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Abstract
How do people decide how general a causal relationship is, in terms of the entities or situations it applies to? What features
do people use to decide whether a new situation is governed by a new causal law or an old one? How can people make these
difficult judgments in a fast, efficient way? We address these questions in two experiments that ask participants to generalize
from one (Experiment 1) or several (Experiment 2) causal interactions between pairs of objects. In each case, participants
see an agent object act on a recipient object, causing some changes to the recipient. In line with the human capacity for
few-shot concept learning, we find systematic patterns of causal generalizations favoring simpler causal laws that extend
over categories of similar objects. In Experiment 1, we find that participants’ inferences are shaped by the order of the
generalization questions they are asked. In both experiments, we find an asymmetry in the formation of causal categories:
participants preferentially identify causal laws with features of the agent objects rather than recipients. To explain this,
we develop a computational model that combines program induction (about the hidden causal laws) with non-parametric
category inference (about their domains of influence). We demonstrate that our modeling approach can both explain the
order effect in Experiment 1 and the causal asymmetry, and outperforms a naı̈ve Bayesian account while providing a
computationally plausible mechanism for real-world causal generalization.

Keywords Causal reasoning · Generalization · Bayesian models · Inductive bias · Program induction · Dirichlet process

Introduction

People readily generalize from familiar causal relationships
to novel ones, using the features of prospective objects as a
guide. For example, if you need to pound a nail but cannot
find a hammer, you might pick up a nearby brick instead,
reasoning that it will “do the job”; a child who has recently
discovered drawing with colored chalks on paper may then
explore the extent of this new power, using them to draw on
the walls, the mirror, or even her bed sheets. These kinds of
everyday actions call upon what we call object-based causal
generalization.

Indeed, a fundamental goal of cognition is to generalize
from limited experience so as to behave appropriately in
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unpredictable future tasks and situations. We achieve this, in
part, by constructing models of the environment that provide
reliable predictions (Craik, 1952; Hume, 1740). While a
wealth of research has been devoted to studying how
children and adults acquire causal beliefs (e.g., Bramley
et al. 2015; Gopnik et al. 2007; Griffiths & Tenenbaum
2009; Kemp et al. 2012; Sloman 2005), understand the
world using core knowledge of objects (Baillargeon, 1995;
Spelke, 1990; Spelke & Kinzler, 2007), and generalize
functional properties (e.g., Goodman et al. 2008; Lucas et al.
2015; Shepard 1987; Tenenbaum & Griffiths 2001; Wu et al.
2018), the interplay between causality, object concepts and
generalization has received less attention. On the face of it,
this is surprising. If causal beliefs did not frequently extend
to novel entities and situations, they would be of limited
use to us. Therefore, a key aspect of successful causal
learning is to generalize causal relations appropriately to
new situations that are related but nonidentical to past
experiences. Generalization, on the other hand, could not
be successful without tapping into what Sloman calls
Nature’s “invariants” (Sloman, 2005), the true causal laws
that govern both experienced and novel situations. While
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Fig. 1 Our object-based causal generalization task interfaces. A–D:
Experiment 1. A–C step through an example learning scene animation,
and D shows a generalization task consisting of novel objects (left) and
a selection panel (right), in which learners select from a set of possi-
ble predictions about the appearance of the recipient after the causal

interaction. E–F: Experiment 2. Summaries of previous learning exam-
ples are shown at the top of the screen. E shows one animated effect
similar to A–C. In F, generalization predictions are elicited by selecting
from two drop-down menus (one per feature)

research has explored the interplay between causality and
generalization using hierarchical Bayesian models (e.g.,
Kemp et al. 2010; Goodman et al. 2011; Griffiths &
Tenenbaum 2009), this computational level approach (Marr,
1982) is limited in its ability to capture psychological
processes due to its inherent intractability (Kwisthout & Van
Rooij, 2020; Van Rooij, 2008).

In this paper, we explore how people generalize causal
relations from observed interactions between pairs of
simple geometric objects via a “magic stone” task. In it,
participants test causal relationships between a magic stone
(the agent) and a normal stone (the recipient) by watching
the agent object moves toward the recipient object, and
upon touching each other the recipient object changes into
a result form (Fig. 1A–C).1 Participants are asked to make
predictions about new pairs of objects “This new magic
stone will turn this new normal stone into ...?” (Fig. 1D).
Observing objects interacting naturally invokes causal

1Throughout this paper, we use the term recipient as equivalent
“patient” in the causal learning literature, e.g., Mayrhofer and
Waldmann (2015).

perceptions. For instance, Michotte (1963) discovered the
“launching” phenomenon, in which participants directly
perceive a causal influence connecting two objects that
act in sequential order: If object A moves toward a
stationary object B, and if around when A touches B, A
stops moving and B starts to move, participants report
that they see object A cause object B to move (see also
Gordon et al. 1990; Leslie and Keeble 1987; Scholl &
Tremoulet 2000). Similarly, the animated agent-recipient
setup in our task lays out an overtly causal framing, allowing
us to probe the inductive biases and cognitive processes
that are distinctive to causal reasoning. Unlike previous
work in causal induction (e.g., Griffiths & Tenenbaum
2009), this abstract setting minimizes the influence of
specific domain priors and background knowledge. Our
experimental framework can be viewed as a conceptual
extension to classic Blicket experiments in developmental
psychology (e.g., Gopnik & Sobel 2000; Kemp et al. 2010;
Lucas & Griffiths 2010), and we discuss this connection in
detail in the “General Discussion” section.

With these causal and object-based representations
of the task, we open up a large space of scenarios
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and possibilities that demand sophisticated combinatorial
reasoning, especially in terms of generalization. The
relevant inference here is not about whether the agent object
is the cause of the recipient object’s change or not (e.g.,
Cheng 1997; Jenkins & Ward 1965; Pearl 2000; Sloman &
Lagnado 2005; Tenenbaum & Griffiths 2000); instead, we
are interested in a different question: Given an observation
where a particular agent object causes a particular change in
a particular recipient object, how do people generalize this
causal interaction to novel objects, where both agent and
recipient may share more or fewer features with those in
the original observation? One might conjecture that “square
agents cause recipients to turn blue,” which applies to all
the square agents but says nothing about circles; or a more
general causal principle, perhaps “all agents cause recipients
to take their color,” which can apply universally to all
the potential objects. While the structure of such rules is
logical, the domain framing brings causal inductive biases to
bear. For instance, we can probe the possibility that people
view agents’ features as playing different functional roles to
recipients’ features in causal interactions.

In the following sections, we introduce a computational
modeling framework for object-based causal inference in
the spirit of Griffiths and Tenenbaum (2009) and Lucas
and Griffiths (2010), but with a more expressive hypothe-
sis space that better captures the diverse inferences people
can make. It draws on non-parametric approaches to cate-
gory and function learning to account for similarity-based
generalization predictions. The normative version, called
LoCaLa (Local Causal Laws), compares each generaliza-
tion trial against all the learning examples in order to assign
causal categories to new observations. A “resource-rational”
(Goodman et al., 2008; Sanborn et al., 2010) variant of it,
the LoCaLaPro (Local Causal Laws Process) model, shares
causal categories among generalization trials, and only
updates a causal category when it cannot explain a novel
observation. After introducing these models, we report on
two experiments that shed light on previously unexplored
inductive biases in causal learning, and allow us to evalu-
ate our models and the ideas that motivate them. We find
that our local laws and particularly our new process model
better explain our behavioral data than a purely normative
account, including explaining a novel generalization-order
effect observed in Experiment 1. We conclude with a dis-
cussion of our model’s scope and limitations and highlight
some potential future directions.

Computational Modeling Framework

Causal generalization involves two forms of induction: (1)
Inferring what causal relationship is at work in an observed
setting, known as causal learning or causal induction, and

(2) Inferring the domain to which a causal law applies,
closely related to categorization. In correspondence, our
computational modeling framework integrates a generative
grammar to model the vast space of possible causal
relationships (causal laws), and Bayesian non-parameteric
categorization process that accounts for the domain of
influence for those causal relationships (Fig. 2). Together,
they provide a principled account for causal generalization
over novel interacting objects.

Causal Laws

To a first approximation, objects are identifiable by their
features and causal powers (Aristotle, 322/1998; Gopnik
et al., 2004). Adults find basic features of objects, such
as color, shape, and orientation to be salient cues for
information selection (Treisman & Gelade, 1980; Treisman
& Paterson, 1984). Therefore, we represent objects in terms
of their observable features, and model interactions between
objects using causal functions. For example, we can read
an object’s color by color(o) is red. When an agent acts
on a recipient and causes the recipient to change, we model
this with a causal function f that takes the agent (a) and
recipient’s initial state (r) as input, and outputs the final state
of the recipient (r ′), which we call the result. Depending on
the situation, real causal interactions could result in changes
to the form of the agent object as well. However, given the
examples in Fig. 1, we restrict our focus to f (a, r) ⇒ r ′ in
this paper. Naturally, a causal function defines the result r ′
by specifying its features, potentially conditional on specific
features of a and r . Take an everyday understanding of
paint for an example: When applied to a wall, paint causes
that wall to take the color of the paint. We can formalize
this as a function f (paint,wall) ⇒ wall′, where
color(wall′) ⇐ color(paint). Note that arrow ⇒
reads as “gives” or “produces”: f (a, r) ⇒ r ′ says that
function f (a, r) produces result object r ′. Arrow ⇐ is an
assignment operation: color(wall′) ⇐ color(paint)

means that color of the paint is assigned to (color of) the
wall.

Griffiths and Tenenbaum (2009) proposed a computa-
tional level, hierarchical Bayesian model (HBM) framework
for causal inference where structured domain knowledge
restricts the space of possible or plausible causal relation-
ships. However, this work focused on statistical relation-
ships between variables rather than interactions between
objects. Furthermore, the space of possible causal functions
in natural settings is clearly intractable, posing a serious
computational challenge for any bounded learner. There-
fore, more recent accounts of causal learning have treated
causal inference as practically constituting a search prob-
lem in a large multi-modal theory space (Bramley et al.,
2017), and utilize generative grammars and program induc-
tion ideas to cover the open ended space of a learner’s
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Fig. 2 To model how people
make object-based causal
generalization predictions
(middle), we combine program
induction about the hidden
causal laws (right) with non-
parametric category inference
about their domains of influence
(left). Together, they form latent
causal categories that guide
generalization predictions (dark
arrows from bottom to middle)

possible theories and hypotheses (Goodman et al. 2008,
2011; Bramley et al. 2021), as well as the human preference
for simpler causal explanations (cf. Feldman 2000).

Following this approach, we use a Probabilistic Context-
Free Grammar (PCFG; Ginsburg 1966) to define a prior
over possible causal relationships (causal laws, right column
in Fig. 2). A PCFG is defined by a tuple (�, �, T ), where
� is a set of production rules, � a set of production
probabilities, and T a set of transition symbols. Our
example grammar G (Table 1) has a set of transition symbols
T = {S, A, B, C, D, E}, where S is the “Start” symbol by
convention. Starting from symbol S, grammar G follows the
production rules to generate expressions, and stops when
there are no transition symbols anymore in the expression.
Production rules � define how transition symbols transform.
Production probabilities � assign a probability distribution
for each transition symbol’s possible transformations. For
simplicity, we assume uniform production probabilities:
let �L be the set of all production rules that start with

symbol L ∈ T (i.e., production rules in the form of
L → K , where K can be any symbol in grammar G), the
transition probability for each l ∈ �L is simply 1

|�L| . For
example, on the “Reference” row in Table 1, symbol C can
either follow production rule C → D and produce D, or
follow production rule C → E and produce E. We thus
assume symbol C has 0.5 probability to become D, and 0.5
probability to become E.

We now walk through an example for our grammar
G in Table 1. Starting from symbol S, production rule
S → λφi

: A, � samples a feature uniformly from the
set of all observable features (in the task) and binds it to
the production. Let’s assume we sampled feature color
with probability 0.5 (out of � = {color,shape}), and
now the expression becomes λcolor : A. Symbol A leads
two productions: either becomes B, or AND(B, S), with
uniform prior probability. Assume that with probability 0.5
we retrieve expression B. Proceeding to row “Relation,”
with probability 0.5 we could arrive at color(r ′) ⇐ ¬C.

Table 1 Example probabilistic grammar G

Production rules Example generation

Start S

Bind feature S → λφi
: A, � λcolor : A

Bind additional A → B | A → AND(B, S) λcolor : B

Relation B → φi(r
′) ⇐ C | B → φi(r

′) ⇐ ¬C λcolor : color(r ′) ⇐ ¬C

Reference C → D | C → E λcolor : color(r ′) ⇐ ¬D

Relative reference D → φi(a) | D → φi(r) color(r ′) ⇐ ¬color(r)

Absolute reference E → valueφi

Note: φi denotes the ith feature in the set of all observable object features �. The lambda abstraction in the “bind feature” production rule samples
a feature without replacement from the set of all features, and binds this feature φi to the rest of the generation: φi in D uses the same feature
selected in A, and value in E is sampled uniformly from the support of feature φi . Production probabilities are omitted from the table because we
assume a uniform prior.
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Then on row “Reference” with 0.5 probability we could
get color(r ′) ⇐ ¬D. Finally, symbol D produces either
color(a) or color(r) equally likely, and with probability
0.5 we end up with color(r ′) ⇐ ¬color(r): result
object’s color is assigned to a color that is different from
the recipient’s, i.e., result object changes its color. In total,
the probability of producing color(r ′) ⇐ ¬color(r)

is 0.55 = 0.03. If at the step of “Reference” we followed
production rule C → E instead, then with probability 0.33
we might sample a color blue (out of valuecolor =
{red,yellow,blue}), and the probability of producing
color(r ′) ⇐ ¬blue is 0.54 × 0.33 = 0.02.

It is worth noting that by design, this grammar is
inherently more likely to produce simpler expressions. For
the “Bind additional” rule A → AND(B, S) is called with
probability 0.5, and thus the number of conjunctions in the
final expression follows a geometric decay with only 50%
combining more than one assertion, 25% containing more
than two, and so on.

Formally speaking, the prior for a given expression is the
product of all the productions that produced it:

PG(f ) =
∏

l∈�

(θl)
cl (1)

where θl ∈ � is the production probability for production
rule l ∈ �, and cl is how many times rule l was used for
generating causal function f .

Grammar G assigns a prior over a potentially infinite
set of causal functions. A causal function defines the result
object(s) by describing the result object’s feature values,
given the particular agent and recipient object inputs. Take
AND(color(r ′) ⇐ color(a),shape(r ′) ⇐ square)

for example. For an agent a that is a red-circle and
a recipient r that is a blue-pentagon, r will become
r ′: a red-square. When a causal function f involves a
negation, it could have produced more than one outcome.
For instance, consider a causal function shape(r ′) ⇐
¬triangle, any object that is not triangular (and share the
same color as r) is a possible option for being r ′. We further
assume for simplicity that the different potential outcomes
are equally probable, and thus likelihood of a data point
d = (a, r, r ′) generated by a causal function f is given by

P(d|f ) = P(r ′|f, a, r) =
{

1
D(f (a,r))

if r ′ ∈ D(f (a, r)),

0 otherwise

(2)

where D(f (a, r)) refers to the set of all possible result
objects coming out of f given agent a and recipient r

(D stands for domain). We initially assume a likelihood
to 0 for any observation (a, r, r ′) /∈ D(f (a, r)), but later
consider “soft” variants in which functional relationships
are somewhat fallible.

This framework naturally favors deterministic causal
functions that are consistent with the evidence: if a causal
function predicts a specific result, when that outcome is
indeed observed, likelihood will be 1. In contrast, a causal
function that predicts a range of outcomes will inevitably
assign a lower likelihood to any one of these. For example, if
you observe a recipient turning blue, this is more consistent
with a function where the agent invariably turns the recipient
blue than with one where the agent turns the recipient to
either red or blue. We note that while many of these choices
are somewhat arbitrary, or are made for computational
convenience with respect to the current task context, the
approach itself is highly general and flexible, compatible
with many other more or less expressive grammars and
production processes embodying stronger or weaker priors.

According to Bayes Theorem, upon seeing some learning
data d, the posterior distribution over causal functions is

P(f |d,G) ∝ P(d|f )PG(f ) (3)

If causal functions apply universally to all the objects,
Eq. 3 solves the learning and generalization problems
at the same time: after updating the prior of causal
functions with learning data, the posterior predictive
gives generalization predictions for every novel pair of
objects. For instance, the animation example in Fig. 1A–
C results in a posterior over causal functions favoring
color(r ′) ⇐ color(a), color(r ′) ⇐ blue and some
other possibilities (recall the set is potentially infinite).
Then, in the generalization prediction phase as in Fig. 1D,
marginalizing over that posterior leads to a prediction
favoring blue-diamond. Formally, upon observing a
partial data point d∗ = (a∗, r∗, ·), an optimal decision
can be made by marginalizing over the posterior predictive
distribution of each possible r ′∗ value:

P(r ′|d∗) =
∫

P(r ′|a∗, r∗, f )P (f |d,G)df (4)

Grammar G and Eqs. 1–4 together define our first normative
model Universal Causal Laws (UnCaLa).

Featural Similarity-Based Categorization

However, while it has been argued that we think of causal
relationships as “invariant” (Sloman, 2005), in the sense
that they apply across contexts and over time, our causal
beliefs are so entangled with our concepts and categories
that we think of certain kinds of objects as having particular
causal powers, and others as being susceptible to particular
causal influences. For instance, we may well understand
that a bucket of paint can cause almost any surface to
take on the agents’ color, but other classes of agents, like
jumpers and cucumbers, do not make recipients take their
color. Category knowledge thus seems integral to real-world
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causal inference. If novel encounters involve objects of
familiar categories, one can generalize the causal functional
relationships and predict likely effects. When objects fall
into different categories, however, those causal laws that
one category has are not necessarily possessed by the other
category.

In fact, while people refer to causal relationships when
categorizing objects (Gopnik & Sobel, 2000; Rehder &
Hastie, 2001; Rehder, 2003), they also spontaneously use
featural and relational information for categorization when
no causal information is available (Anderson, 1991; Love
et al., 2004; Kemp & Tenenbaum, 2008), and then make
causal predictions based on these categories (Kemp et al.,
2010), suggesting the widespread assumption that features
reflect hidden causal powers.

But what determines the scope of our beliefs about
particular causal functional relationships? Intuitively, this
could be about the nature of the agent, the recipient, or
both. For example a function might apply to a specific
agent acting on a broad range of recipients—e.g., water
will make most of its potential recipients wet. Conversely,
we might conceive of causal relationships that hold for a
broad range of agents acting on a specific recipient—e.g.,
that most things will break an extremely fragile bottle. A
relationship could also be both agent-recipient-specific—
e.g., an electrical plug will only connect successfully
to a socket of matching shape. One dimension of our
experiments in this paper is to explore people’s intuitive
causal categorization assumptions. To foreshadow, we find
a causal asymmetry bias in which agents play the dominant
role in determining effects, consistent with White (2006).

We formalize the idea that the pairs of objects may fall
into different categories with respect to featural similarities
and their roles in the interaction with a Dirichlet Process
(DP). We treat one such category as a distribution over
objects, and DP defines a prior over a potentially infinitely
many categories. Let d denote a set of observations, z
denote a particular set of category memberships, and w
denote some categorization parameters (weights). We use
superscript (i) for the ith observation: d(i) for the ith
data point, z(i) the causal category assigned to the ith
observation, a(i) the agent in the ith data point, similarly for
r(i), r ′(i), and wz(i) for the weights associated with category
z(i). Inference about the ith observation’s category is given
by

P(z(i)|d,w) ∝ P(zi |z(−i))P (a(i), r(i)|wz(i) ). (5)

Equation 5 consists of two parts: P(z(i)|z(−i)) reflects our
prior expectations about how categories are distributed, and
P(a(i), r(i)|wz(i) ) encodes our beliefs about object features
and category membership.

In DP, the prior expectation of categories is given
by a Chinese Restaurant Process (CRP), controlled by a

concentration parameter α. A CRP is a stochastic process
widely used for creating partitions among entities (Aldous,
1985). It draws on an analogy of sequentially seating infinite
incoming customers to infinitely many tables in a Chinese
restaurant, where each table is also of infinite capacity. The
first observation d(1) is always assigned the first category
z(1); when i > 1, the probability for assigning category z(i)

is given by

P(z(i) = x|z(−i)) =
{

α
i−1+α

if x is a new category
|z(j)|

i−1+α
if x = z(j)

(6)

where z(j) is an existing category, and |z(j)| is the number
of assigned objects in category z(j). Parameter α is known
as the concentration, or dispersion parameter—the larger α

is, the more likely a new object falls into a new category.
Holding the same α, categories with more members are
preferred as they seem to be more “common.”

Preference for feature similarities can be modeled
by a multinomial distribution over feature values. Let
[μ1, . . . , μn] be the mean feature vector of a given category
where each subscript k is a feature value, probability of an
object assigned to a particular category according to feature
similarities is given by

P(o(i)|θzi ) =
n∏

k=1

Bernoulli(o(i); μk) (7)

To compute μk , let ov = [ov1 , . . . , ovn] be the feature values
of an object o, where each v represents a feature value,
ovi

= 1 if object o has this feature value and ovi
= 0

otherwise. For a category z = {o(i), . . . , o(m)}, zv :=∑m
j=1 o

(j)
v , which can be written as zv = [zv1 , . . . , zvn],

where zvi
= ∑m

j=1 o
(j)
vi

. Mean feature μk := zvk∑n
l=1(zvl

)
.

We assign a Dirichlet prior to this multinomial distribution
in order to capture how important feature similarity is in
forming categories. Without leaning toward any specific
feature, the prior distribution over mean features is simply
Dir(β).

It is not obvious whether mean features should be drawn
from the agent object, recipient object, or both, therefore
we introduce one more hyperparameter γ , referring to the
probability that mean feature is purely based on the agent:
when γ = 1, categorization is only grounded on the
agent objects, when γ = 0, only recipient’s features are
considered for categorization, and when γ = 0.5, both agent
and recipient are considered equally.

In total, we introduce three global parameters: a
concentration parameter α > 0, a Dirichlet prior β ≥ 0, and
a focus parameter γ ∈ [0, 1]. Dirichlet prior β and focus
parameter γ together decide the mean feature vector μ(zi)

for category z(i). Equations 5–7 provide the full definition
for featural similarity-based categorization (left column,
Fig. 2).
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Take the generalization tasks in Fig. 2 as an example.
Assuming we saw a blue-square agent causing a
red-diamond to become a blue-diamond, but then
we need to make predictions about a red-square agent
and a yellow-diamond agent. According to the model,
both square objects have a high probability of falling into
the same “square agent” category and hence sharing the
same causal power. However, a yellow-diamond has
no shared feature with a blue-square, hence it is more
likely to belong to a different category and have potentially
different causal powers than a blue-square.

Latent Causal Categories

Finally, we combine causal functions and object categories
into causal categories. The core assumption is that objects
within the same causal category share a same causal
function:

P(z(i)|d,w) = P(z(i)|d(i),w, z(−i))

∝ P(z(i)|z(−i))P (a(i), r(i)|wz(i) )P (r ′(i)|a(i), r(i),wz(i) )

∝ P(z(i)|z(−i))P (a(i), r(i)|μ(zi ))P (d(i)|f (zi )) (8)

Equation 8 adds a causal function component onto Eq. 5.
On the final line of Eq. 8, the three products correspond to
Eqs. 6, 7, and 2 separately. In other words, the priors for
constructing causal categories are provided by

z(i)|z(−i) ∼ CRP(·|α)

μ(i) ∼ Dir(·|β)

f (zi ) ∼ G(·) (9)

And likelihoods are given by

a(i), r(i)|μ(zi) ∼ Dir( · |μ(zi), β)

d(i)|f (zi ) ∼ f (zi )(a(i), r(i)) (10)

When learning data points are abundant, it is impossible to
compute the posterior directly because we do not know how
many categories are there in advance. We can approximate
the posterior distribution using Gibbs sampling. To achieve
this, we construct a chain of samples where for each
iteration, we sample a causal category for a random
observation d(i) while fixing the category assignment to the
other observations, and a sampled causal category z(i) will
then update the category parameters μ(zi) and f (zi ). The
category sampling step of this Gibbs sampler follows Eq. 8,
and the local parameter update step follows definition of
computing these parameters given objects in this category.
When the number of iterations n → ∞, the sampled
categories Z̃n converge to the true posterior.

With a posterior over causal categories in place, we can
make normative generalization predictions to new cases.
Similar to Eq. 4, upon observing a partial data point d∗ =

(a∗, r∗, ·), an optimal decision can be made by aggregating
the posterior predictive distribution of each possible r ′∗
value:

P(d̃∗) ∝
∫

z

p(d̃∗|z)P (z|d)dz

≈ 1

|Z̃|
∑

z̃∈Z̃

p(r ′∗|a∗, r∗, f (z̃))P (a∗, r∗|μ(z))P (z|d) (11)

and taking the maximum over this predictive posterior

Choice = arg max P(d̃∗) (12)

Take the two generalization examples in Fig. 2 again.
After watching a blue-square agent turning a
red-diamond object blue, the posterior distribution over
causal functions provides a pool of causal functions these
objects may have. For the sake of the example, assume the
most salient causal function is that the blue-square
object transfers its color to other objects. When making
generalization predictions for a red-square object, its
shared square feature with the blue-square object
leads us to guess they belong to one same category; hence,
this red-square object might also transfer its color to
other objects. When facing a yellow-diamond object,
we are less certain in applying the same causal function.
Thus, we are more likely to draw upon the prior distribution
of causal laws to account for our uncertainty.

Experiment 1: One-Shot Generalization

We first investigate the one-shot generalization case: Given
a single observation of a causal interaction, will people
form consistent causal generalization predictions to new
objects? Can we identify the inductive biases behind their
generalization choices?

Method

Participants

One-hundred-and-twenty participants (53 female, aged
40±11) were recruited from Amazon Mechanical Turk
and were paid $1.19. The task took 5.23±3.17 min. No
participant was excluded from analysis. Both Experiments
were approved by the Research Ethics panel at the
University of Edinburgh.

Stimuli and Design

Participants were told that they were making predictions
about the behavior of a magic world containing magic
stones (agents) and normal stones (recipients). In short
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videos, participants observed a magic stone collides with
a normal stone and appears to alter the normal stone’s
color and/or shape (see Fig. 1). Magic stones had a thick
border while normal stones had no border. We manipulated
two object features—color {red, yellow, blue} and shape
{circle, square, diamond}, leading to 3 × 3 = 9 possible
configurations for each object and a nominal 9×9×9 = 729
configurations of agent and of recipient both pre- and post-
the causal interaction.

We used a 6 × 2 between-subject design. There were six
learning examples varied between subjects (Fig. 3A)—each
participant saw one. Each learning example demonstrates a
causal effect differing in whether it results in a change to
one or both features of the recipient object, and whether
either or both of these new values match the agent object’s
features. Note that the function descriptions were not shown
to participants and are by no means the only possible way to
characterize the causal relationship being displayed.

For each learning example, we constructed 15 general-
ization tasks by varying object features systematically from
the learning example (Fig. 3B). For example, A1 in Fig. 3A
depicts a red square agent and a yellow circle recipient, and
according to the specifications in Fig. 3B, generalization
task 1 for A1 has a red square agent, and a blue circle recip-
ient. We call the sequence of tasks from 1 to 15 “near-first

transfer” because this sequence of tasks starts with those
that differ by only one feature from the learning example
and progress to scenes in which all of the features dif-
fer. Conversely, we call the sequence of tasks 15 to 1 the
“far-first transfer” sequence, because it starts with sets of
stones that are completely different from those in the learn-
ing examples and progresses back to the more similar cases.
Within each sequence, whether the set of different-color
tasks or the set of different-shape tasks appeared first (task
1 & 2, 5 & 6, 9 & 10, 13 & 14, 4—7 & 8—11) was shuffled
to counterbalance feature order.

Procedure

After instructions, participants had to pass a comprehension
quiz to start the main task. The main task contained a
learning phase and a generalization phase. During learning,
participants watched one specific magic stone’s effect on a
normal stone (Fig. 1A–C, Fig. 3A), and they could replay the
effect as many times as they wanted. After that, participants
were asked to make predictions for 15 new pairs of magic
stones and normal stones sequentially, by selecting from a
panel of 9 possible stones (Fig. 1D). A summary of the
learning example (as used in Fig. 3A) was displayed at
all times and the animation was replayed once between

Fig. 3 Experiment 1 stimuli. (A) Learning conditions, showing objects
before and after a causal interaction. (B) Generalization task configu-
rations a∗, r∗ are the agent and recipient in each generalization task; a

and r are the agents and recipients in the learning example. Example
stones are for learning condition A1
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Fig. 4 Experiment 1 behavioral
results. A: ρτ for each learning
scene condition (as labeled in
Fig. 3A) and sequence order:
light blue = near-first transfer,
dark blue = far-first transfer. B:
Density distribution of task-wise
ρτ , per match (light blue)/new
(dark blue) groups. C: Density
distribution of task-wise ρτ , per
color change (light blue)/shape
change (dark blue) groups
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each generalization task to ensure it was not forgotten. A
demo of the task is available at http://bramleylab.ppls.ed.ac.
uk/experiments/bnz/magic stones/index.html.

Results

We are initially interested in assessing the level of
agreement between participants on each generalization task,
as this gives a sense of how systematic or strong preferences
for any particular patterns of generalization are. We use
Cronbach’s alpha (Cronbach, 1943) to measure inter-person
consistency. Specifically, the Kuder-Richardson Formula 21
(KR-21)2 (Kuder & Richardson, 1937):

ρτ = k

k − 1

(
1 − kp(1 − p)

σ 2
X

)
(13)

where k is the number of participants assigned to each
condition, p is the chance probability of picking an object if
responding randomly (p = 1

9 = 0.11), and X is the vector
of aggregated participant selections for each option.

Task-wise consistency ρτ demonstrates that participants
made systematic one-shot causal generalizations. Across

2KR-21 is a simplified version of Cronbach’s alpha known to be more
conservative. The resulting consistency measure ρτ ranges between
0—indicating uniform spread across all selections—and 1—indicating
perfect agreement between participants.

12 conditions × 15 tasks = 180 tasks, ρτ = .80 ± .22.
Fisher’s exact test confirmed that participants’ generaliza-
tion consistency is significantly above random selections,
p < 0.001. This is therefore another example of human
capacity to make systematic one-shot causal generalizations
(Kemp et al., 2007).

Next, we compared prediction consistency in the near-
first and far-first transfer order conditions. Generaliza-
tions were more consistent overall under near-first trans-
fer: ρτ = .83 ± .21, compared with far-first trans-
fer ρτ = .77 ± .21, t (89) = 3.54, p < .001,
95%CI = [0.03, 0.10] (Fig. 4A). ρτ was higher for near-
first transfer under all learning conditions except A6
“Recipient changes to a new color and shape,” for which
both transfer sequences induced low agreement.

Participants also generalized less consistently when the
learning task involved new colors or new shapes (Fig. 4B).
For learning scenes A1, A3, and A5, where effect states
match agents’ features, overall consistency was high: ρτ =
0.90±0.09. Learning scenes A2, A4, and A6, where effects
involved brand new values, consistency was lower: ρτ =
0.70 ± 0.26, differing significantly from the match group,
t (89) = 6.96, p < .001, 95% CI = [0.14, 0.26]. Finally,
color and shape changes were generalized to different
extents despite these features appearing in symmetric and
counterbalanced contexts in the task (Fig. 4C). Shape
changes (A1, A2) induced more homogeneous predictions,
ρτ = 0.89 ± 0.09, compared to color changes (A3, A4)
ρτ = 0.81±0.19, t (59) = 2.88, p = 0.005, 95%CI = [0.02,
0.13].
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Fig. 5 Experiment 1. A. Generalization patterns for all conditions
visualized as proportion of participants predicting each stone type for
r ′ (column) on each task (row). B. Fitted LoCaLaPro predictions.

C–D. Example LoCaLaPro predicted proportions with small α (=0.01)
and large α (= 8). For both figures, β = 0, γ = 0.5

Interim Discussion

We highlight some findings here, and return to them in
our “General Discussion”. On the one hand, Experiment 1
demonstrates the strength and consistency of human causal
priors, with participants making systematic generalizations
from a single example despite these examples being
compatible with a very large number of potential causal
rules. In Fig. 5A, each cell shows the proportion of
participants that selected each object on each task. There is
a substantial generalization consistency across participants
for most tasks, indicated by the presence of a single dark
shaded cell for most tasks and most learning examples.

On the other hand, we observed a clear departure from
normativity providing a clue about cognitive processing,
in the form of a generalization order effect. The near-
transfer first conditions induced more consistent predictions
(across subjects), compared to far-first transfer. Taking a
closer look, for most conditions inter-subject consistency
stayed fairly constant across all 15 generalization tasks
(Fig. 3B). If there was a high level of agreement about

the first generalization—as there tended to be in the near-
first transfer conditions—participants also tended to make
the same predictions as one another right through to the
end, even once facing the highly dissimilar scenarios.
Conversely, if initial generalizations were diverse (lower
homogeneity)—as they tended to be in the far-first transfer
condition—diversity of judgments persisted until the end,
even though the objects in the final tasks were very similar
to the learning example. This suggests participants are
influenced by their own generalization history in some way.

Generalizations following examples where the recipient
is changed to a completely new feature value (A2, A4,
A6) induced substantially more diversity in generalization
predictions than those that did not (A1, A3, A5). This
provides a possible explanation for the particularly low
consistency measure ρτ in A6. Here, both of the result
object’s features are different from those of both the agent
and the recipient. Potentially, some participants may have
inferred a stochastic rule here such as that agents make
recipients take on random feature values. To the extent
that participants inferred stochastic rules, we might expect
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varied predictions even if there is high consistency about the
nature of the causal function.

Models

We now further analyze generalizations in Experiment 1
using our modeling framework. To do this, we fit several
model variants to our choice data using maximum likelihood.
We then compared them using Bayesian Information Crite-
rion to accommodate for different numbers of parameters.

We first computed a random choice Baseline. This model
simply predicts P(choice = r ′) = 1

9 , for the 9 candidate
objects, and has no parameters. We then consider three
models based on the modeling framework developed above.

Each model natively provides predictive posterior prob-
ability distribution over the nine options, while participants
make a single discrete prediction. Thus, for each case, we
convert the model’s posterior into discrete choice proba-
bilities using a softmax function to account for decision
noise (Luce, 1959). Taking Pm(r ′|d) = {xo1 , . . . , xo9} as
the posterior predictive distribution over candidate objects
for model m, and t as an “inverse temperature” parameter:

P(choice) = ePm(r ′|d)t

∑
x∈r ′ ePm(r ′|d)t

(14)

When t → 0, Eq. 14 corresponds to flattening the input
distribution toward a uniform distribution while as t →
∞ the input distribution is sharpened, approaching a hard
maximization over the probabilities.

Universal Causal Laws (UnCaLa) model uses the causal
law induction process to generate a large prior sample
of possible causal functions F̃ using the PCFG described

earlier (Table 1), then filters this according to the
learning example to generate a posterior of potential
causal functions consistent with the training data (Eqs. 1–
3). It then integrates over these to generate posterior
predictions for each generalization task according to Eq. 4.
Essentially, UnCaLa assumes that the causal function
governing the training case applies universally to all
potential generalization scenarios no matter how dissimilar
the objects involved may be.

Local Causal Laws (LoCaLa) model captures the idea that
multiple latent relationships might be at work, and which
will apply to a particular object pair depends on which
causal category they fall under. Based on a sample of
possible causal functions generated by the PCFG defined
in Table 1, the LoCaLa model makes predictions about the
result object in a generalization task according to Eqs. 8–
11. Note that LoCaLa compares each generalization task
with the learning example to make predictions, treating
each task as an independent decision problem. Essentially,
the more dissimilar a generalization scenario is to the
learning example, the less likely LoCaLa thinks it is that
the same causal law will apply, meaning it reverts its
prediction increasingly toward the prior. How strongly it
reverts depends on the concentration parameter α: with
larger values producing a more drastic return to the prior
(Eq. 6). Relatedly, Dirichlet prior β captures categorization
sensitivity to feature similarity (Eq. 7) with larger values
meaning less sensitivity and consequently more noise in the
predicted behavioral pattern. Note that we fit α and β, but
fix focus parameter γ = 0.5 in Experiment 1, because in
this experiment there is no information about what causal
categorization assumptions should be preferred.
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Local Causal Laws Process (LoCaLaPro) model commits
to its own causal-category allocations as it makes gen-
eralizations, instead of treating each generalization trial
independent from each other as in the LoCaLa model. As a
result, LoCaLaPro behaves differently when generalizations
are made in a different order. To unpack, LoCaLaPro first
assigns the object-pair in the learning example to an initial
causal category z(1) governed by a causal law sampled from
the posterior distribution P(f |d). For each generalization
task, it then assigns the encountered object pair scenario to
either an existing causal category or a new category accord-
ing to Eq. 5. If an existing causal category is selected, the
model simply applies the causal function of this category to
make its prediction. If a new category is sampled, however,
a new causal law will be assigned to this category. Since
there is no evidence about what causal law may apply to this
new category, this new causal law is sampled from the prior.
Algorithm 1 shows this process in pseudo code.

Instead of approximating a posterior over infinitely many
possible categories as the LoCaLa model, the process model
LoCaLaPro maintains a small set of available categories
that are created online as new generalizations are per-
formed. Furthermore, after categorizing an observation, the
LoCaLaPro model updates the list of causal categories Z

with this categorization decision, reflecting a commitment
to its earlier decisions. Concentration parameter α thus
plays a slightly different role in the LoCaLaPro model as
LoCaLa. When α → 0, the model becomes increasingly
likely to stick with existing categories (Eq. 6). There-
fore, under the near-first transfer conditions, this model
makes predictions closely approximated by the posterior
distribution after watching the learning example, through-
out the entire generalization phase; in the far-first transfer
conditions, it is likely to trigger the creation of a new
category to accommodate the fact that the generalization
scenario drastically differs from the learning example. Sub-
sequent generalization predictions tend to join this newly
created category. This induces a generalization-order effect
(Fig. 5C). When α becomes very large, a new observation
has a high probability of being attributed to a new cate-
gory (Eq. 6), and the overall generalization predictions will
simply approach the prior (Fig. 5D). The other hyperpa-
rameters β and γ play the same role as in the LoCaLa
model.

Model Fits

We used optim function in R to fit the UnCaLa and
LoCaLa models to behavioral data. Recall that we generate
a large prior sample of possible causal functions F̃ for
all three models. In practice, we exploited the fact that

each object is composed of two features, and therefore
enumerated all the possible causal functions generated by
grammar G up to depth 2. Any causal function in our
grammar that is syntactically more complex than those in
this set is semantically equivalent to one in this set. With
a fixed set of F̃ , the UnCaLa model has only one softmax
parameter that can be optimized by optim.

LoCaLa has an analytical solution in this case because
there is a single learning example, which by definition
belongs to category 1. Each generalization task is then
compared against the learning example independently. As
a result, the chance that a generalization task belongs
to category 1 can be computed straightforwardly from
parameters α and β. Assuming the model applies the
same α, β and softmax inverse temperature t to each
generalization task, we jointly optimize all three parameters
to maximize the likelihood of the data using R’s optim
function.

For the LoCaLaPro model, since each sampling deci-
sion for one generalization task affects how future tasks
will be categorized, we can only approximate its posterior
distribution with simulation-based method, and optimized
parameter values via grid search. Firstly, we set up a coarse
grid with α = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1, 1.5, 2, 4, 8}, β = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}. For
our single shot experiment, in the far-first condition, when
α = 1, the first generalization observation has a half-half
chance to join the learning example or create its own causal
category in terms of category size preference (Eq. 6).
Therefore, the presence of generalization-order effects in
behavioral data indicates that α is likely to be smaller than
1. Hence, we included a range of values for 0 < α < 1 with
fixed-step 0.1, as well as few larger values in case of sur-
prise. For β, we take a set of exponentially growing large
values up until 1024 in order to accommodate behavioral
noise. After running this coarse grid and locating an opti-
mal area, we ran another search over a finer grid for α =
{0.28, 0.30, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48,

0.5, 0.52} (β is the same as previously) to improve
precision.

Table 2 summarizes the model fits. Both the Universal
UnCaLa and Local LoCaLa models improve dramatically
over the random Baseline, and LoCaLa outperforms
UnCaLa in both likelihood and BIC. Figure 5B shows that
these computational models indeed predict the dominant
judgment patterns among participants. The process model
LoCaLaPro best predicts the empirical data. Its fitted α

parameter for LoCaLaPro is 0.38, confirming the presence
of a dominant order effect. The fitted β = 1.0, indicating a
moderate level of noise in this sample.
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Table 2 Model fitting results for Experiment 1

α β t Log likelihood BIC

Baseline −3955 7910

UnCaLa 6.96 −2761 5529

LoCaLa 2.41 938.81 9.44 −2748 5518

LoCaLaPro 0.38 1 10.09 −2736 5494

Experiment 2: Few-Shot Generalization

Experiment 1 explored one-shot causal generalization, and
found evidence of systematic generalization predictions
between participants. In Experiment 2, we extend the
setup to investigate causal generalization on the basis of
multiple complete observations. In addition, recognizing
that prediction consistency may not fully imply consistency
in causal law induction, we also elicited free guesses about
the nature of the causal laws.

Method

Participants

One-hundred-and-sixty-three participants were recruited
from Amazon Mechanical Turk. Sixty-one participants were
excluded before analysis for failure to provide task-relevant
responses.3 We thus analyzed 102 participants (37 female,
aged 35 ± 10). Each participant was paid $0.50 plus up to
$2.30 bonus. The task took 10.4 ± 7.2 min.

Stimuli and Design

Similar to Experiment 1, we varied the shape and color
properties of the objects. However, instead of using
categorical values, we introduced intuitively ordinal feature
values. Shapes were all equilateral and differed in terms
of their number of sides: 3 (triangle), 4 (square), 5
(pentagon), 6 (hexagon), and 7 (heptagon); colors were of
identical hue and saturation (blue) but differed in lightness
varying between: 1 (light blue #c9daf8), 2 (medium blue
#6d9eeb), 3 (dark blue #1155cc), and 4 (very dark blue
#052e54). Staying within the features’ observed values
this leads to 4 × 4 = 16 possible configurations for each
object, and a nominal 163 = 4096 possible configurations
for objects both pre- and post- the causal interaction. These
ordinal features enlarge the space of effects and greatly
enriches the space of plausible rules, for example allowing
causal laws in which a recipient stone becomes darker or

3Data for Experiment 2 was collected summer 2020 at the height of
the COVID-19 pandemic. See the “Exclusion Criteria” section for data
quality control.

lighter when acted upon, gaining or losing sides, as well as
those involving copying or taking specific or random values.

During learning, each participant observed six causal
interactions between different pairs of agent and recipient
before making generalizations. We included 2 (evidence-
balance) × 2 (ground truth) between-subject factors (see
Fig. 6). With respect to evidence-balance, for fixed-agent
conditions B1 and B3, an identical agent was shown in
all learning examples, while the recipients it acted on
were varied systematically; in the fixed-recipient conditions
B2 and B4, the recipient object was always identical but
was acted on by six different agents. We designed the
evidence to be consistent with two “ground truth” rules that
counterbalance between the roles of the shape and the color
features:

Rule 1 (B1/B2) The recipient gets one increment darker
and takes the agent’s shape plus one edge—
AND(edge(r ′) ⇐ edge(a) + 1,shade(r ′) ⇐
shade(r) + 1)

Rule 2 (B3/B4) The recipient gains an edge and takes
the agent’s shade plus one shade increment—
AND(shade(r ′) ⇐ shade(a)+1,edge(r ′) ⇐
edge(r) + 1)

Note that these “ground truth” rules are just one of
an unbounded set of possible universal causal relations
consistent with the six learning trials, and a single universal
category is just one of a much larger set again of possible
local causal law category structures.

We composed generalization tasks according to the
configurations in Table 3. In total there were 4 × 4 =
16 generalization tasks for each condition. Additionally,
we included two catch-trials for each condition. We
randomly chose two learning examples and turned them into
generalization trials by hiding the result state. This resulted
in 16 + 2 = 18 generalization tasks for each condition.

Procedure

After completing instructions, participants had to pass a
comprehension quiz to proceed to the main task, consisting
of a learning phase, self-report, and a generalization phase.
After the main task, participants provided demographic
information and feedback. A demo of the task is available
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Fig. 6 Experiment 2 learning conditions

at http://bramleylab.ppls.ed.ac.uk/experiments/bnz/myst/p/
welcome.html.

Each participant was randomly assigned to one of the
four learning conditions (Fig. 6). The six pairs of agent
and recipient stones were shown in random order, one after
another. By clicking a “Test” button, they could watch the
causal interaction as many times as they wanted. After
each object pair was tested, a summary visualization of
the agent, recipient and the result was added to the top

of the page (see Fig. 1E–F)), and remained visible for
the rest of the task. After the learning phase, participants
were asked to write down their best guess about how the
mysterious stones worked, and told they would receive a
$0.50 bonus if they described the true underlying causal
law. In the generalization phase, participants faced the 18
generalization trials sequentially in random order. For each,
participants predicted the result recipient by selecting a
number of edges and the shade of blue from two drop-down

Table 3 Experiment 2 generalization task configurations

For the fixed object Instance For the varied object Instance

o∗ = shade(o), edge(o) shade(o),¬edge(o)

¬shade(o), edge(o)

shade(o),¬edge(o) ¬shade(o), edge(o)

¬shade(o),¬edge(o)

o∗ is the object in generalization tasks, o is the object shown during learning. For the varied object, ¬shade(o) means picking a shade that has not
appeared during the learning phase, and we chose two instances for it.
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menus (see Fig. 1F). Participants were instructed they would
receive a $0.10 for each correct prediction. We bonused
participants as described afterwards.

Exclusion Criteria

To check data quality, we screened participants’ self-reports.
As with past work, we required workers with Turk approval
ratings of above 90%. But in line with Chmielewski and
Kucker (2020), we found an unusual number of suspicious
responses with very fast completion rates and nonsensical
text responses. We thus chose to exclude participants if
they failed to provide a task relevant response on the
free text guess about the rule. In addition, we checked
participant accuracy on the two catch-trials, and found that
while overall accuracy is 41%, far above chance (5%), the
excluded batch’s accuracy is just 8%, indistinguishable from
chance. We provide the full dataset along with the analyzed
dataset at https://github.com/bramleyccslab/causal objects.

Results

For participants’ generalization predictions, we measured
inter-participant consistency as in Experiment 1. To analyze
free-text self-reports, we coded them into several categories
and ran statistical tests on the coded labels.

Generalization Consistency

As with Experiment 1, we measured inter-person consis-
tency in generalization predictions computing ρT for the
sixteen generalization tasks per condition (excluding the
two catch-trials), totalling 4 × 16 = 64 values. Mean con-
sistency was ρT = 0.87 ± 0.08, with min ρT = 0.57, max
ρT = 0.98. To compare generalization consistency against
random selections, for each condition we conducted Fisher’s
exact test on the contingency table of selecting each pos-
sible result per trial. For all four conditions, p < 0.001.
Thus, as in Experiment 1, participants produced systematic
generalization patterns.

We then compared inter-person generalization consis-
tency by condition. As illustrated in Fig. 7A, the fixed-agent
condition induced higher consistency (ρT = 0.89 ± 0.06)
than the fixed-recipient condition (ρT = 0.85 ± 0.1),
t (31) = 2.12, p = 0.04, 95%CI = [0.001, 0.08], while
the difference in ρT between the ground truth condition
was negligible, t (31) = 0.22, p = n.s. No interaction was
detected. In short, participants made more homogeneous
predictions after observing the same agent acting on a range
of recipients, and diverged more having observed different
agents interacting on the same recipient.

Generalization consistency decreased as objects in the
generalization tasks become more distinct from those in the

learning examples (Fig. 7B). To show this, we constructed a
rough measure of dissimilarity, by counting the features of
generalization trials that took novel values never observed
in the learning phase. Formally, let FL be the set of unique
feature values of all the objects appeared during learning,
and Fi be the set of unique feature values of objects in
a generalization trial i, dissimilarity score DS = |Fi \
FL|. By design, dissimilarity scores DS ∈ {0, 1, 2, 3}
(Table 3). We found a significant negative relationship
between task dissimilarity and generalization consistency,
β = −0.06, F (1, 62) = 37.48, p < 0.001.

Finally, we fit a linear regression model predicting ρT

with task dissimilarity, evidence-balance and ground truth,
F(3, 60) = 15.63, p < 0.001. This revealed main effects
of dissimilarity (β = −.06, p < 0.001) and evidence-
balance (fixed-recipient, β = −0.04, p = 0.01), but not
ground truth (rule 2, β = −0.003, p = n.s.). As depicted
in Fig. 7B, consistency of judgments in the fixed-agent
conditions (B1 & B3, lighter lines) decreased slower than
the fixed-recipient conditions as dissimilarity increased (B2
& B4, darker lines).

Not only did the evidence-balance condition have a sig-
nificant effect on generalization consistency, dissimilarity of
the agent or recipient objects in the generalization tasks was
also associated with lower consistency (Fig. 7C). Holding
recipient dissimilarity constant, increasing agent dissimi-
larity does not predict prediction consistency significantly,
F(1, 62) = 0.77, p = n.s.; however, recipient dissimilarity
does, F(1, 62) = 38.8, p < 0.001.

Self-reports

In Experiment 2, we asked participants to provide an explicit
free-text guess about the nature of the causal relationship(s)
being tested after they completed the learning phase.
Eighty-six percent of these total responses (88/102) were
compatible with the relevant learning observations, and here
we only analyze these. Two independent coders categorized
participants guesses according to their specificity and
implicit localization of causal powers. The first coder
categorized all free responses, and 15% of the categorized
responses were then compared against the second coder’s.
Agreement level was 92%. The full set of free responses and
the detailed coding scheme are available at https://github.
com/bramleyccslab/causal objects.

Since our ground truths are not the only rules consistent
with the learning data, we analyzed participant self-reports
not according to whether they got the ground truths right,
but whether their own rules were consistent with the
learning data, as well as the level of generality in the reports.
Hence, we first defined three exclusive and exhaustive
response specificity categories: specific, fuzzy, and tacit.
A specific self-report would predict a unique result object
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per condition. The major bar in the box plot is the median and the box
extent is the 25 and 75 quantiles. B: Inter-person consistency per task
differences. C: Inter-person consistency per role differences

for any potential combination of agent and recipient (for
example, “The inactive shape is always changed to a
pentagon & its shade is changed to one step darker than
the active stone”). Our ground truth rules all belong to the
specific class of response. A fuzzy rule was one that left
open for more than one possible result objects (for example,
“It will be different colors and shapes”). We distinguished
a second form of under-specified self-report, tacit, if it left
a feature unmentioned, which depending on background
assumptions might be taken to imply that feature remained
unchanged but could also be compatible with it taking some
new or random value (for example, “The active stone adds
a side to the inactive stone”).

We also had the coders categorize responses according
to whether and how a self-report localized the domain of
the causal law asserted. Concretely, we included four labels
A, R, AR, and universal. If a response mentioned a specific
context of influence, typically using an if... clause, we
labeled this according to whether the context mentioned the
Agent (e.g., “If the active stone is darker than the inactive
stone, it turns the inactive stone darker”), Recipient (e.g.,
“The active stone causes the other stones to change into a
pentagon shape, unless it is already a pentagon shape, in
which case it makes it darker”), or both. If a response made
no localization or context (e.g., “The active stone cause
inactive stones to five sided stone”), then it was labeled as
universal.

Figure 8 illustrates the coding results by learning
condition. Guess specificity is summarized in Fig. 8A.
We fit a multinomial logistic regression model predicting
specificity by evidence-balance and ground truth factors,
and found that when taking the specific self-report type as
baseline, the ground truth factor is a significant predictor

for the tacit type (β = 0.09, p = 0.008), while evidence-
balance is not. Neither of these two factors is significant for
the fuzzy type. Figure 8B summarizes participants’ guesses
in terms of localization. No participant localized their rule in
terms of both agent and recipient. Unsurprisingly, whenever
localization occurred, it was applied with respect to the
object that varied during the learning phase. A logistic
regression predicting universal rule probability by condition
showed that both evidence-balance (fixed-recipient, β =
−1.21, z = −2.3, p = 0.02) and ground truth (rule 2,
β = 1.17, z = 2.3, p = 0.02) were associated with more
universal rules. There was no evidence for an interaction,
z = −0.5, p = n.s.

Interim Discussion

These results reveal an asymmetry in causal generalization.
In Experiment 2, the two underlying causal relationships
induced feature changes that in fact depended critically on
both the agent and the recipient. However, participants’
responses suggested they more readily identified the causal
effect with the agent object. Consistency was higher for
the fixed-agent condition where learners saw the same
agent acting on various recipients (B1, B3) than conditions
where agent was varied and the recipient was constant
(B2, B4). Generalization consistency decayed more slowly
when agents became more dissimilar to the training cases
than for the matched degree of dissimilarity in terms of
the recipient. Self-reported causal laws showed a much
higher share of universal causal laws in the conditions
where the agent was fixed, and more localization of causal
laws was posited when the agents were varied. In fact,
causal asymmetry is a well-known inductive bias in physical
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causation (White, 2006): people tend to judge the “cause”
object to be more responsible for bringing the effect even
when both objects play equally critical roles. For example,
we more naturally think of a moving billiard ball as causing
a previously static one to move rather than the static
ball causing the moving one to slow down or stop even
though the interaction is mathematically symmetric and
jointly determined. Experiment 2 thus supports the idea

that there is a fundamental causal asymmetry to our causal
generalizations.

We also noted a difference between color and shape
features in participants’ self-reports. Tacit rule guesses
were more common for ground truth rule 2. Taking a
closer look at tacit guesses, we found 91 percent of
them (29/32) described only the edge property—the shape
feature, and left color changes unmentioned. In Experiment
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1, we observed that shape-related changes induced more
homogeneous predictions. These findings echo those in the
developmental literature suggesting shape is perceived as
a more fundamental or “essential” feature (Landau et al.,
1988), and therefore more likely to be critical for an object’s
causal powers.

Modeling Results

As with Experiment 1, we compared participants’ general-
izations to a random Baseline model, a Universal Causal
Laws (UnCaLa) model and a Local Causal Laws (LoCaLa)
model, again using maximum likelihood and BIC to account
for different numbers of parameters. Since we randomized
the presentation of both evidence and generalization trials
between subjects, we do not expect systematic effects of
the sort accommodated by our LoCaLaPro, so we focus on
comparison between UnCaLa and LoCaLa.

We extended the grammar used in Experiment 1 to
cover a larger space of ordered feature relationships. Con-
cretely, we introduced +1, -1, >, < at the “bind relation”
step to accommodate potential assertions about the order-
ing of feature values used in this experiment. Similarly as
in Experiment 1, the UnCaLa model is fitted using the
optim function in R with one softmax inverse temperature
parameter t . However, different from the single-shot setup
in Experiment 1, in Experiment 2 our LoCaLa model runs
over six learning examples with potentially infinite catego-
rizations. Therefore, we used Gibbs sampling to estimate
the predictions under each parameterization, and optimized
the parameters with a coarse grid search. On each itera-
tion of the Gibbs sampler, one observation is sampled and
compared against the other five observations. According to
Eq. 6, when α = 5 this observation has a 0.5 chance to
create its own category in terms of size preference. This
probability grows as α increases. Therefore, we centered
the support values for α around 5, with an exponential
increase for larger values, resulting in consideration of α ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 32, 64, 128, 256}. β takes
the same range of values as in fitting the models in Expe-
riment 1. For γ , values of γ = 1, 0.5 and 0 are of particular
theoretical interest, representing localization based on just
the agent, agent and recipient equally, or just the recipient.
We also included γ = 0.25 and γ = 0.75 consistent with a
mixed focus biased toward either agent or recipient.

We fit UnCaLa and LoCaLa to all 102 × 16 = 1632
data points taken together. Results are summarized in
Table 4. Both models improve substantially over the random
Baseline, with LoCaLa fitting better than UnCaLa as in
Experiment 1. Within LoCaLa, the best fitting γ value was
1, indicating that causal categorization was dominated by
features of the agents in line with the asymmetric causal
attribution bias suggested by our regression analyses. The
fitted α for LoCaLa is 9 (above chance-level probability
of assigning a new causal law to each new observation)
confirming the behavioral tendency to create multiple causal
categories to account for the evidence. Recall that for
the conditions where agent was varied, almost half of
the participants reported non-universal causal rules, and
when agent was fixed, very few participants’ responses
suggested categorization. Here, γ = 1 together with α = 9
captures this pattern: When observing multiple different
agents, participants imputed many local causal laws. When
seeing a single agent interact with multiple recipients,
they tended to impute a single causal law. The fitted β

parameter was quite large, as in Experiment 1, this indicates
a substantial heterogeneity across participant data taken
together. As Fig. 9 shows, our best fitting model indeed
visually reproduces participants’ generalization patterns.

General Discussion

In this paper, we investigated causal generalization based
on observations of interactions between objects. Our two
experiments demonstrated that people make systematic
causal generalizations from one or a few observations and
revealed some of the inductive biases that drive these.
Participants’ generalization patterns were well-captured
by our Bayesian inference model operating on a latent
space of causal laws generated by a simple Probabilistic
Context Free Grammar prior favoring parsimony, and
an extended Dirichlet Process that localized causal laws
according to the interacting objects’ features as well as their
causal behaviors. Separately, these ideas extend previous
work in causal inference and categorization (Bramley et al.,
2017; Goodman et al., 2008; Kemp et al., 2010), and in
combination they give the first precise formal account of how
people (1) partition the world according to causal behavior
without relying on innate knowledge—an essential feature

Table 4 Model fitting results for Experiment 2

α β γ t Log likelihood BIC

Baseline −4889 9778

UnCala 3.19 −3706 7417

LoCaLa 9 256 1 9.5 −3462 6942
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of any general model of causal learning (e.g., Griffiths &
Tenenbaum 2009; Lucas & Griffiths 2010); and (2) do so in
a way that is resource-efficient, requiring modest attention
and memory, and supporting snap judgments, albeit at the
expense of inducing order effects.

Beyond Blickets

Our work generalizes the structure of standard “blicket
detector” studies, in which different combinations of factors
or objects are tested and an effect does or does not occur
(e.g., Gopnik et al. 2007; Kemp et al. 2010; Lucas &
Griffiths 2010; Sim & Xu 2017), making predictions about
a wider family of scenarios while accommodating previous
results. If we treat the recipient object’s feature change(s)
as a multinomial activation outcome, this can be viewed
as analogous to the blicket detector becoming active in the
presence of a blicket, and we can use our current framework,
unaltered, to see how people reason about a machine’s
interactions with prospective individual blickets.

However, our setup puts more emphasis on causal inter-
actions. The collision stimuli we used in our tasks are known
to evoke automatic perception of causality (Michotte, 1963),
making it an appealing way to study how people reason
about cause and effect specifically. In contrast, many studies
of causal induction involve descriptions of events that
already occurred, or carefully orchestrated demonstrations
where combinations of putative causes are presented
simultaneously (e.g., Griffiths & Tenenbaum 2009; Johnson
& Wk 2015; Steyvers et al. 2003). Such approaches
of simultaneously presenting causes are necessary for
answering certain scientific questions, but in daily life,
we typically observe sequences of changes, which tends
to be more informative than an “episodic” approach (Soo
& Rottman, 2018). By explicitly distinguishing causal
reasoning from a general human ability to discover patterns
and learn categories, we are thus able to track inductive
biases that are unique to human causal reasoning.

One of those inductive biases we pinpointed is a causal
asymmetry. White (2006) argued that people tend to treat
the cause object and effect object differently. Our results
support this idea: Experiment 2 had pairs of conditions
(B1/B2, B3/B4) that shared the same underlying causal
relationships, but swapped the dominant presence of the
agents and the recipients. If agents and recipients were
treated equivalently, this swapping would have had led
to symmetric patterns of generalization. In contrast, we
observed that participants in conditions B1 and B3 had
significantly higher inter-person generalization consistency,
and reported inferring fewer, more widely applicable rules.
Furthermore, causal asymmetry also presents implicitly in
the experiment stimuli: Across our experiments, the agent

object stayed the same and only the recipient object went
through feature changes. As a result, one may feel that
the agent object is more “powerful,” and recipients are
“weaker” and susceptible to changes. Future experiments
may attempt to disentangle different kinds of asymmetries
coming from physical movement or state change.

Last but not least, unlike previous models (e.g., Kemp
et al. 2010; Lucas et al. 2014), we are not constrained to
binary, present/absent effects, or multiple outcomes, such as
different kinds of activations (e.g., Schulz and Sommerville
2006). Our model can also capture higher-order causal
relationships, e.g., color/shape matches between blickets
and machines (Sim & Xu, 2017). The animations can
be extended to investigate more subtle cases such as
both agent and recipient objects change features, or agent
objects change rather than the recipient object. While
we have focused on, and argued for, the advantages of
interactions between pairs of objects, our model can also
make inferences from simultaneously presented causes
by marginalizing over possible orders and intermediate
states. Similarly, it can be applied to non-deterministic and
conjunctive causes by introducing and marginalizing over
hidden features.

Generalization as Commitment

In Experiment 1 we identified generalization-order effects
in one-shot causal generalization. While previous research
has shown effects of the order in which learning examples
are presented (Danks & Schwartz, 2006; Lu et al., 2016),
ours is the first study to find effects of the order in which
generalization predictions are made. Many order effects can
be understood as a consequence of cognitive agents with
limited resources updating their inferences sequentially,
for example, anchoring-and-adjustment (Lieder et al.,
2012), local updating (Bramley et al., 2017), or amortized
computations (Dasgupta et al., 2020). These and other
models predict an order effect of evidence—people update
their beliefs sequentially when there are examples or data
to update with. However, our participants made judgments
without receiving feedback; our experiments did not vary
the order of evidence, so there is no basis for expecting order
effects under these previous models.

Our LoCaLaPro model assumes that people implicitly
commit to their generalizations as they make them,
essentially treating their earlier generalizations as evidence
that must be accommodated going forward rather than
uninformative guesses that may or may not line up with the
ground truth. Consequently, the order in which judgments
are solicited can lead to systematic changes in people’s
inferences, even in the absence of new evidence. This
model predicts the order effects we observed, chiefly that
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generalization consistency differed between the near-first
transfer and far-first transfer conditions.

Essentialism

In object cognition, it is well established that shapes and
colors are perceived differently (Treisman & Gelade, 1980;
Landau et al., 1988), and shape is thought to be taken
to be a more fundamental feature than color (Wilcox,
1999). Our behavioral data demonstrate this pattern in
a causal setting: In Experiment 1, participants made
more systematic generalizations given shape-related effects
than color-related effects, indicating that causal laws that
are believed to induce more fundamental changes were
generalized more consistently; in Experiment 2, participants
were predominantly more likely to describe shape-related
changes and leave color changes unmentioned, and this
tendency prevails the agent/recipient evidence-balance
control.

Causal Representations

While our experiment interface is designed to probe
inductive inferences under a strong causal perception, causal
representations are also natively built-in to our modeling
framework. Our PCFG generates causal functions that
explicitly describe the consequence of causal interaction
on the recipient object’s features. We allow these to take
absolute feature values, like color(r’) ⇐ blue,
but also values relative to the agent or recipient’s pre-
interaction features, such as color(r’) ⇐ color(a)
or edge(r’) ⇐ edge(r)+1. These causal functions
natively capture many kinds of causal theories people may
entertain, as confirmed by their self-reports and our model
fits (see also Bramley et al. 2018; Goodman et al. 2008;
Lake & Piantadosi 2020). Moreover, by grounding causal
functions in such object-based representations, these causal
functions naturally generalize to novel objects.

Besides being inherently causal and efficiently general-
izable, these causal functions are also compatible with the
flexibility of human causal reasoning. As Mayrhofer and
Waldmann (2015) pointed out, agent-recipient roles and
cause-effect roles are separate concepts. Even though agents
are usually taken to be the cause, in some cases the static,
passive recipients (patients) are actually seen as more causal
of an outcome, for instance, a red traffic light being the
cause for an active pedestrian to stop walking. Our sym-
bolic grammar makes no assumption about whether agent
or recipient object features determine the result, rather, it
treats agent and recipient objects equally in its grammar
generation process because of its uniform prior (Table 1,
row “Relative reference”). In the categorization process, we

introduced the focus parameter γ that interpolates between
considering only the agent, or only the recipient as relevant
for what causal function applies. γ is later fit to empirical
data and yields a best-fitting value of 1, corresponding to
categorization by agent-only, confirming the hypothesized
causal asymmetry. As a result, our framework is applica-
ble for further investigation into the intricate relationship
between agent-recipient concepts and cause-effect roles.
For instance, one might estimate an inductive bias control-
ling the balance of agent and recipient roles in the grammar,
or modeling γ conditional on learning data.

The applicability of the symbolic grammar generator
approach goes beyond these particular causal functions
applications. PCFGs can be created for many tasks
involving symbolic representations, and indeed have been
most traditionally used for modeling language processing
(e.g., Johnson 1998). For the PCFGs used in this paper,
we included a minimal set of primitives that simply cover
the features participants were told about in the instructions.
However, recent work has also explored question of whether
there is an optimal set of primitive domain-specific-
languages (Ellis et al., 2021; Piantadosi et al., 2016).
Nevertheless, these modeling choices are not the only
way to represent human causal cognition. Our modeling
framework is open to, and compatible with, many other
options. For example, one may choose to extend the
symbolic approach to cover the categorization process as
well, or incorporate causal Bayes nets as a representation
for causal functions among multiple relata (Griffiths &
Tenenbaum 2009; Kemp et al. 2010; Lucas & Griffiths
2010; Pearl 2000, 2009).

Constructive Cognition

Our modeling framework lines up nicely with a range
of recent symbolic accounts of inductive and creative
reasoning (e.g., Goodman et al. 2008, 2011; Griffiths &
Tenenbaum 2009; Kemp et al. 2010, 2012; Zhao et al.
2018). This framework emphasizes the constructive nature
of causal belief formation, in which both the content and
extension of our causal concepts are generated rather than
pre-specified. The constructive nature of the PCFG calls
upon a potentially infinite set of possible causal functions,
yet is governed by the preference for parsimony, and
encourages systematic composition (see also Bramley et al.
2018; Goodman et al. 2008). The extended Dirichlet Process
for category construction goes beyond a hierarchical
Baysian modeling approach where categories are pre-
defined as inductive biases (e.g., Goodman et al. 2011;
Griffiths & Tenenbaum 2009), and thus better captures
the flexibility of human generalization behaviors (see
also Kemp et al. 2010). This constructive computational
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modeling framework balances between learning a single
causal law versus making generalization predictions based
on multiple causal categories, and with the “creating
new categories only when on demand” assumption for a
process account, our model successfully reproduces the
generalization-order effects in behavioral data.

This constructive view of cognition is not unique to
causal cognition. Generative grammars have been proven
useful in many other fields such as concept learning and
category induction (Lake et al., 2015; Goodman et al.,
2008; Piantadosi et al., 2016). Symbolic approaches enable
compositionality and systematicity, while the sub-symbolic
techniques, especially the fast, incremental approximations,
make this more scalable to real-world data (Bramley
et al., 2017). This framework also draws a close link with
probabilistic program induction models (e.g., Bramley et al.
2018; Ellis et al. 2021; Lake et al. 2015; Lake & Piantadosi
2020), where causal beliefs and concepts can be viewed as
programs, and accurate generalizations can be viewed as a
evidence for successful program synthesis whereby these
programs increasingly reflect the true causal laws of nature.
We believe our modeling framework can be extended to
broader generalization cases beyond causal cognition, and
contributes to the collective effort for a hybrid approach in
understanding human cognition (Lake et al., 2017; Oaksford
et al., 2007; Valentin et al., 2021).

Conclusion

Across two experiments, we studied how people generalize
causal laws from observations of interactions between
objects. Participants made systematic causal generalizations
after one (Experiment 1) or several (Experiment 2)
observations despite there being a large number of
potentially compatible explanations. We could explain this
pattern with an inductive bias toward simplicity embodied
by a hypothesis generation process that favors simple rules
and few categories. In addition, we found an intriguing
generalization-order effect, and could account for it by
treating one’s own earlier judgments as evidence when
making new generalizations. We also found evidence for a
causal asymmetry in Experiment 2, that we could capture
with a model that preferentially localizes causal laws based
on the properties of agents. We expect further experiments
to unlock the full potential of the proposed computational
modeling framework.
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