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Abstract

Patients with advanced gastric cancer usually have a poor prognosis and limited therapeutic options. Overcoming
this challenge requires novel targets and effective drugs. The Hedgehog (Hh) signaling pathway plays a crucial role
in the development of the gastrointestinal tract and maintenance of the physiologic function of the stomach. Aberrantly
activated Hh signaling is implicated in carcinogenesis as well as maintenance of cancer stem cells. Somatic mutations in
the components of Hh signaling (PTCH1 and SMO) have been shown to be a major cause of basal cell carcinoma, and
dozens of Hh inhibitors have been developed. To date, two inhibitors (GDC-0449 and LDE225) have been approved by
the U.S. Food and Drug Administration to treat basal cell carcinoma and medulloblastoma. Here, we review the role of
the Hh signaling in the carcinogenesis and progression of gastric cancer and summarize recent findings on Hh inhibitors
in gastric cancer. Hedgehog signaling is often aberrantly activated and plays an important role during inflammation and
carcinogenesis of gastric epithelial cells. Further study of the precise mechanisms of Hh signaling in this disease is needed
for the validation of therapeutic targets and evaluation of the clinical utility of Hh inhibitors for gastric cancer.
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Background
Gastric cancer (GC) is highly heterogeneous, largely be-
cause of the complex molecular mechanisms of its car-
cinogenesis (e.g., genetic alterations, epigenetic changes,
infection, and interactions with the microenvironment)
[1–3]. Consequently, existing targeted therapies, such as
HER2 antagonist trastuzumab and VEGFR2 antagonist
ramucirumab, are effective only in a small percentage of
patients with GC. Therefore, more research is needed to
develop effective personalized therapy for this disease
[4]. In this context, the Hedgehog (Hh) signaling path-
way is important to explore.
The Hh signaling pathway is crucial in embryonic de-

velopment and tissue homeostasis [5–7]. Over the past
decades, increasing evidence has also implicated aberrant

Hh signaling in the initiation and progression of many
cancers, including prostate [8], breast [9], pancreatic
[10], and hepatocellular [11] cancers as well as GC [12].
In basal cell carcinoma (BCC) [13] and medulloblastoma
[14] in particular, the role of Hh signaling has been well
established. On the basis of these results, Hh signaling
inhibitors have been developed, and two have been ap-
proved by the U.S. Food and Drug Administration
(FDA) to treat BCC and medulloblastoma [15, 16]. How-
ever, the molecular mechanisms of the Hh signaling in
other tumors appear far more complex than those in
BCC. In addition to the canonical Hh signaling cascade,
the crosstalk between components of Hh and other
pathways contributes to carcinogenesis [17]. Moreover,
Hh signaling is needed for the maintenance of cancer
stem cells (CSCs) [18–20]. Thus, a deeper understanding
of the role of Hh signaling in CSCs will provide a ration-
ale for development of a druggable target to block me-
tastasis and overcome chemotherapy resistance in GC.
In this review, we will focus on the role of the Hh sig-

naling pathway in GC and CSCs and discuss the thera-
peutic potential of Hh inhibitors for GC.
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Hh signaling pathway overview
The central components of the Hh signaling pathway are
three Hh ligands (Sonic hedgehog [SHH], Indian hedge-
hog [IHH], and Desert hedgehog [DHH]), the transmem-
brane receptor Patched1 (PTCH1), the G-protein-coupled
receptor Smoothened (SMO), the negative regulator
Suppressor-of-fused (SUFU), and the transcription factors
GLI1, GLI2, and GLI3 [7]. In general, Hh signaling is acti-
vated through the binding of the Hh ligand to PTCH1,
which acts as a negative regulator of SMO [21]. The inhib-
ition of SMO is then released, which activates a cascade
that leads to the translocation of the downstream GLI
transcription factors (GLIs) to the nucleus. Subsequently,
the activated GLIs induce expression of various Hh target
genes, such as BCL2, SNAI1, FOXM1, cMYC, and
CCND1 [22]. In contrast, in the absence of Hh ligands,
PTCH1 is located in the primary cilium and suppresses
SMO activation by preventing its localization and accu-
mulation in the cilium (Fig. 1).
GLIs play a central role in Hh signaling because abnor-

mal activation of Hh signaling, whether due to mutations
of pathway components or ligand-dependent or -inde-
pendent mechanisms, triggers the downstream effector
GLIs. Among the three GLIs, GLI1 acts exclusively as a
transcription activator, while GLI2 and GLI3 act either as
transcriptional activators or truncated transcriptional re-
pressors [23]. Indeed, GLI1 was shown to activate the ex-
pression of genes involved in multiple cellular functions,
including cell proliferation (cyclin D1/D2 and FOXM1)
[24, 25], angiogenesis (VEGF family) [26], epithelial-

mesenchymal transition (SNAI1) [27], and invasion
(osteopontin and MMP) [28–30]. Furthermore, GLI1 ex-
erts its function through crosstalk with several non-
canonical Hh signaling, such as mTOR [31, 32], KRAS
[33], TGFβ [34, 35], and WNT [36, 37]. Therefore, GLI1
is emerging as a promising target for blocking Hh signal-
ing and treating cancer.
Broadly, the canonical mechanisms linking abnormal ac-

tivation of the Hh signaling pathway to cancer can be lig-
and dependent or ligand independent. The best-known
example of the ligand-independent mechanism is in BCC
[13]. Somatic mutations in PTCH1 have been identified in
more than 90% of sporadic BCC, and the dysfunctional
PTCH1 leads to constitutively active SMO. While these
tumors are insensitive to Hh ligands, small-molecule SMO
inhibitors (e.g., cyclopamine) can effectively suppress these
tumors’ growth. So far, BCC is the only tumor known to
almost exclusively depend on mutation of Hh signaling
pathway components. By contrast, mutations in PTCH1
and SMO are infrequent in other tumors and are rare in
GC [38, 39].
On the other hand, the ligand-dependent mechanism has

been observed in some gastrointestinal adenocarcinomas,
e.g., pancreatic cancer and colon cancer [40]. This mechan-
ism tends to implicate interaction between tumor cells and
stromal cells in the tumor microenvironment. Thus, three
modes of ligand-dependent regulation of Hh signaling have
been proposed: autocrine regulation, in which a tumor-
derived ligand activates Hh signaling in tumor cells; para-
crine regulation, in which a tumor-derived ligand activates

Fig. 1 Hh signaling pathway transduction. a In the absence of Hh ligands, PTCH is located in the primary cilium and suppresses SMO activation
by preventing SMO localization to and accumulation in the cilium. The GLI transcription factors are phosphorylated and processed into
transcriptional repressors (GLI R) by several protein mediators (PKA, CK1, and GSK3β). GLI R translocates into the nucleus and inhibits transcription.
b When an Hh ligand binds to PTCH, the inhibition of SMO is relieved, allowing dissociation of GLI transcription factors from KIF7 and SUFU.
Transcriptional activators (GLI1/2 A) then enter the nucleus to induce expression of Hh target genes. Figure created with BioRender
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Hh signaling in stromal cells; and reverse paracrine regula-
tion, in which a stromal cell–derived ligand activates Hh
signaling in tumor cells [41] (Fig. 2). Finally, beyond these
canonical mechanisms, the crosstalk between components
of Hh signaling and other pathways contributes to carcino-
genesis and progression in GC [42].

Hh signaling in GC
Hh signaling has been implicated as a critical factor in gas-
tric gland organogenesis and differentiation during embry-
onic development. Although all three Hh ligands activate
identical signaling cascades by binding to PTCH1, the dis-
tribution of these ligands exhibits tissue specificity. SHH
and IHH are most highly expressed in the gastrointestinal
tract [43], while DHH expression is restricted to testes
and the nervous system [44]. In the adult stomach, the Hh
pathway not only regulates gastric epithelial cell differenti-
ation and maturation [45, 46] but also is essential to the
physiology of the stomach [47, 48]. Hh ligands (typically
SHH in the stomach) secreted by the epithelial cells are
recognized by receptors on stromal cells, which initiates

the Hh signaling cascade in stromal cells and increases
transcription of downstream target genes. In turn, these
genes’ products are involved in maintaining the micro-
environment of the epithelium. It is so-called “paracrine”
regulation [49].
In precancerous lesions in the stomach, the balance of

this “paracrine” regulation is broken, which results in
metaplastic transformation and growth of the fibrous tis-
sue, proceeding to carcinogenesis. Interestingly, in the
chronic inflammatory setting, e.g., Helicobacter pylori in-
fection, expression of SHH is downregulated in inflamed
tissues [50, 51], mainly because of the loss of parietal
cells and epithelium atrophy [52]. However, with gastric
lesion progression, increasing expression of SHH is ac-
companied by epithelial regeneration and proliferation
[53]. These observations underline the important role of
SHH and Hh signaling in gastric epithelial repair and
regeneration [54]. Furthermore, GC cells show not only el-
evated SHH expression but also increased PTCH1 receptor
expression [55]. Thus, excess SHH stimulates Hh signaling
and promotes GC cell proliferation and progression. In the

Fig. 2 Mechanisms of Hh signaling pathway in cancer. a Ligand-independent mechanism: somatic mutations in PTCH1 or SMO lead to
constitutive activation of Hh signaling. b-d Ligand-dependent mechanisms: autocrine regulation (b), paracrine regulation (c), and reverse
paracrine regulation (d). Figure created with BioRender
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latter case, besides “paracrine” regulation, “autocrine” regu-
lation also contributes to the progression of cancer.
Previous studies demonstrated that the overactivity of

Hh signaling is a common molecular event in GC and that
this abnormal activity is blocked by Hh inhibitors (e.g.,
cyclopamine) and Hh antibodies [12, 56]. In addition, a
number of studies showed that overexpression of SHH is
associated with unfavorable clinical outcomes (e.g., ad-
vanced clinical stage, lymph node metastasis, and poor
prognosis) in patients with GC [57]. Altogether, these re-
sults suggest that the Hh signaling pathway participates in
cell migration and metastasis. Furthermore, the insulin-
like growth factor/phosphoinositide 3-kinase (PI3K)/Akt
pathway shows a reciprocal relationship with Hh-
dependent tumor formation during GC cell migration.
Yoo et al. reported that the Hh pathway promotes GC
progression and metastases through activation of the
PI3K/Akt pathway [58]. Akt, in turn, stabilizes full-length
GLI2 through phosphorylation of S230, thereby amplify-
ing the transcriptional output of Hh signaling [59]. This
evidence not only confirms the role of Hh signaling in gas-
tric carcinogenesis and progression but also raises the pos-
sibility of inhibition of Hh signaling for treatment of GC.

Hh signaling, CSCs, and drug resistance
Abundant evidence indicates that Hh signaling is involved
in the maintenance of CSCs in many cancers [18–20].
Components of Hh signaling have been found to be spe-
cifically overexpressed in subpopulations of cancer cells

with CSC properties. Moreover, these putative CSCs, such
as those in pancreatic cancer (ALDH+ cells), colon cancer
(CD133+ cells), breast cancer (CD44 + CD24− cells), and
GC (CD44+ cells) are sensitive to Hh inhibitors [60–63].
For example, Yoon and colleagues found enrichment of
CD44 along with increased levels of Hh pathway compo-
nents and certain self-renewal marker proteins (SOX2,
OCT4, and NANOG) in three GC cell lines [64]. In these
GC lines, Hh inhibition with SMO shRNA or small-
molecule inhibitors significantly suppressed spheroid for-
mation and tumor growth. Furthermore, while CD44+
spheroid cells were highly resistant to chemotherapy (5-
fluorouracil and cisplatin), this chemoresistance was re-
versed with Hh inhibition.
To date, the molecular characterization and functional

relevance of CSCs in solid tumors are not well under-
stood. Nevertheless, the close relationship between Hh
signaling and CSCs raises the possibility of the combin-
ation of an Hh inhibitor and standard chemotherapy to
improve antitumor efficacy. To achieve the goal, the pre-
cise molecular mechanisms of CSCs with Hh signaling
need to be further investigated. Meanwhile, from a tech-
nical viewpoint, at least two challenges need to be re-
solved. First is the identification of reliable biomarkers
to distinguish CSCs and to predict benefit from therapy.
The baseline expression of Hh ligands in tumor tissue
appears not to provide a positive association between
clinical benefit and high activation of Hh signaling from
treatment with Hh inhibition [65]. Instead, CSC-related

Fig. 3 Targeting Hh signaling at different levels of the cascade. Hh ligand antibody, e.g., 5E1, blocks interaction of Hh ligand and receptor. SMO
inhibitors, e.g., cyclopamine, directly bind to and inactivate SMO. GLI1 inhibitors, e.g., GANT61, interrupt transcriptional activity of GLI1 by directly
binding to GLI1. BET inhibitor JQ1 represses Hh signaling by interfering with the regulation of BRD4 on GLI1/GLI2
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biomarkers should be considered potential candidates
for patient selection. Second is identifying which compo-
nent of Hh signaling would be an ideal target. To date,
different types of inhibitors have been developed that
target multiple signal transduction elements of the Hh
signaling cascade. However, most of these inhibitors
have failed to show the desired results in clinical trials
for GC.

Hh inhibitors and clinical potential in GC
Considering the critical role of the Hh pathway in
carcinogenesis, targeting of Hh signaling has attracted
substantial interest. So far, dozens of small-molecule
inhibitors of Hh have been developed, and two
(GDC-0449 and LDE225) have been approved by the
FDA for treating BCC and medulloblastoma [15, 16],
but none have been approved for GC. Here, we focus
on the inhibitors that have been investigated in GC
(Table 1, Fig. 3).

Hh ligand antibody
The anti-SHH monoclonal antibody 5E1 blocks Hh sig-
naling by binding at the SHH pseudo-active site groove
[78]. 5E1 has been used as a research tool to study Hh
signaling under physiologic or pathologic circumstances.
A previous study showed that mesenchymal stem cells
are recruited from bone marrow and contribute to a
tumor niche that promotes and sustains GC progression
[79]. Blocking Hh signaling using 5E1 significantly inhib-
ited the proliferative response of mesenchymal stem cells
to the cytokine interferon-gamma [66]. These data sup-
port a synergic interaction of Hh signaling and cytokines
during precancerous lesions.

SMO inhibitors
Cyclopamine is the first small-molecule inhibitor of Hh
signaling, extracted from corn lilies, and it inactivates
SMO by directly binding to its heptahelical bundle [80,

81]. Cyclopamine has been found to effectively inhibit
Hh and tumor growth in vivo and in vitro [55, 69–71].
However, the off-target effects that accompany a high
concentration of cyclopamine require careful evaluation
to avoid false-positive data. Moreover, owing to its se-
vere toxicity and low oral bioavailability, cyclopamine is
not a suitable drug [82]. A recently developed derivative
of cyclopamine, IPI-926 (also called saridegib), showed
improved properties compared with cyclopamine [83].
In preclinical studies, IPI-926 was a reliable inhibitor of
tumor growth and overcame chemoresistance in a num-
ber of cancers [74, 84, 85]. Based on these results, sev-
eral phase I and phase II clinical trials in pancreatic
cancer, head and neck cancer, and other cancers have
been conducted. However, to date, detailed results re-
main to be disclosed.
GDC-0449 (vismodegib), which acts by binding to the

extracellular domain of SMO and antagonizing Hh signal-
ing, has shown promising anti-tumor activity in advanced
BCC and became the first Hh signaling inhibitor approved
by the FDA in 2012 for the treatment of metastases and
locally advanced BCC [15, 16]. Although GDC-0449 sig-
nificantly suppressed tumor proliferation and invasion
in vivo and in vitro [72, 86, 87], no satisfactory results have
been obtained from clinical trials in GC so far [65]. In a
randomized phase II study (NCT00982592), GDC-0449 in
combination with chemotherapy was investigated in ad-
vanced GC. There was no difference in response rate or
survival time with the addition of GDC-0449 to chemo-
therapy. However, in the patients given chemotherapy
combined with GDC-0449, those with higher CD44 ex-
pression tended to fare better [64]. In contrast, in the
chemotherapy-only group, patient survival was not strati-
fied by CD44. As mentioned above, an accurate biomarker
is necessary to identify a subpopulation that could benefit
from Hh inhibition.
Other SMO inhibitors, including LDE225 (sonidegib),

PF-04449913 (glasdegib), itraconazole, LEQ506, BMS-

Table 1 Summary of Hh signaling antagonists studied in gastric cancer

Target Compound Type Mechanism of action Study status Clinical trial References

Hh ligand 5E1 monoclonal antibody Block SHH protein activity In vivo N/A [66–68]

SMO cyclopamine Small molecule inhibitor Bind to SMO protein heptahelical
bundle and inhibit SMO activity

In vivo N/A [10, 55, 69–71
]

GDC-0449 (Vismodegib,
Erivedge)

Small molecule inhibitor Bind to the extracelluar domain
of SMO

In vivo NCT00982592 [64, 72, 73]

IPI-926 (Saridegib) Small molecule inhibitor derivative of the cyclopamine,
antagonist of SMO

In vivo N/A [74]

Itraconazole Small molecule inhibitor Bind to SMO protein In vivo N/A [75]

Vitamin D3 Small molecule inhibitor Bind to SMO protein in vitro N/A [76]

GLI1 GANT61 Small molecule inhibitor bind GLI1 protein between zinc f
inger 2 and 3

In vivo N/A [63, 77]

BRD4 JQ1 Small molecule inhibitor Inhibit BRD4 binding to GLI N/A N/A [73]
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833923, LY2940680, and vitamin D3, have been effective
against a variety of human cancers [88–90], and some
have reached clinical trials. These agents are being inves-
tigated as potential treatments for hematologic malig-
nancies, medulloblastoma, and other solid tumors, but
not for GC [91, 92].

GLI1 inhibitors
Since the GLI1 transcription factor is the final effector of
the Hh signaling cascade, targeting GLI1 may yield more
efficient antitumor activity than other targets have thus far.
In 2007, two small-molecule GLI1 inhibitors (GANT58 and
GANT61) were identified through cell-based screening
[93]. GANT61 directly binds GLI1 protein between zinc
fingers 2 and 3 and interrupts GLI1 binding to target DNA,
thereby inhibiting transcription [94].
Yan and colleagues treated GC cell lines with cyclopa-

mine and GANT61 and found that both inhibitors re-
pressed cell growth [77]. Another study, by Xu et al.,
showed that GANT61 increased apoptosis of CD44+/
Musashi-1+ GC cells [63]. The study also demonstrated a
synergistic effect between the Hh signaling inhibitor and
the chemotherapy drug doxorubicin. Thus, GANT61
shows therapeutic potential, and further in vivo study and
clinical trials are required to investigate the antitumor ac-
tivity of GANT61 in GC.
Besides direct GLI1 inhibitors, indirect GLI1 inhibitors

have also recently emerged as candidates for suppressing
Hh-dependent tumors. JQ1, the bromodomain and
extra-terminal domain (BET) protein inhibitor, specific-
ally impacts GLI1 transcription [73]. BET proteins act as
a transcriptional regulator by binding to chromatin dur-
ing mitosis, promoting cell cycle progression. BET pro-
teins also form multiprotein complexes with the positive
transcription elongation factor b, activate RNA polymer-
ase II, and enhance gene expression [95]. Recently, Tang
and colleagues demonstrated that BRD4, a member of
the BET family, is the critical regulator of GLI1/GLI2 by
occupying their promoters and modulating transcription
[73]. Furthermore, JQ1 effectively suppresses Hh-
dependent tumor growth by preventing BRD4 from
binding to GLI1/GLI2. Even more encouragingly, JQ1
impaired GLI signaling in the setting of acquired resist-
ance to SMO inhibitors. These results suggests a novel
strategy for the treatment of Hh-dependent tumors
using BET inhibition. Previous studies demonstrated
that JQ1 efficiently suppressed proliferation and induced
apoptosis of GC cells through BRD4 and downstream
genes [96, 97]. However, no study on the effect of JQ1
on Hh/GLI1 signaling in GC has been reported. Interest-
ingly, in certain GC cell lines with low expression of
BRD4 or c-MYC (a BRD4 target protein), the antitumor
activity of JQ1 was still remarkable [98]. This finding

suggests that other molecular mechanisms are involved
in this process.

Perspective
The Hh signaling pathway has long been thought to play
a crucial role in embryonic development, tissue homeo-
stasis, carcinogenesis, and maintenance of CSCs. Since
the predominant role of Hh signaling in BCC has been
verified, leading to the development and marketing of
vismodegib, efforts are underway to exploit this pathway
to treat other cancers. However, so far, the results from
clinical trials targeting Hh signaling in a number of can-
cers, such as GC, colorectal cancer, ovarian cancer, and
pancreatic cancer, have been inconsistent with expecta-
tions [64, 65, 99, 100]. The explanation for these results
is likely that other genes or signaling pathways are also
involved in carcinogenesis and progression.
The reasonable way to overcome this problem is the

identification of precise predictive biomarkers and opti-
mized combination strategies, such as an Hh signaling in-
hibitor combined with standard chemotherapy or other
targeted therapy. In one study of Hh signaling in medullo-
blastoma, Shou and colleagues validated a five-gene signa-
ture that identifies Hh pathway activation and patients
most likely to respond to therapy targeting the Hh signal-
ing pathway [101]. Although the panel is not yet mature
and needs to be improved [102], it still broadens our re-
search strategy for identifying better predictive and prog-
nostic markers. Furthermore, given the crucial role of Hh
signaling in the maintenance of CSCs, CSC-related pro-
teins could be used to select patients who are likely to
benefit from an Hh inhibitor. Indeed, several proteins or
panels have been proposed as CSC biomarkers in GC
[103–111], such as ALDH1, CD24/CD44, CD54/CD44,
EPCAM/CD44, LGR5, CD90, and CD133. Thoroughly
understanding the mechanisms of CSCs and Hh signaling
will provide rationales for more precise approach.

Conclusions
Hh signaling is often aberrantly activated and plays an
important role in the inflammation and carcinogenesis
of gastric epithelial cells. However, the clinical utility of
Hh inhibitors for GC should be further evaluated
through more well-designed clinical trials. In addition,
given the complexity of Hh signaling and the heterogen-
eity of GC, the precise mechanisms of Hh signaling need
to be studied further for the validation of therapeutic
targets and ideal biomarkers.
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