánchez et al., 
2014), the giant panda in Qionglai select different resources at vary-
ing spatial scales. Giant pandas respond to village density strongly 
at a broad scale (4 km), which highlights the importance of a large 
extent of the undisturbed landscape. On the contrary, our result re-
vealed that giant pandas select bamboo cover proportion at a rela-
tively fine scale (1 km). These findings were consistent with other 
studies on giant panda habitat selection, which concluded that pan-
das select for the disturbance at the level of geographic range and 
select for bamboo at the level of home range (Hull et al., 2014).

4.2  |  The effect of predictors on the distribution of 
giant pandas

We used an equal-sampling multiscale random forest habitat mode-
ling framework to delineate the relative habitat suitability map for the 
giant panda in the Qionglai mountain. Random forest is a tree-based 

method based on “bagging” and is demonstrated to outperform tra-
ditional statistical models in the field of species distribution models 
(Cushman et al., 2017; Evans et al., 2011). In addition, the habitat suit-
ability map derived from random forests is more discriminatory, with 
higher spatial heterogeneity than predictions from traditional gener-
alized linear models like logistic regression (Cushman & Wasserman, 
2018), providing a more robust delineation of priority suitable areas. 
Different from the general implementation of random forest in mod-
eling species spatial distribution (Cushman & Wasserman, 2018; 
Dar et al., 2021; Rather et al., 2020) that only randomly select one 
set of pseudo-absence sample of size equal to the number of pres-
ences, in this study, we used the equal-sampling method. The idea of 
equal-sampling is to fit n different random forest models (where n is 
often 10) on n different pseudo-absence samples of size equal to the 
presences (Barbet-Massin et al., 2012). This method is demonstrated 
suitable for presence-background data and outperforms other ran-
dom forest implementations (weighting or regression; Valavi, Elith, 
et al., 2021) and other modeling methods (e.g., generalized linear 
model and generalized additive model; Valavi et al., 2021).

As expected, the percentage of bamboo cover is the most crucial 
predictor driving the distribution of giant pandas. The giant panda is 

F I G U R E  3 (a) The habitat suitability map shows giant panda's predicted occurrence based on equal-sampling multiscale random forest 
habitat modeling in the Qionglai mountain. (b) The landscape resistance map shows the movement resistance for the giant panda, which is 
transformed from habitat suitability using an exponential function
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a specialist species with bamboo comprising about 99% of its diet, 
and it may spend up to 14 h/day foraging bamboo (Schaller, 1985). 
Therefore, including biotic interaction with bamboo will improve the 
performance of habitat models of the giant panda. Modeling under-
story bamboo distribution in dense forests to a large extent is chal-
lenging; however, phenological variables derived from time-series 
remote sensing images (e.g., MODIS) provide a way to address such 
an issue (Tuanmu et al., 2010).

We found that road density and village density had more sig-
nificant impacts on the giant panda occurrence probability than the 
distance to road or village. This finding indicated panda's relative 
habitat suitability is more related to human activities in the land-
scape than the proximity to linear roads. Human activity is the pri-
mary deterrent to giant pandas’ road use; sometimes, low-use roads 

such as abandoned logging roads were positively related to panda's 
habitat selection (Qi et al., 2011).

The largest patch index of closed needle forest (LPI_CBF) was pos-
itively associated with panda occurrence probability, highlighting that 
pandas prefer large dense forest patches, a result similar to the result 
of Wang et al. (2010). Of the selected variables, the landscape com-
position variables (i.e., LPI_CBF_1000 and LPI_CNF_4000) were more 
important than the variables reflecting landscape configuration (i.e., 
AI_4000). This result is similar to other studies on Ursidae (e.g., brown 
bear; Mateo-Sánchez et al., 2014) and is in agreement with the general 
pattern that habitat extent is more important than habitat configura-
tion (Cushman & McGarigal, 2002). The giant panda has a high depen-
dence on forest cover and has poor movement ability, suggesting that 
habitat composition should dominate its habitat relationships.

F I G U R E  4 Resistant kernel value 
gradient for core habitat under different 
dispersal ability scenarios: (a) 6,000, (b) 
12,000, and (c) 20,000 cost units

Dispersal threshold 
(cost units)

Extent of core 
habitats (km2)

Extent of protected core 
habitats (km2)

% of protected 
core habitats

6,000 3,451 1,485 43%

12,000 4,648 1,853 40%

20,000 5,450 2,074 38%

TA B L E  2 The extent and percentage 
of predicted core habitats covered by 
protected areas for the giant panda in the 
Qionglai mountain
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4.3  |  Giant panda population 
connectivity and corridors

Through many years of protection, the population number and 
habitats of wild giant pandas have increased (State Forestry 
Administration, 2015), significant species conservation results have 
been achieved in China (Kang & Li, 2016). However, habitat frag-
mentation has always been the key factor threatening their survival 
and is getting worse (Xu et al., 2017). A few studies assessed popula-
tion connectivity and proposed corridors to link fragmented habi-
tat patches (Li et al., 2010; Qi et al., 2012; Wang et al., 2021). The 
method usually used in these studies was the least-cost analysis (Li 
et al., 2010; Qi et al., 2012), which simulated narrow linear corri-
dors and the structural connectivity among habitat patches. Giant 
pandas may not use those simulated corridors because there may 
be no individuals in predicted habitat patches or giant pandas are 
hard to traverse long corridors due to limited mobility. We integrated 
panda's dispersal ability into connectivity analysis, which previous 
studies usually ignore. One strength of the resistant kernel approach 
is its explicit and realistic incorporation of species dispersal ability 
(Landguth et al., 2012). There are predicted to be >10 core habitat 
patches if the dispersal ability of giant panda is limited to 6,000 cost 

units, but with the dispersal of 12,000–20,000 cost units, it would re-
sult in seven to four patches (Figure 4). This result highlights that the 
extent and fragmentation of connected habitats are highly depend-
ent on the dispersal ability of the focal species (also see Ashrafzadeh 
et al., 2020; Cushman, Landguth, et al., 2013). In this present study, 
under all dispersal ability scenarios, panda populations in Caopo, 
Wolong, Anzihe, Heishuihe, and Fengtongzhai were predicted 
to be connected by dispersal. However, population connectivity 
evaluation based on major roads divided this population into two 
subpopulations: the northern Wolong-Caopo subpopulation and 
southern Xiling-Jiajin subpopulation (State Forestry Administration, 
2015). Functional population connectivity is a complex interaction 
between dispersal ability, population size, and resistance to move-
ment (Cushman et al., 2010). Delineating subpopulations based on 
habitat patterns may underestimate population connectivity. For 
example, in the study of Xu et al. (2006), national and provincial 
roads (G318, G350, and S210) divided giant panda population in 
the Qionglai mountain into four blocks. However, in our estimation, 
G350 and S210 did not completely separate the big population into 
different subpopulations, which means giant pandas may cross these 
roads. Our results were supported by a recent large genetic study 
conducted in Wolong reserve (Qiao et al., 2019); Qiao et al. (2019) 

F I G U R E  5 Corridor pathway density 
for the giant panda in the Qionglai 
mountain calculated by factorial least-cost 
paths analysis under a dispersal threshold 
of 50,000 cost units. Corridor pathway 
density was shown with a gradient from 
weak (blue) to strong (red)
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found no significant genetic boundaries exists within panda popula-
tion despite the national road G350 that bisects the Wolong nature 
reserve. They recorded four giant panda road-crossing events within 
1 year, indicating giant panda populations may be better connected 
than previously thought.

Although dispersal ability significantly affects population con-
nectivity, our evaluation was not based on the certain knowledge of 
giant panda dispersal ability due to lacking empirical study of giant 
panda movement in the real landscape. Future research using satel-
lite tracking methods such as GPS collars will strengthen our under-
standing of the movement and dispersal of giant pandas, eventually 
improving the assessment of population connectivity. Our resistant 
kernel estimation highlights the distribution of connected habitats, 
and the resistant kernel value can potentially be used to prioritize 
areas for conservation that maximally protect the total connectivity 
of the population. Conservation practitioners can use such spatial-
explicit information to develop landscape conservation strategies 
when ecological, economic, and social constraints exist and priority 
areas should be planned (Kang & Li, 2016). Furthermore, spatial-
explicit resistant kernel estimation can provide more information 
in the zoning or the effectiveness evaluation of protected areas 
(Cushman et al., 2012) than simple habitat suitability distribution 
map, which is often used in such assessments (Qi et al., 2015; Wang 
et al., 2021). Under all dispersal ability scenarios, there is predicted 
to be a large proportion (57%–62%) of core habitats that are not pro-
tected by the current nature reserve network (Figure 4), highlighting 
a great potential to establish new protected areas.

The factorial least-cost path analysis identified optimal routes 
between giant panda occurrences to facilitate connectivity. General 
corridor simulation methods (e.g., least-cost path or least-cost corri-
dor) take habitat patches as the “source” and then calculate the path 
with the least cumulative cost between source patches; its result 
only reveals the location of the corridor (Cushman, McRae, et al., 
2013). However, the factorial least-cost path approach simulates 
corridor network based on species occurrence, and the simulation 
result provides the location and intensity of the corridor. The cor-
ridor intensity is a kernel density estimation based on the number 
of least-cost paths. Such information is important for corridor pri-
ority planning as corridor building and restoration usually need to 
invest a lot of money and manpower. We recommend paying more 
attention to the corridors linking small populations with much higher 
extinction risk to large populations. For example, subpopulations at 
the southernmost of the study area need more attention as they are 
predicted to be isolated from large core habitat patches under all 
dispersal ability scenarios. In previous evaluations, these subpopu-
lations were also believed to be isolated from other subpopulations 
by national roads (G318) (State Forestry Administration, 2015; Xu 
et al., 2006). In addition, areas with high predicted least-cost paths 
frequency outside protected areas also need prior protection. We 
can identify barriers that may impede giant panda dispersal based 
on the corridor pathway, like major roads. Combined with corridor 
density, we can further locate and rank the intersection of corridors 
with roads, which can provide crucial information for conservation 

practitioners to implement road mitigation measures such as warn-
ing signs, reduced speed limits, fencing, and construction of crossing 
structures (Cushman, Lewis, et al., 2013; Zeller et al., 2020).

4.4  |  Caveats and limitations

Our findings must be interpreted with regard to several major con-
siderations. First, giant panda occurrences used in this study were 
from the fourth survey conducted between 2011 and 2014. Natural 
and socio-economical conditions have changed since then (Xu et al., 
2017). For example, the reduction of total and agricultural popula-
tion and the increasing of infrastructure development (e.g., hydro-
power stations and road construction). Therefore, care should be 
taken when interpreting our results. While our study may not pro-
vide robust support for current decisions because it is based on 
older data, it illustrated a way to identify core habitats and corridors 
for large terrestrial mammals. Second, other human disturbances 
(e.g., livestock and trails) negatively affect giant panda habitat suit-
ability and were not included in the habitat modeling, so our study 
may have overestimated habitat suitability in some areas. Third, it 
should also be noted that habitat suitability is not a good proxy for 
landscape resistance, as habitat suitability reflects habitat selection 
in home range while species may use the landscape differently dur-
ing dispersal movements (Keeley et al., 2017). It would be better to 
develop resistance models with movement (Zeller et al., 2018) or 
gene flow (Cushman et al., 2006) data. Lastly, when designing new 
protected areas or corridors, it is also necessary to consider other 
large carnivores, as long-term monitoring studies have revealed a 
wide distribution range retreat of large carnivore populations across 
the giant panda distribution range (Li et al., 2020).
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the wide dynamic range vegetation index (WDRVI) (Gitelson, 2004) for 
each eight-day image. The WDRVI is more suitable than NDVI for de-
tecting the phonologic change in areas with high vegetation biomass, 
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middle season, length of season, base level, maximum level, amplitude, 
large integral, small integral, increase rate, and decrease rate (Eklundh 
& Jönsson, 2012; Tuanmu et al., 2010; Viña et al., 2010). The 3-year 

averages of these phenology metrics from 2011 to 2013 were used to 
map bamboo distribution. In addition, we included the elevation as a 
variable for modeling bamboo distribution because vegetation type is 
closely related to elevation zones in the Qionglai mountain range (Xu 
et al., 2006). We used the software Maxent (version 3.4.1, Phillips et 
al., 2006) to build a model for mapping the overall bamboo distribution 
as in Tuanmu et al. (2010). We did not have random bamboo pres-
ence localities across the study area, and we used two types of points 
as surrogate bamboo occurrence. One is the giant panda occurrence 
localities associated with bamboo from the Fourth Giant Panda Survey 
in Sichuan Province. The other is 500 points randomly selected from a 
coarse bamboo distribution map obtained from the 4th National Giant 
Panda Survey. We randomly selected 75% of occurrence data as the 
training dataset, and the remaining 25% were used as the validation 
dataset. The procedure was repeated ten times to get an average pre-
diction of bamboo occurrence probability. We set other parameters 
in Maxent as default. To get a binary map of bamboo distribution, we 
used the threshold that maximizes the sum of sensitivity and specific-
ity to convert the continuous occurrence probability map into a binary 

map (Liu et al., 2013).

F I G U R E  A 1 Binary map for bamboo distribution in Qionglai 
mountain predicted by using MaxEnt and phenological metrics

F I G U R E  A 2 The frequency scale 
was selected as the optimal scale in 10 
univariate equal-sampling random forest 
models for each variable

F I G U R E  A 3 The number of trees versus the error rate plot
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F I G U R E  A 4 Bar plot of variable 
importance based on the mean Model 
Improvement Ratio (MIR) from random 
forests of 10 equal-sampling presence-
pseudo absence datasets


