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Abstract
Habitat	loss	and	fragmentation	are	widely	acknowledged	as	the	main	driver	of	the	de-
cline	of	giant	panda	populations.	The	Chinese	government	has	made	great	efforts	to	
protect	this	charming	species	and	has	made	remarkable	achievements,	such	as	popu-
lation	growth	and	habitat	expansion.	However,	habitat	fragmentation	has	not	been	re-
versed.	Protecting	giant	pandas	in	a	large	spatial	extent	needs	to	identify	core	habitat	
patches	and	corridors	connecting	them.	This	study	used	an	equal-	sampling	multiscale	
random	forest	habitat	model	to	predict	a	habitat	suitability	map	for	the	giant	panda.	
Then,	we	applied	the	resistant	kernel	method	and	factorial	least-	cost	path	analysis	to	
identify	core	habitats	connected	by	panda	dispersal	and	corridors	among	panda	oc-
currences,	respectively.	Finally,	we	evaluated	the	effectiveness	of	current	protected	
areas	in	representing	core	habitats	and	corridors.	Our	results	showed	high	scale	de-
pendence	of	giant	panda	habitat	selection.	Giant	pandas	strongly	respond	to	bamboo	
percentage	and	elevation	at	a	relatively	fine	scale	 (1	km),	whereas	they	respond	to	
anthropogenic	factors	at	a	coarse	scale	 (≥2	km).	Dispersal	ability	has	significant	ef-
fects	on	core	habitats	extent	and	population	 fragmentation	evaluation.	Under	me-
dium	and	high	dispersal	ability	scenarios	(12,000	and	20,000	cost	units),	most	giant	
panda	habitats	in	the	Qionglai	mountain	are	predicted	to	be	well	connected	by	dis-
persal.	The	proportion	of	core	habitats	covered	by	protected	areas	varied	between	
38%	and	43%	under	different	dispersal	ability	scenarios,	highlighting	significant	gaps	
in	 the	 protected	 area	 network.	 Similarly,	 only	 43%	of	 corridors	 that	 connect	 giant	
panda	occurrences	were	protected.	Our	 results	can	provide	crucial	 information	for	
conservation	managers	to	develop	wise	strategies	to	safeguard	the	long-	term	viability	
of	the	giant	panda	population.
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1  |  INTRODUC TION

The	 giant	 panda	 (Ailuropoda melanoleuca)	 is	 a	 rare	 and	 protected	
wildlife	endemic	to	China	and	a	flagship	species	of	biodiversity	con-
servation	 globally	 (Swaisgood	 et	 al.,	 2010).	 The	 giant	 panda	 once	
roamed	throughout	most	of	 the	 lowlands	of	eastern	and	southern	
China,	northern	Vietnam,	and	northern	Myanmar	(Pan	et	al.,	2014).	
Due	 to	 human	 activity,	 climate	 change,	 and	 natural	 disasters,	 the	
habitat	of	giant	pandas	has	been	continuously	lost	and	fragmented.	
Currently,	giant	pandas	are	only	distributed	in	part	of	mountainous	
areas	in	Sichuan,	Shaanxi,	and	Gansu	(State	Forestry	Administration,	
2015).	The	Chinese	government	has	made	great	efforts	to	protect	
this	 charming	 species	by	establishing	67	 reserves,	Grain	 to	Green	
Project,	and	Natural	Forest	Protection	Program	 (Wei	et	al.,	2015).	
These	 conservation	 efforts	 have	 led	 to	 some	 achievements,	 in-
cluding	 population	 growth	 and	 habitat	 expansion	 (State	 Forestry	
Administration,	2015).	Results	of	the	Fourth	National	Giant	Panda	
Survey	(hereinafter	the	fourth	survey)	revealed	that	there	is	an	esti-
mated	population	size	of	1,864	individuals	in	the	wild	and	showed	a	
16.8%	population	increase	compared	to	the	third	survey,	which	was	
conducted	from	1998	to	2001(State	Forestry	Administration,	2015).	
Based	on	the	observed	population	increase,	the	International	Union	
for	Conservation	of	Nature	(IUCN)	changed	the	status	of	the	giant	
panda	 from	“endangered”	 to	 “vulnerable”	 (Swaisgood	et	al.,	2016).	
However,	 the	 panda	 habitat	 is	 becoming	 increasingly	 fragmented	
(Xu	 et	 al.,	 2017),	 and	 small	 populations	 will	 face	 high	 extinction	
risks	(Kong	et	al.,	2021).	According	to	the	fourth	survey,	the	panda's	
range	 is	estimated	 to	be	subdivided	 into	about	33	subpopulations	
separated	 by	mountain	 ranges,	 rivers,	 roads,	 forest	 clearings,	 and	
human	 settlements	 (State	Forestry	Administration,	2015).	Despite	
the	 enormous	 efforts	 that	 have	 been	 put	 in	 panda	 conservation,	
approximately	 46%	 of	 the	 habitat	 (33%	 of	 the	 panda	 population)	
remains	unprotected	(State	Forestry	Administration,	2015).	It	is	ur-
gently	needed	for	a	knowledge-	based	metapopulation	management	
strategy	 for	 the	 long-	term	 viability	 of	 giant	 panda	 subpopulations	
(Wei	et	al.,	2012).	Establishing	and	protecting	core	habitat	patches	
and	the	connectivity	networks	that	connect	them	is	one	of	the	ways	
to	 ensure	 the	 long-	term	 survival	 of	 large	 terrestrial	mammals	 at	 a	
regional	scale	(Kaszta	et	al.,	2020).	Additionally,	it	is	unlikely	to	pro-
tect	all	the	landscape	with	limited	financial	resources,	large	human	
populations,	 and	 complicated	 land	 ownership,	making	 it	 crucial	 to	
identify	core	habitats	and	corridors.	Several	previous	studies	have	
identified	habitat	connectivity	 for	giant	pandas	 in	different	moun-
tain	ranges	using	least-	cost	path	analysis	or	circuit	theory	(Li	et	al.,	
2010;	Qi	et	al.,	2012;	Wang	et	al.,	2021).	Researchers	usually	first	
mapped	habitat	patches	based	on	habitat	suitability	and	then	sim-
ulated	corridors	among	patches	in	these	studies.	There	were	some	
shortcomings	in	them.	For	example,	it	is	a	simplification	using	habitat	
patches	as	 source	points	 rather	 than	species	occurrences,	besides	
few	studies	took	giant	panda	dispersal	ability	into	account,	though	
these	two	aspects	are	foundations	for	reliable	prediction	of	corridor	
networks	(Cushman	et	al.,	2012,	2013).	Furthermore,	it	was	hard	to	
prioritize	corridors	in	these	assessments	given	corridor	construction	

and	restoration	are	projects	that	consume	both	huge	manpower	and	
money	(Kang	&	Li,	2016).	Therefore,	there	is	a	need	to	apply	more	
comprehensive	approaches	to	map	corridors.

Landscape	 resistance	 is	 a	 crucial	 component	 in	 connectivity	
modeling.	It	is	challenging	to	quantify	resistance	to	movement	in	a	
large	extent	because	movement	data	are	usually	unavailable.	Given	
the	lack	of	movement	or	genetic	data,	habitat	suitability	is	frequently	
used	as	a	proxy	to	reflect	landscape	resistance	(Zeller	et	al.,	2012).	
Therefore,	habitat	suitability	models	may	have	essential	impacts	on	
resistance	estimation.	Research	on	the	habitat	of	giant	pandas	facil-
itates	our	understanding	of	the	resource	needs	and	ongoing	threats	
and	is	also	a	necessary	basis	for	conservation	decision-	making	(Hull	
et	 al.,	 2014).	 The	 habitat	 selection	 of	 animals	 is	multidimensional,	
and	the	response	of	animals	to	different	environmental	factors	often	
occurs	at	multiple	hierarchical	levels	and	over	a	range	of	spatial	and	
temporal	 scales	 (Timm	 et	 al.,	 2016;	Wiens,	 1989).	When	 describ-
ing	the	relationship	between	species	and	habitat,	it	is	necessary	to	
determine	 the	suite	of	 the	covariates	 relevant	 to	habitat	 selection	
by	the	species	and	determine	the	scale	of	interaction	between	spe-
cies	and	habitat	(Graf	et	al.,	2005).	Incorrect	insight	into	the	nature	
and	 significance	 of	 relationships	 between	 species	 responses	 and	
environmental	 variables	may	 result	 from	 ignoring	 scale	 in	 habitat	
modeling	(McGarigal	et	al.,	2016).	As	an	iconic	species	of	global	bio-
diversity	conservation,	the	research	on	giant	pandas	and	their	hab-
itats	has	 received	extensive	attention	 (Bai	et	 al.,	2020;	Hull	 et	 al.,	
2014,	2016;	Wei	et	al.,	2015).	Surprisingly,	almost	all	of	these	studies	
were	conducted	using	a	 single-	scale	model	 framework	 that	all	 co-
variates	are	measured	at	the	same	spatial	scale.	These	spatial	scales	
are	 frequently	 determined	 arbitrarily	 by	 researchers	 or	 justified	
based	on	expert	biological	 knowledge	of	 the	giant	panda,	 such	as	
20	*	20	m	plot	size	or	250	*	250	m	raster	cell	size	(e.g.,	Feng	et	al.,	
2009;	Wang	et	al.,	2010).	Modeling	habitat	suitability	under	a	mul-
tiscale	modeling	 framework	 is	 superior	 to	 the	 single-	scale	models	
in	terms	of	model	predictive	ability	and	proportion	of	deviance	ex-
plained	 for	some	species	 (Bellamy	et	al.,	2013;	Timm	et	al.,	2016).	
In	 addition,	 the	 multiscale	 analysis	 provided	 new	 insight	 on	 the	
relationship	between	species	 response	and	habitat	covariates	 that	
single-	scale	model	did	not	detect	(Mateo-	Sánchez	et	al.,	2014;	Timm	
et	 al.,	 2016;	Wasserman	 et	 al.,	 2012).	 Therefore,	 studying	 habitat	
selection	using	a	multiscale	framework	 is	of	significance	for	deep-
ening	our	understanding	of	the	relationship	between	giant	pandas	
and	 their	habitat	and	 formulating	more	 targeted	conservation	and	
management	strategies.

For	more	than	a	decade,	traditional	statistical	methods	such	as	
logistic	regression	have	been	the	dominant	method	in	multiscale	hab-
itat	modeling	(McGarigal	et	al.,	2016).	However,	in	ecological	model-
ing,	well-	defined	issues,	such	as	complicated	nonlinear	interactions,	
spatial	 autocorrelation,	 high-	dimensionality,	 nonstationarity,	 and	
scale,	make	it	difficult	for	the	collected	ecological	data	to	meet	the	
assumptions	of	traditional	statistical	models	(e.g.,	independence,	ho-
mogeneity	of	variance,	and	multivariate	normality),	thereby	reducing	
the	robustness	of	the	model	results	(Olden	et	al.,	2008).	In	the	face	
of	 these	 problems,	 the	 advantages	 of	 machine	 learning	 methods	
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gradually	emerge	and	are	increasingly	widely	used	in	habitat	mod-
eling	 (Evans	 et	 al.,	 2011).	 Among	 them,	 the	 random	 forest	model	
stands	 out	 because	 it	 can	 deal	with	 a	 large	 number	 of	 predictors	
and	 find	 sound	 signals	 from	data	with	 noise.	 Random	 forest	 is	 an	
algorithm	 that	 developed	 out	 of	 classification	 and	 regression	 tree	
(CART)	and	bagging	approaches	(Breiman,	2001).	 It	builds	a	classi-
fication	and	regression	tree	through	repeated	resampling	to	form	a	
weak	classifier	and	ensemble	many	weak	classifiers	to	develop	into	a	
strong	classifier.	Many	studies	have	shown	that	random	forest	out-
performs	 traditional	 statistical	methods	 in	 terms	of	model	 predic-
tive	ability	(Cushman	et	al.,	2017;	Cushman	&	Wasserman,	2018;	Mi	
et	al.,	2017),	whereas	there	are	few	applications	of	random	forest	in	
giant	panda	habitat	modeling,	in	which	the	most	commonly	used	are	
maximum	entropy	model	 and	 habitat	 suitability	 index	model	 (e.g.,	
Songer	et	al.,	2012;	Xu	et	al.,	2006).

This	study	tries	to	identify	core	habitats	and	corridors	for	giant	
pandas	using	the	improved	method	by	combining	multiscale	random	
forest	habitat	modeling	and	connectivity	analysis.	There	are	 three	
specific	objectives	of	this	study:	(1)	we	combine	an	extensive	giant	
panda	occurrence	dataset	and	the	multiscale	random	forest	habitat	
modeling	framework	to	delineate	a	habitat	suitability	map	for	giant	
pandas	 in	 the	Qionglai	mountain;	 (2)	we	used	 resistant	 kernel	 ap-
proaches	and	factorial	least-	cost	path	analysis	to	identify	core	hab-
itats	 and	 corridors;	 and	 (3)	we	assessed	 the	 representation	of	 the	
predicted	core	habitats	and	corridors	in	the	protected	area	network.	
Although	using	giant	panda	in	the	Qionglai	mountain	as	a	case	study,	

the	approaches	are	expected	to	provide	crucial	information	for	con-
servation	managers	to	develop	more	effective	conservation	strate-
gies	for	other	wildlife	species.

2  |  METHODS

2.1  |  Study area

The	Qionglai	mountain	 is	 located	 in	the	west	of	the	Sichuan	Basin	
and	 is	 the	 geographical	 boundary	 between	 Sichuan	 Basin	 and	
Tibetan	 Plateau.	 The	 study	 area	 comprises	 eight	 counties	 with	 a	
total	 area	 around	 15,712	 km2	 (between	 102.26°	 E	 and	 103.82°	 E	
longitude	 and	29.82°N	 and	31.72°N	 latitude;	 Figure	 1).	 There	 are	
six	major	vegetation/elevation	zones	in	the	Qionglai	mountain	range	
(Xu	et	al.,	2006):	(1)	subtropical	evergreen	broad-	leaf	forests	below	
1,600	m;	 (2)	mixed	 forests	of	evergreen	and	deciduous	broad-	leaf	
forests	between	1,600	and	2,000	m;	(3)	coniferous	and	broad-	leaf	
mixed	forests	between	2,000	and	2,600	m;	(4)	subalpine	coniferous	
forests	between	2,600	and	3,600	m;	(5)	scrub	meadows	and	alpine	
talus	vegetation	between	3,600	and	4,400	m;	(6)	screes	and	perma-
nent	snow	belts	above	4,400	m.	Many	rare	wild	animals	coexist	with	
giant	pandas	in	the	Qionglai	mountain	range,	such	as	golden	snub-	
nosed	monkey	(Phinopithecus roxellana),	 red	panda	(Ailurus fulgens),	
sambar	 (Cervus unicolor),	 takin	 (Budorcas taxicolor),	 among	 others	
(Zhang	et	al.,	2017).

F I G U R E  1 The	geographic	extent	of	
the	study	area	and	distribution	points	of	
the	giant	panda	in	the	Qionglai	Mountain
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The	Qionglai	mountain	 is	where	 the	giant	panda	was	 scientifi-
cally	discovered	(Hu,	2001).	It	also	is	the	second-	largest	tract	of	the	
habitat	of	the	six	mountain	ranges	occupied	by	giant	pandas	and	is	
home	to	about	30%	of	the	entire	wild	giant	panda	population	(State	
Forestry	 Administration,	 2015).	 The	 Qionglai	 panda	 population	 is	
estimated	to	be	divided	into	five	subpopulations,	including	Xiaojin,	
Wolong-	Caopo,	 Xiling-	Jiajin,	 Baishahe,	 and	 Sanhe,	 by	major	 roads	
(e.g.,	G350,	S210,	G318)	(Forestry	Department	of	Sichuan	Province,	
2015).	There	are	seven	established	protected	areas	in	the	study	area	
(Figure	 1),	 three	 of	 which	 are	 administrated	 at	 the	 national	 level:	
Wolong,	Fengtongzhai,	and	Longxi-	Hongkou;	the	remaining	four	are	
at	the	provincial	level:	Anzihe,	Heishuihe,	Labahe,	and	Caopo.

2.2  |  Presence and pseudo- absence points of 
giant pandas

The	giant	panda	occurrence	data	used	in	this	study	were	from	the	
fourth	survey	conducted	between	2011	and	2014	(Tang	et	al.,	2015).	
Based	on	the	third	panda	survey	(1999–	2003)	results,	the	survey	area	
in	the	fourth	survey	was	classified	into	key	survey	areas	(2	km2 sur-
vey	 cell	 size)	 and	 general	 survey	 areas	 (6	 km2	 survey	 cell	 size).	 In	
each	 survey	 cell,	 one	 line-	transect	 generally	 greater	 than	0.75	km	
was	placed	to	cover	all	 types	of	panda	habitat.	Walking	along	 line	
transects,	 investigators	 collected	 evidence	 of	 giant	 panda	 occur-
rences,	 including	feces,	 foraging	sites,	dens,	 footprints,	or	entities,	
and	used	GPS	(Global	Position	System)	to	record	the	coordinates	of	
these	occurrences	(Tang	et	al.,	2015).	To	reduce	the	effect	of	spatial	
autocorrelation	between	occurrence	points	on	model	performance,	
we	used	“SDMtoolbox”	to	spatially	filter	panda	occurrences	(Brown	
&	Anderson,	2014);	the	filter	radius	was	set	to	1.2	km	according	to	
the	 average	 home	 range	 size	 of	 giant	 pandas	 estimated	 based	 on	
GPS	collar	study	in	Wolong	reserve	(4.4	±	1.2	km2;	Hull	et	al.,	2015).	
This	means	 the	minimum	distance	among	 the	 filtered	occurrences	
is	1.2	km.	Finally,	403	out	of	528	giant	panda	occurrences	were	re-
tained	for	modeling	(Figure	1).

The	survey	results	of	giant	pandas	only	include	the	occurrence	
points	and	do	not	include	the	absence	data	of	giant	pandas.	In	fact,	
due	to	the	elusive	behavior	of	giant	pandas	and	dense	vegetation,	
it	is	not	practical	to	confirm	the	absence	of	giant	pandas	in	a	2	km2 
or	6	km2	survey	cell	(Viña	et	al.,	2010).	To	apply	the	random	for-
est	model	in	the	absence	of	reliable	absence	points,	we	generate	
a	set	of	pseudo-	absence	points	based	on	 the	giant	panda	occur-
rence	 locations	 (Wang	 et	 al.,	 2010).	 To	 fully	 unleash	 the	 power	
of	 random	forest,	we	used	a	 random	selection	of	geographically	
stratified	 pseudo-	absences	 approach	 recommended	 by	 (Barbet-	
Massin	et	al.,	2012).	The	pseudo-	absences	should	lie	outside	the	
3-	km	 radius	 buffer	 zone	 (based	 on	 the	 maximum	 territory	 size	
of	 the	giant	panda,	which	 is	around	30	km2;	Hu,	2001)	of	panda	
occurrences.	The	pseudo-	absences	are	also	 limited	 in	areas	with	
elevation	<4,000	m	 and	 slope	<50°as	 giant	 pandas	 often	 avoid	
high	elevation	and	steep	areas	(Wang	et	al.,	2010).	The	minimum	
distance	among	pseudo-	absences	is	also	set	to	1.2	km	to	alleviate	

spatial	autocorrelation.	We	randomly	select	ten	sets	of	the	same	
number	 of	 pseudo-	absences	 as	 available	 presences	 (403	 in	 this	
study)	because	random	forest	model	is	sensitive	to	class	imbalance	
(Barbet-	Massin	et	al.,	2012).

2.3  |  Environmental variables

According	to	previous	studies,	we	selected	a	set	of	environmental	
variables	that	may	affect	giant	panda	habitat	selection	or	distribu-
tion	 (Viña	 et	 al.,	 2010;	Wang	 et	 al.,	 2010;	Xu	 et	 al.,	 2006).	 These	
variables	can	be	summarized	into	four	categories:	topographic,	land	
cover,	vegetation,	and	anthropogenic	disturbance	(Table	1).

Topographic	 variables	 included	 elevation,	 degree	 of	 slope,	 as-
pect,	 and	 terrain	 ruggedness	 index.	A	90-	m	 resolution	digital	 ele-
vation	 model	 (DEM)	 product	 was	 downloaded	 from	 the	 Shuttle	
Radar	 Topography	 Mission	 (SRTM;	 http://srtm.csi.cgiar.org).	 We	
calculated	these	four	topographic	variables	using	the	Gradient	and	
Geomorphometric	Modeling	Toolbox	in	ArcGIS	(Evans	et	al.,	2014).	
To	 avoid	 the	 circular	 issue	 of	 aspect,	 we	 transformed	 the	 aspect	
from	the	range	0–	360	to	the	range	0–	1	using	the	method	developed	
by	Roberts	and	Cooper	(1989).

We	obtained	the	land	cover	product	from	the	Copernicus	Global	
Land	Service	(Buchhorn	et	al.,	2020),	with	a	spatial	resolution	of	100	m	
(https://land.coper	nicus.eu/globa	l/produ	cts/lc,	 2015).	 The	 original	
land	cover	product	has	22	categories	which	were	reclassified	 into	7	
categories	including:	crop,	shrub,	grass,	closed	broadleaf	forest	(can-
opy	cover	>70%;	CBF),	closed	needle	leaf	forest	(canopy	cover	>70%;	
CNF),	open	forest	(canopy	cover	<70%;	OF),	and	nonvegetation	area.	
We	 then	used	FRAGSTATS	v4.2	 (McGarigal,	2002)	 to	calculate	 four	
landscape-	level	 metrics	 (Aggregation	 Index,	 AI;	 Edge	 Density,	 ED;	
Patch	Density,	PD;	Shannon	Diversity	Index,	SHDI)	and	two	class-	level	
metrics	for	the	two	dominant	forest	types	(i.e.,	CNF	and	CBF)	(Largest	
Patch	Index,	LPI_;	Percentage	of	Landscape,	PLAND_;	Table	1)	to	char-
acterize	landscape	composition	and	configuration.

We	 used	 a	 remotely	 sensed	measure	 of	 net	 primary	 productiv-
ity	 (NPP)	 obtained	 from	 the	MODIS	 (Moderate	 Resolution	 Imaging	
Spectroradiometer)	satellite	image	at	500-	m	resolution	(Running	et	al.,	
2004).	We	calculated	a	4-	year	average	of	NPP	from	2011	to	2014	to	
be	 consistent	with	 the	 time	 of	 the	 panda	 survey.	We	 also	 included	
the	bamboo	distribution	as	a	vegetation	variable	as	 the	giant	panda	
is	 primarily	 dependent	 on	 bamboo	 (Hu	 et	 al.,	 1985).	 Ground-	based	
surveys	are	unavailable	for	detailed	 information	on	bamboo's	spatial	
distribution	across	large	extents.	Then,	we	modeled	bamboo	distribu-
tion	using	the	method	developed	by	Tuanmu	et	al.	(2010).	This	method	
extracts	11	phenology	metrics	from	a	time	series	of	MODIS	satellite	
images	and	combines	these	metrics	with	the	maximum	entropy	mod-
eling	 (MaxEnt;	a	machine	 learning-	based	species	distribution	model)	
to	model	the	probability	of	bamboo	presence.	We	used	this	method	
to	model	 the	probability	of	bamboo	presence	and	converted	 it	 to	a	
binary	map	of	bamboo	distribution	(i.e.,	bamboo	vs.	no	bamboo)	using	
the	threshold	that	maximizes	the	summation	of	model	sensitivity	and	
specificity	 (Liu	et	al.,	2013).	Finally,	we	calculated	 the	proportion	of	

http://srtm.csi.cgiar.org
https://land.copernicus.eu/global/products/lc
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bamboo	coverage	within	a	range	of	moving	windows.	See	the	bamboo	
modeling	details	in	Appendix	A	and	a	binary	distribution	map	for	bam-
boo	in	Figure	A1.

We	calculated	the	Euclidean	distance	to	the	village,	major	road,	
and	minor	road	for	spatial	measures	of	anthropogenic	disturbance.	
We	also	calculated	the	density	of	villages	and	roads	(major	and	minor)	
across	various	spatial	scales.	Shapefile	of	villages	and	roads	were	ob-
tained	from	an	open	database	from	the	National	Basic	Geographic	
Database	(www.webmap.cn;	2015).

All	 variables	 were	 projected	 to	 the	 48N	 UTM	 projection	 and	
resampled	 to	 a	 250-	m	 spatial	 resolution	 in	 ArcGIS	 (ESRI,	 2014).	
Categorical	 variables	were	 resampled	 using	 the	 nearest	 neighbor-
hood	method,	whereas	continuous	variables	were	resampled	using	
the	bilinear	interpolation	method.

2.4  |  Multiple scale variables

Scale	optimization	plays	a	vital	role	in	habitat	modeling	(McGarigal	
et	 al.,	 2016).	We	 transformed	 all	 variables	 but	 the	distance-	based	

variables	 (i.e.,	 distance	 to	 villages	 or	 roads)	 to	multiple	 scale	 vari-
ables.	 We	 considered	 six	 spatial	 scales	 in	 the	 present	 study,	 in-
cluding	 1,000,	 2,000,	 3,000,	 4,000,	 5,000,	 6,000	m;	 these	 scales	
correspond	to	a	spatial	extent	of	3.14–	113	km2,	which	 include	the	
average	size	of	giant	panda	home	range	 (Hull	et	al.,	2015)	and	the	
minimum	area	requirements	of	a	giant	panda	population	(114.7	km2; 
Qing	et	al.,	2016).	Landscape	metrics	were	calculated	in	FRAGSTATS	
(McGarigal,	2002)	using	the	moving	window	option	at	the	six	spa-
tial	scales,	while	other	variables	were	calculated	of	their	focal	mean	
at	different	radii	using	the	“Multi-	scale	Maxent	Toolbox”	in	ArcGIS	
(Bellamy	&	Altringham,	2015).

2.5  |  Multiscale random forest habitat model

We	 used	 the	 random	 forest	 approach	 developed	 by	 Evans	 and	
Cushman	 (2009)	 to	model	habitat	 suitability	 for	 the	giant	panda	
in	 the	 Qionglai	 mountain.	 We	 conducted	 the	 random	 forests	
using	 the	 two-	step	 multiscale	 optimization	 framework	 sug-
gested	 by	McGarigal	 et	 al.	 (2016).	 First,	 for	 each	 presence	 and	

TA B L E  1 Predictor	variables	used	in	the	analysis	and	their	optimal	scale	identified	by	univariate	random	forest

Category Variables Description Source
Optimal 
scale (km)

Topographic ELE Focal	mean	of	elevation NASA’S	SRTM	v4 1

SLP Slope	position 5

ASP Slope	aspect	transformed	to	range	0–	1	using	
methods	in	Roberts	and	Cooper	(1989)

6

TRI Terrain	ruggedness	index 5

Vegetation NPP Net	primary	productivity MODIS	MOD17A3	product 1

BAM Percentage	of	bamboo	coverage Predicted	from	MaxEnt	using	
MODIS	phenological	metrics

1

Land	cover	
(Landscape	
level)

AI Aggregation	index	for	the	full	landscape	mosaic	
within	a	moving	window

FRAGSTATS	analysis	of	the	
reclassified	Copernicus	land	
cover	map

4

ED Edge	density	for	the	full	landscape	mosaic	within	a	
moving	window

1

PD Patch	density	for	the	full	landscape	mosaic	within	a	
moving	window

1

SHDI Shannon's	diversity	index	for	the	full	landscape	
mosaic	within	a	moving	window

2

Land	cover	(class	
level)

LPI_CNF Largest	patch	index	of	the	closed	needle	leaf	
forests	within	a	moving	window

FRAGSTATS	analysis	of	the	
reclassified	Copernicus	land	
cover	map

4

PLAND_CNF Percentage	of	the	closed	needle-	leaf	forest	within	a	
moving	window

2

LPI_CBF Largest	patch	index	of	the	closed	broad-	leaf	forest	
within	a	moving	window

1

PLAND_CBF Percentage	of	the	closed	broad-	leaf	forest	within	a	
moving	window

1

Anthropogenic Disvil Euclidean	distance	to	the	nearest	village 1:250,000	National	Basic	
Geographic	DatabaseDismajor Euclidean	distance	to	the	nearest	major	road

Disunpaved Euclidean	distance	to	the	nearest	minor	road

Densvil The	density	of	villages	within	a	moving	window 4

Densrd The	density	of	all	roads	within	a	moving	window 2

http://www.webmap.cn
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pseudo-	absence	 dataset,	we	 run	 univariate	 random	 forest	mod-
els	to	identify	the	optimized	scale	for	each	variable.	Presence	and	
pseudo-	absence	 points	 of	 giant	 pandas	 were	 used	 as	 response	
variables	and	were	tested	against	one	scale	of	each	environmental	
variable	at	a	time.	The	optimized	scale	of	each	variable	was	deter-
mined	based	on	the	model	with	the	lowest	out-	of-	bag	(OOB)	error	
rate.	We	 used	 the	 scale	with	 the	 highest	 frequency	 of	 selected	
optimal	 scale	 in	 the	 ten	univariate	 random	 forest	models	 as	 the	
final	optimal	scale	for	that	variable.	The	scale-	optimized	variables	
were	further	tested	for	multicollinearity	and	for	those	pairs	with	
a	 Pearson	 correlation	 coefficient	 higher	 than	 0.85,	 one	 variable	
was	removed.

Second,	utilizing	the	suite	of	scale-	optimized	variables	from	the	
first	 step,	 we	 constructed	 a	 multivariate	 random	 forest	 model	 to	
predict	 the	 probability	 of	 giant	 panda	 occurrence.	 To	 identify	 the	
most	parsimonious	model,	we	used	Model	Improvement	Ratio	(MIR;	
Murphy	et	al.,	2010)	to	retain	only	the	most	important	variables.	The	
MIR	employs	 the	permuted	variable	 importance,	 represented	by	a	
decrease	in	OOB	error	standardized	from	zero	to	one.	The	variables	
are	 subset	 using	 0.1	 increments	 of	MIR	 value	 in	model	 selection,	
with	all	variables	above	the	threshold	retained	for	each	model.	This	
subset	 is	always	conducted	on	the	original	model's	variable	 impor-
tance	 to	 avoid	over-	fitting	 (Svetnik	et	 al.,	 2004).	We	compared	all	
subset	models	and	selected	the	lowest	total	OOB	error	as	the	final	
model.	Before	any	random	forest	modeling,	we	evaluated	the	min-
imum	number	of	trees	needed	by	evaluating	2,000	bootstrap	sam-
ples	and	observed	when	the	OBB	error	rate	stopped	improving.	The	
result	showed	that	OOB	error	rate	ceased	to	improve	after	200	trees	
(Figure	A3),	but	we	used	500	trees	in	all	models	to	be	conservative	as	
Evans	et	al.	(2011)	recommended.	Model	building	and	selection	were	
performed	using	the	R	package	“rfUtilities”	(Evans	&	Murphy,	2014)	
and	“randomForest”	 (Liaw	&	Wiener,	2002).	Model	predictions	for	
the	random	forest	model	were	generated	by	creating	a	habitat	suit-
ability	map	using	a	ratio	of	the	majority	in	the	votes	matrix.	We	re-
peated	 the	above	steps	 for	 the	 ten	presence	and	pseudo-	absence	
datasets.	 The	 final	 habitat	 suitability	 prediction	 is	 averaged	 over	
the	ten	models	(Barbet-	Massin	et	al.,	2012;	Valavi	et	al.,	2021);	this	
method	is	called	equal-	sampling	random	forest.	We	also	plotted	the	
partial	plots	for	the	selected	variables	by	plotting	the	range	of	a	vari-
able	against	the	estimated	probability	while	keeping	other	variables	
at	their	mean.

2.6  |  Model evaluation

We	 assessed	 the	 predictive	 performance	 of	 the	 equal-	sampling	
multiscale	random	forest	model	using	the	area	under	the	total	op-
erating	characteristic	curve	(AUC).	AUC	is	a	threshold-	independent	
evaluation	metrics,	it	measures	the	ability	of	the	model	to	discrimi-
nate	 presences	 from	 pseudo-	absences	 (Pearce	 &	 Ferrier,	 2000).	
Presences	 and	 pseudo-	absences	 of	 giant	 pandas	 were	 randomly	
divided	into	a	training	set	(70%)	and	a	validation	set	(30%).	This	pro-
cedure	was	repeated	ten	times,	and	we	calculated	the	mean	AUC.

2.7  |  Landscape resistance layer

A	study	has	shown	that	the	relationship	between	the	resistance	spe-
cies	moving	 in	 the	 landscape	 and	 the	 habitat	 suitability	 is	 usually	
an	exponential	function	rather	than	a	linear	function	(Keeley	et	al.,	
2016).	We	converted	the	predicted	habitat	suitability	map	from	mul-
tiscale	random	forest	to	the	landscape	resistance	layer	using	an	ex-
ponential	function	(Equation	1):

where R	is	the	resistance	value,	and	HS	is	the	predicted	habitat	suitabil-
ity.	We	then	rescaled	the	resistance	values	to	the	range	between	1	and	
100	using	linear	interpolation,	such	that	the	resistance	values	equal	1	
when	HS	is	1	and	100	when	HS	is	0.	Such	transformation	means	that	
most	pixels	in	the	studied	landscape	receive	low	resistance	values,	and	
only	areas	with	very	low	habitat	suitability	receive	high	resistance	val-
ues	(Keeley	et	al.,	2016).

2.8  |  Identification of core habitats and corridors

We	used	the	resistant	kernel	method	(Compton	et	al.,	2007)	and	fac-
torial	least-	cost	path	analysis	(Cushman	et	al.,	2009)	in	the	universal	
corridor	network	simulator	(UNICOR)	(Landguth	et	al.,	2012)	to	create	
two	connectivity	predictions:	resistant	kernels	and	factorial	least-	cost	
paths.	The	 resistant	kernel	method	calculates	 the	cumulative	 resist-
ance	cost-	weighted	dispersal	kernel	around	each	source	point	up	to	a	
threshold	(usually	determined	by	species	movement	ability),	then	sum-
ming	all	kernels	to	create	a	surface	of	expected	density	of	dispersing	
organisms	at	any	location	in	the	landscape	(Compton	et	al.,	2007).	This	
surface	is	a	function	of	source	points,	 landscape	resistance,	and	dis-
persal	ability	(Cushman,	McRae,	et	al.,	2013).	The	factorial	least-	cost	
path	analysis	uses	Dijkastra's	algorithm	to	calculate	the	least-	cost	path	
from	every	species	occurrence	to	every	other	occurrence	location	in	
the	 landscape	 (Landguth	 et	 al.,	 2012).	 These	 simulated	 least-	cost	
paths	were	then	buffered	based	on	kernel	density	estimation,	and	the	
Gaussian	 function	was	selected	 in	our	 study.	All	buffered	 least-	cost	
paths	were	summed	to	produce	a	map	of	corridor	intensity.	The	value	
of	 a	 pixel	 in	 this	map	 represents	 the	 frequency	 of	 least-	cost	 paths	
passing	through	it.

We	used	the	spatially	filtered	giant	panda	occurrences	as	source	
points	 and	 the	 transformed	 habitat	 suitability	 map	 as	 the	 resis-
tance	 layer.	 A	 previous	 study	 demonstrated	 that	 dispersal	 ability	
has	a	significant	effect	on	the	estimation	of	population	connectivity	
(Cushman	et	al.,	2013).	However,	we	do	not	have	a	certain	knowledge	
of	giant	pandas’	dispersal	ability.	To	account	for	uncertainties	regard-
ing	giant	panda	dispersal	ability,	we	used	three	distance	thresholds	in	
the	resistant	kernel	analysis:	6,000,	12,000,	20,000	cost	units,	which	
indicate	movement	distance	of	6,	 12,	 20	 km,	 respectively,	 in	 ideal	
low	resistance	habitat.	We	selected	6	km	because	the	biggest	home	
range	recorded	was	about	30	km2	(Hu,	2001);	if	the	home	range	was	
seen	as	a	circle,	its	diameter	is	approaching	6	km.	In	addition,	genetic	

(1)R = 1000(−1∗HS)
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studies	indicated	that	the	spatial	extent	of	the	genetic	structure	of	
one	population	occurred	within	about	12	km	(Hu	et	al.,	2010;	Zhan	
et	al.,	2007).	Furthermore,	Pan	et	al.	(2014)	and	Zhan	et	al.	(2007)	re-
ported	several	giant	panda	dispersal	events	with	a	distance	exceed-
ing	20	km.	For	factorial	 least-	cost	paths	analysis,	we	set	the	upper	
limit	of	dispersal	ability	to	50,000	cost	units	to	model	long-	distance	
connections,	as	the	maximum	dispersal	distance	recorded	was	50	km	
(Swaisgood	et	al.,	2010).	We	used	the	resistant	kernel	maps	to	iden-
tify	core	habitats	for	the	giant	panda,	as	in	Cushman,	Landguth,	et	al.	
(2013).	We	defined	core	habitats	as	contiguous	areas	with	resistant	
kernel	values	greater	than	5%	of	the	highest	value.

2.9  |  Effectiveness of protected areas

To	assess	the	effectiveness	of	the	current	protected	area	network	on	
protecting	core	habitat	patches	and	corridors	for	the	giant	pandas	in	
the	Qionglai	mountain,	we	 quantified	 the	 extent	 and	 proportion	 of	
predicted	core	habitats	and	corridors	within	protected	areas.

3  |  RESULTS

3.1  |  Scale optimization

The	univariate	random	forest	optimization	analysis	showed	that	op-
timized	scales	vary	by	variables	(Table	1;	Figure	A2);	bamboo	cover,	
elevation,	net	primary	productivity,	patch	density,	and	largest	patch	
index	of	closed	broad-	leaf	 forest	were	all	 strongly	related	to	giant	
panda	occurrence	at	fine	scale	(1,000	m),	while	aspect,	terrain	rug-
gedness	index,	village	density,	percentage	of	closed	needle-	leaf	for-
est	were	 strongly	 related	 at	much	 coarser	 scale	 (≥4,000	m).	 Four	
variables	 (PLAND_CBF,	ED,	PLAND_CNF,	SLP)	were	screened	due	
to	their	high	correlation	with	other	variables.

3.2  |  Multivariate random forest model

We	selected	the	most	parsimonious	model	based	on	MIR	for	each	
presence	 and	 pseudo-	absence	 dataset.	 The	 most	 significant	 vari-
ables	 were	 the	 percentage	 of	 bamboo	 cover,	 elevation,	 and	 net	
primary	productivity,	while	other	variables	had	a	relatively	low	influ-
ence	on	giant	panda	occurrence	(Figure	A4).

Our	 equal-	sampling	multivariate	 random	 forest	model	 showed	
that	predicted	giant	panda	occurrence	probability	had	a	nonlinear	
relationship	with	most	variables	while	had	an	approximately	 linear	
relationship	with	 the	percentage	of	bamboo	and	 the	 largest	patch	
index	of	closed	broadleaf	forest	(Figure	2).	Elevation	showed	a	uni-
modal	relationship	with	giant	panda	occurrence	probability,	peaking	
at	2,600	m.	Percentage	of	bamboo	cover,	largest	patch	index	of	CBF,	
and	 net	 primary	 productivity	 showed	 a	 positive	 association	 with	
giant	panda	occurrence.	In	contrast,	village	density	and	road	density	
showed	a	negative	relationship.

The	equal-	sampling	multiscale	random	forest	model	showed	an	
excellent	predictive	performance	with	a	mean	AUC	value	of	0.941	
(SD	=	 0.014).	 The	 habitat	 suitability	map	 (Figure	 3a)	 produced	 by	
averaging	ten	predictions	showing	the	predicted	occurrence	of	giant	
pandas	 in	 the	Qionglai	mountain.	Areas	of	 low	 resistance	 to	giant	
panda	movement	were	concentrated	mainly	 in	the	mid-	elevational	
part	of	the	landscape	(Figure	3b).	Areas	of	high	resistance	were	ei-
ther	in	low	elevation	areas	dominated	by	anthropogenic	disturbance	
such	as	farmlands	or	in	higher	elevation	areas	where	massive	energy	
was	required	for	giant	pandas	to	move.

3.3  |  Core habitats and corridor network

We	presented	resistant	kernel	simulation	results	for	the	giant	panda	in	
the	Qionglai	mountain	at	three	dispersal	scenarios	(i.e.,	6,000,	12,000,	
20,000	cost	units;	Figure	4).	Our	connectivity	simulation	showed	that	
high	predicted	rates	of	panda	movement	were	mainly	concentrated	in	
the	northern	and	central	parts	of	the	study	area	and	a	relatively	small	
area	in	the	southern	region.	Dispersal	ability	showed	a	significant	ef-
fect	on	population	connectivity	simulation	 for	 the	giant	panda,	with	
a	 broader	 range	 of	 connected	 area	 produced	 at	 high	 dispersal	 abil-
ity	scenario	(20,000	cost	units;	Figure	4c)	than	at	 low	dispersal	abil-
ity	scenario	(6,000	cost	units;	Figure	4a).	Under	the	6,000	cost	units	
scenario,	 the	 giant	 panda	 population	 in	 the	Qionglai	mountain	was	
predicted	to	be	broken	up	into	more	than	ten	core	patches	(three	large	
patches	and	several	small	patches;	Figure	4a).	Under	the	12,000	cost	
units	scenario,	there	were	predicted	to	be	two	large	patches	and	a	few	
small	patches	(Figure	4b).	Under	the	highest	dispersal	ability	scenario	
(i.e.,	20,000	cost	units),	most	of	the	giant	panda	population	was	pre-
dicted	to	be	connected	within	one	dominant	patch	while	a	few	small	
patches	were	isolated	(Figure	4c).	However,	patches	on	each	side	of	
G318	could	not	be	connected	under	all	dispersal	scenarios.

The	extent	of	predicted	core	habitats	varied	between	3,451	km2 
and	 5,450	 km2	 along	with	 dispersal	 ability,	with	more	 remarkable	
dispersal	ability	indicating	a	more	significant	predicted	core	habitats	
extent	(Table	2).

The	 extent	 and	 percentage	 of	 protected	 core	 habitats	 differed	
along	with	dispersal	ability	scenarios.	The	area	of	protected	core	hab-
itats	varied	between	1,485	km2	and	2,074	km2,	with	 the	protection	
rate	ranging	between	43%	and	38%	(Table	2).

The	factorial	least-	cost	paths	map	(Figure	5)	showed	that	domi-
nant	pathway	density	lies	in	the	mountain	area's	northern	and	cen-
tral	parts.	The	extent	of	simulated	corridors	was	3,234	km2,	of	which	
protected	areas	covered	1,394	km2	(43%).

4  |  DISCUSSION

This	study	presents	one	example	of	a	scale-	optimized	habitat	selection	
model	and	the	only	example	we	are	aware	of	for	the	endangered	giant	
panda	 at	 a	mountain	 extent.	We	quantitatively	 assessed	population	
connectivity	for	the	giant	panda	in	the	Qionglai	mountain,	combining	
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the	species	distribution	and	connectivity	modeling	technique.	The	ap-
proach	applied	in	this	study	can	be	used	to	identify	primary	resource	
requirement,	 limiting	factors,	and	the	spatial	scales	that	giant	panda	
strongly	 associated	 with	 habitat	 components.	 Our	 results	 provide	
crucial	 information	 to	 assist	 giant	panda	 conservation	management,	
including	identifying	the	distribution	and	strength	of	core	habitat	and	
areas	as	corridors	that	facilitate	connectivity	among	core	habitats.

4.1  |  Scale dependence of habitat selection

Scale	is	a	vital	component	to	consider	in	ecological	research,	and	grain	
size	is	one	of	its	key	facets	(Connor	et	al.,	2018).	Connor	et	al.	(2018)	
showed	that	predictor	grain	size	significantly	impacts	species	distribution	

model	accuracy	and	area	of	species	presence	prediction.	But	there	are	
differences	between	their	study	and	ours.	They	constructed	species	dis-
tribution	models	using	variables	that	are	all	calculated	within	the	same	
size	moving	window	(i.e.,	same	spatial	scale)	at	one	time	(Connor	et	al.,	
2018).	Strictly,	their	study	should	be	considered	as	multiple	single-	scale	
models	 rather	 than	multiscale	models	 because	 in	 the	 latter	 different	
variables	can	be	included	in	the	final	model	at	variable	scales	(McGarigal	
et	 al.,	 2016).	 The	 missing	 step	 between	 them	 is	 scale	 optimization.	
Scale	optimization	is	critical	for	robust	habitat	models,	which	is	crucial	
in	developing	conservation	and	management	strategies	for	endangered	
species	(Timm	et	al.,	2016)	like	giant	pandas.	A	few	studies	have	demon-
strated	that	multiscale	habitat	models	can	improve	model	performance	
and	deepen	our	understanding	of	the	relationship	between	species	and	
habitat	 (Mateo-	Sánchez	et	al.,	2014;	Timm	et	al.,	2016).	For	example,	

F I G U R E  2 Partial	dependency	plots	
representing	the	marginal	effect	of	habitat	
variables	on	predicted	occurrence	of	
giant	panda.	The	gray	area	indicates	the	
95%	confidence	interval,	and	the	red	line	
indicates	the	mean	average
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including	a	variable	in	a	habitat	model	with	an	inapposite	scale	may	re-
sult	in	misleading	variable	importance	(Connor	et	al.,	2018).

Consistent	with	other	studies	on	habitat	selection	of	carnivores	
(Khosravi	et	al.,	2019;	Macdonald	et	al.,	2019;	Mateo-	Sánchez	et	al.,	
2014),	the	giant	panda	in	Qionglai	select	different	resources	at	vary-
ing	spatial	scales.	Giant	pandas	respond	to	village	density	strongly	
at	a	broad	scale	 (4	km),	which	highlights	the	 importance	of	a	 large	
extent	of	the	undisturbed	landscape.	On	the	contrary,	our	result	re-
vealed	that	giant	pandas	select	bamboo	cover	proportion	at	a	rela-
tively	 fine	scale	 (1	km).	These	 findings	were	consistent	with	other	
studies	on	giant	panda	habitat	selection,	which	concluded	that	pan-
das	select	for	the	disturbance	at	the	level	of	geographic	range	and	
select	for	bamboo	at	the	level	of	home	range	(Hull	et	al.,	2014).

4.2  |  The effect of predictors on the distribution of 
giant pandas

We	used	an	equal-	sampling	multiscale	random	forest	habitat	mode-
ling	framework	to	delineate	the	relative	habitat	suitability	map	for	the	
giant	panda	in	the	Qionglai	mountain.	Random	forest	is	a	tree-	based	

method	based	on	“bagging”	and	is	demonstrated	to	outperform	tra-
ditional	statistical	models	in	the	field	of	species	distribution	models	
(Cushman	et	al.,	2017;	Evans	et	al.,	2011).	In	addition,	the	habitat	suit-
ability	map	derived	from	random	forests	is	more	discriminatory,	with	
higher	spatial	heterogeneity	than	predictions	from	traditional	gener-
alized	linear	models	like	logistic	regression	(Cushman	&	Wasserman,	
2018),	providing	a	more	robust	delineation	of	priority	suitable	areas.	
Different	from	the	general	implementation	of	random	forest	in	mod-
eling	 species	 spatial	 distribution	 (Cushman	 &	 Wasserman,	 2018;	
Dar	et	al.,	2021;	Rather	et	al.,	2020)	that	only	randomly	select	one	
set	of	pseudo-	absence	sample	of	size	equal	to	the	number	of	pres-
ences,	in	this	study,	we	used	the	equal-	sampling	method.	The	idea	of	
equal-	sampling	is	to	fit	n	different	random	forest	models	(where	n is 
often	10)	on	n	different	pseudo-	absence	samples	of	size	equal	to	the	
presences	(Barbet-	Massin	et	al.,	2012).	This	method	is	demonstrated	
suitable	for	presence-	background	data	and	outperforms	other	ran-
dom	 forest	 implementations	 (weighting	or	 regression;	Valavi,	Elith,	
et	 al.,	 2021)	 and	 other	 modeling	 methods	 (e.g.,	 generalized	 linear	
model	and	generalized	additive	model;	Valavi	et	al.,	2021).

As	expected,	the	percentage	of	bamboo	cover	is	the	most	crucial	
predictor	driving	the	distribution	of	giant	pandas.	The	giant	panda	is	

F I G U R E  3 (a)	The	habitat	suitability	map	shows	giant	panda's	predicted	occurrence	based	on	equal-	sampling	multiscale	random	forest	
habitat	modeling	in	the	Qionglai	mountain.	(b)	The	landscape	resistance	map	shows	the	movement	resistance	for	the	giant	panda,	which	is	
transformed	from	habitat	suitability	using	an	exponential	function
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a	specialist	species	with	bamboo	comprising	about	99%	of	its	diet,	
and	it	may	spend	up	to	14	h/day	foraging	bamboo	(Schaller,	1985).	
Therefore,	including	biotic	interaction	with	bamboo	will	improve	the	
performance	of	habitat	models	of	the	giant	panda.	Modeling	under-
story	bamboo	distribution	in	dense	forests	to	a	large	extent	is	chal-
lenging;	 however,	 phenological	 variables	 derived	 from	 time-	series	
remote	sensing	images	(e.g.,	MODIS)	provide	a	way	to	address	such	
an	issue	(Tuanmu	et	al.,	2010).

We	 found	 that	 road	 density	 and	 village	 density	 had	more	 sig-
nificant	impacts	on	the	giant	panda	occurrence	probability	than	the	
distance	 to	 road	 or	 village.	 This	 finding	 indicated	 panda's	 relative	
habitat	 suitability	 is	more	 related	 to	 human	 activities	 in	 the	 land-
scape	than	the	proximity	to	linear	roads.	Human	activity	is	the	pri-
mary	deterrent	to	giant	pandas’	road	use;	sometimes,	low-	use	roads	

such	as	abandoned	logging	roads	were	positively	related	to	panda's	
habitat	selection	(Qi	et	al.,	2011).

The	largest	patch	index	of	closed	needle	forest	(LPI_CBF)	was	pos-
itively	associated	with	panda	occurrence	probability,	highlighting	that	
pandas	prefer	large	dense	forest	patches,	a	result	similar	to	the	result	
of	Wang	et	al.	(2010).	Of	the	selected	variables,	the	landscape	com-
position	variables	(i.e.,	LPI_CBF_1000	and	LPI_CNF_4000)	were	more	
important	 than	 the	variables	 reflecting	 landscape	 configuration	 (i.e.,	
AI_4000).	This	result	is	similar	to	other	studies	on	Ursidae	(e.g.,	brown	
bear;	Mateo-	Sánchez	et	al.,	2014)	and	is	in	agreement	with	the	general	
pattern	that	habitat	extent	is	more	important	than	habitat	configura-
tion	(Cushman	&	McGarigal,	2002).	The	giant	panda	has	a	high	depen-
dence	on	forest	cover	and	has	poor	movement	ability,	suggesting	that	
habitat	composition	should	dominate	its	habitat	relationships.

F I G U R E  4 Resistant	kernel	value	
gradient	for	core	habitat	under	different	
dispersal	ability	scenarios:	(a)	6,000,	(b)	
12,000,	and	(c)	20,000	cost	units

Dispersal threshold 
(cost units)

Extent of core 
habitats (km2)

Extent of protected core 
habitats (km2)

% of protected 
core habitats

6,000 3,451 1,485 43%

12,000 4,648 1,853 40%

20,000 5,450 2,074 38%

TA B L E  2 The	extent	and	percentage	
of	predicted	core	habitats	covered	by	
protected	areas	for	the	giant	panda	in	the	
Qionglai	mountain
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4.3  |  Giant panda population 
connectivity and corridors

Through	 many	 years	 of	 protection,	 the	 population	 number	 and	
habitats	 of	 wild	 giant	 pandas	 have	 increased	 (State	 Forestry	
Administration,	2015),	significant	species	conservation	results	have	
been	 achieved	 in	China	 (Kang	&	 Li,	 2016).	However,	 habitat	 frag-
mentation	has	always	been	the	key	factor	threatening	their	survival	
and	is	getting	worse	(Xu	et	al.,	2017).	A	few	studies	assessed	popula-
tion	connectivity	and	proposed	corridors	 to	 link	 fragmented	habi-
tat	patches	(Li	et	al.,	2010;	Qi	et	al.,	2012;	Wang	et	al.,	2021).	The	
method	usually	used	in	these	studies	was	the	least-	cost	analysis	(Li	
et	 al.,	 2010;	Qi	 et	 al.,	 2012),	which	 simulated	 narrow	 linear	 corri-
dors	and	the	structural	connectivity	among	habitat	patches.	Giant	
pandas	may	not	use	 those	 simulated	corridors	because	 there	may	
be	no	 individuals	 in	predicted	habitat	patches	or	giant	pandas	are	
hard	to	traverse	long	corridors	due	to	limited	mobility.	We	integrated	
panda's	dispersal	 ability	 into	connectivity	analysis,	which	previous	
studies	usually	ignore.	One	strength	of	the	resistant	kernel	approach	
is	 its	explicit	and	realistic	 incorporation	of	species	dispersal	ability	
(Landguth	et	al.,	2012).	There	are	predicted	to	be	>10	core	habitat	
patches	if	the	dispersal	ability	of	giant	panda	is	limited	to	6,000	cost	

units,	but	with	the	dispersal	of	12,000–	20,000	cost	units,	it	would	re-
sult	in	seven	to	four	patches	(Figure	4).	This	result	highlights	that	the	
extent	and	fragmentation	of	connected	habitats	are	highly	depend-
ent	on	the	dispersal	ability	of	the	focal	species	(also	see	Ashrafzadeh	
et	al.,	2020;	Cushman,	Landguth,	et	al.,	2013).	In	this	present	study,	
under	 all	 dispersal	 ability	 scenarios,	 panda	 populations	 in	 Caopo,	
Wolong,	 Anzihe,	 Heishuihe,	 and	 Fengtongzhai	 were	 predicted	
to	 be	 connected	 by	 dispersal.	 However,	 population	 connectivity	
evaluation	 based	 on	major	 roads	 divided	 this	 population	 into	 two	
subpopulations:	 the	 northern	 Wolong-	Caopo	 subpopulation	 and	
southern	Xiling-	Jiajin	subpopulation	(State	Forestry	Administration,	
2015).	Functional	population	connectivity	 is	a	complex	 interaction	
between	dispersal	ability,	population	size,	and	resistance	to	move-
ment	 (Cushman	et	al.,	2010).	Delineating	subpopulations	based	on	
habitat	 patterns	 may	 underestimate	 population	 connectivity.	 For	
example,	 in	 the	 study	 of	 Xu	 et	 al.	 (2006),	 national	 and	 provincial	
roads	 (G318,	 G350,	 and	 S210)	 divided	 giant	 panda	 population	 in	
the	Qionglai	mountain	into	four	blocks.	However,	in	our	estimation,	
G350	and	S210	did	not	completely	separate	the	big	population	into	
different	subpopulations,	which	means	giant	pandas	may	cross	these	
roads.	Our	results	were	supported	by	a	recent	 large	genetic	study	
conducted	in	Wolong	reserve	(Qiao	et	al.,	2019);	Qiao	et	al.	(2019)	

F I G U R E  5 Corridor	pathway	density	
for	the	giant	panda	in	the	Qionglai	
mountain	calculated	by	factorial	least-	cost	
paths	analysis	under	a	dispersal	threshold	
of	50,000	cost	units.	Corridor	pathway	
density	was	shown	with	a	gradient	from	
weak	(blue)	to	strong	(red)
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found	no	significant	genetic	boundaries	exists	within	panda	popula-
tion	despite	the	national	road	G350	that	bisects	the	Wolong	nature	
reserve.	They	recorded	four	giant	panda	road-	crossing	events	within	
1	year,	indicating	giant	panda	populations	may	be	better	connected	
than	previously	thought.

Although	 dispersal	 ability	 significantly	 affects	 population	 con-
nectivity,	our	evaluation	was	not	based	on	the	certain	knowledge	of	
giant	panda	dispersal	ability	due	to	lacking	empirical	study	of	giant	
panda	movement	in	the	real	landscape.	Future	research	using	satel-
lite	tracking	methods	such	as	GPS	collars	will	strengthen	our	under-
standing	of	the	movement	and	dispersal	of	giant	pandas,	eventually	
improving	the	assessment	of	population	connectivity.	Our	resistant	
kernel	estimation	highlights	the	distribution	of	connected	habitats,	
and	the	resistant	kernel	value	can	potentially	be	used	to	prioritize	
areas	for	conservation	that	maximally	protect	the	total	connectivity	
of	the	population.	Conservation	practitioners	can	use	such	spatial-	
explicit	 information	 to	 develop	 landscape	 conservation	 strategies	
when	ecological,	economic,	and	social	constraints	exist	and	priority	
areas	 should	 be	 planned	 (Kang	 &	 Li,	 2016).	 Furthermore,	 spatial-	
explicit	 resistant	 kernel	 estimation	 can	 provide	 more	 information	
in	 the	 zoning	 or	 the	 effectiveness	 evaluation	 of	 protected	 areas	
(Cushman	 et	 al.,	 2012)	 than	 simple	 habitat	 suitability	 distribution	
map,	which	is	often	used	in	such	assessments	(Qi	et	al.,	2015;	Wang	
et	al.,	2021).	Under	all	dispersal	ability	scenarios,	there	is	predicted	
to	be	a	large	proportion	(57%–	62%)	of	core	habitats	that	are	not	pro-
tected	by	the	current	nature	reserve	network	(Figure	4),	highlighting	
a	great	potential	to	establish	new	protected	areas.

The	 factorial	 least-	cost	 path	 analysis	 identified	 optimal	 routes	
between	giant	panda	occurrences	to	facilitate	connectivity.	General	
corridor	simulation	methods	(e.g.,	least-	cost	path	or	least-	cost	corri-
dor)	take	habitat	patches	as	the	“source”	and	then	calculate	the	path	
with	 the	 least	 cumulative	 cost	 between	 source	 patches;	 its	 result	
only	 reveals	 the	 location	 of	 the	 corridor	 (Cushman,	McRae,	 et	 al.,	
2013).	 However,	 the	 factorial	 least-	cost	 path	 approach	 simulates	
corridor	network	based	on	species	occurrence,	and	the	simulation	
result	provides	 the	 location	and	 intensity	of	 the	corridor.	The	cor-
ridor	 intensity	 is	a	kernel	density	estimation	based	on	the	number	
of	 least-	cost	paths.	Such	 information	 is	 important	 for	corridor	pri-
ority	planning	as	corridor	building	and	 restoration	usually	need	 to	
invest	a	lot	of	money	and	manpower.	We	recommend	paying	more	
attention	to	the	corridors	linking	small	populations	with	much	higher	
extinction	risk	to	large	populations.	For	example,	subpopulations	at	
the	southernmost	of	the	study	area	need	more	attention	as	they	are	
predicted	 to	be	 isolated	 from	 large	 core	habitat	 patches	under	 all	
dispersal	ability	scenarios.	In	previous	evaluations,	these	subpopu-
lations	were	also	believed	to	be	isolated	from	other	subpopulations	
by	national	 roads	 (G318)	 (State	Forestry	Administration,	2015;	Xu	
et	al.,	2006).	In	addition,	areas	with	high	predicted	least-	cost	paths	
frequency	outside	protected	areas	also	need	prior	protection.	We	
can	 identify	barriers	 that	may	 impede	giant	panda	dispersal	based	
on	the	corridor	pathway,	 like	major	roads.	Combined	with	corridor	
density,	we	can	further	locate	and	rank	the	intersection	of	corridors	
with	roads,	which	can	provide	crucial	information	for	conservation	

practitioners	to	implement	road	mitigation	measures	such	as	warn-
ing	signs,	reduced	speed	limits,	fencing,	and	construction	of	crossing	
structures	(Cushman,	Lewis,	et	al.,	2013;	Zeller	et	al.,	2020).

4.4  |  Caveats and limitations

Our	findings	must	be	interpreted	with	regard	to	several	major	con-
siderations.	First,	giant	panda	occurrences	used	 in	this	study	were	
from	the	fourth	survey	conducted	between	2011	and	2014.	Natural	
and	socio-	economical	conditions	have	changed	since	then	(Xu	et	al.,	
2017).	For	example,	the	reduction	of	total	and	agricultural	popula-
tion	and	the	 increasing	of	 infrastructure	development	 (e.g.,	hydro-	
power	 stations	 and	 road	 construction).	 Therefore,	 care	 should	 be	
taken	when	interpreting	our	results.	While	our	study	may	not	pro-
vide	 robust	 support	 for	 current	 decisions	 because	 it	 is	 based	 on	
older	data,	it	illustrated	a	way	to	identify	core	habitats	and	corridors	
for	 large	 terrestrial	 mammals.	 Second,	 other	 human	 disturbances	
(e.g.,	livestock	and	trails)	negatively	affect	giant	panda	habitat	suit-
ability	and	were	not	included	in	the	habitat	modeling,	so	our	study	
may	have	overestimated	habitat	 suitability	 in	some	areas.	Third,	 it	
should	also	be	noted	that	habitat	suitability	is	not	a	good	proxy	for	
landscape	resistance,	as	habitat	suitability	reflects	habitat	selection	
in	home	range	while	species	may	use	the	landscape	differently	dur-
ing	dispersal	movements	(Keeley	et	al.,	2017).	It	would	be	better	to	
develop	 resistance	models	with	movement	 (Zeller	 et	 al.,	 2018)	 or	
gene	flow	(Cushman	et	al.,	2006)	data.	Lastly,	when	designing	new	
protected	areas	or	corridors,	 it	 is	also	necessary	to	consider	other	
large	 carnivores,	 as	 long-	term	monitoring	 studies	 have	 revealed	 a	
wide	distribution	range	retreat	of	large	carnivore	populations	across	
the	giant	panda	distribution	range	(Li	et	al.,	2020).
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APPENDIX A

ME THODS TO MODEL BAMBOO DIS TRIBUTION
Bamboo	distribution	and	abundance	are	crucial	factors	shaping	giant	
pandas’	 distribution	 as	 bamboo	 comprises	 about	 99%	 of	 their	 diet	
(Schaller,	 1985).	 Previous	 studies	 have	 demonstrated	 that	 the	 veg-
etation	 phenology	 derived	 from	 the	 moderate	 resolution	 imaging	
spectroradiometer	(MODIS)	satellite	images	can	map	the	distribution	
of	 understory	 bamboo	 (Tuanmu	et	 al.,	 2010;	Viña	 et	 al.,	 2010).	We	
obtained	the	time-	series	MODIS	imagery	(eight-	day	L3	Global	250m	
product,	MOD09Q1)	 between	2011	 and	2013.	We	 then	 calculated	
the	wide	dynamic	range	vegetation	index	(WDRVI)	(Gitelson,	2004)	for	
each	eight-	day	image.	The	WDRVI	is	more	suitable	than	NDVI	for	de-
tecting	the	phonologic	change	in	areas	with	high	vegetation	biomass,	
such	as	the	forests	with	dense	understory	bamboo	in	our	study	area	
(Tuanmu	et	al.,	2010).	We	then	used	TIMESAT	3.3	(Jönsson	&	Eklundh,	
2004)	to	extract	annual	dynamic	curves	of	the	WDRVI.	From	the	fitted	
WDRVI	dynamic	curves,	we	obtained	11	phenology	metrics	for	each	
year,	 including	the	start-	of-	season	time,	end-	of-	season	time,	date	of	
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middle	season,	length	of	season,	base	level,	maximum	level,	amplitude,	
large	integral,	small	integral,	increase	rate,	and	decrease	rate	(Eklundh	
&	Jönsson,	2012;	Tuanmu	et	al.,	2010;	Viña	et	al.,	2010).	The	3-	year	

averages	of	these	phenology	metrics	from	2011	to	2013	were	used	to	
map	bamboo	distribution.	In	addition,	we	included	the	elevation	as	a	
variable	for	modeling	bamboo	distribution	because	vegetation	type	is	
closely	related	to	elevation	zones	in	the	Qionglai	mountain	range	(Xu	
et	al.,	2006).	We	used	the	software	Maxent	(version	3.4.1,	Phillips	et	
al.,	2006)	to	build	a	model	for	mapping	the	overall	bamboo	distribution	
as	 in	Tuanmu	et	 al.	 (2010).	We	did	not	have	 random	bamboo	pres-
ence	localities	across	the	study	area,	and	we	used	two	types	of	points	
as	surrogate	bamboo	occurrence.	One	is	the	giant	panda	occurrence	
localities	associated	with	bamboo	from	the	Fourth	Giant	Panda	Survey	
in	Sichuan	Province.	The	other	is	500	points	randomly	selected	from	a	
coarse	bamboo	distribution	map	obtained	from	the	4th	National	Giant	
Panda	Survey.	We	randomly	selected	75%	of	occurrence	data	as	the	
training	dataset,	and	the	remaining	25%	were	used	as	the	validation	
dataset.	The	procedure	was	repeated	ten	times	to	get	an	average	pre-
diction	of	bamboo	occurrence	probability.	We	set	other	parameters	
in	Maxent	as	default.	To	get	a	binary	map	of	bamboo	distribution,	we	
used	the	threshold	that	maximizes	the	sum	of	sensitivity	and	specific-
ity	to	convert	the	continuous	occurrence	probability	map	into	a	binary	

map	(Liu	et	al.,	2013).

F I G U R E  A 1 Binary	map	for	bamboo	distribution	in	Qionglai	
mountain	predicted	by	using	MaxEnt	and	phenological	metrics

F I G U R E  A 2 The	frequency	scale	
was	selected	as	the	optimal	scale	in	10	
univariate	equal-	sampling	random	forest	
models	for	each	variable

F I G U R E  A 3 The	number	of	trees	versus	the	error	rate	plot
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F I G U R E  A 4 Bar	plot	of	variable	
importance	based	on	the	mean	Model	
Improvement	Ratio	(MIR)	from	random	
forests	of	10	equal-	sampling	presence-	
pseudo	absence	datasets


