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Abstract

Batrachochytrium dendrobatidis (Bd), a causal agent of the amphibian fungal skin disease

chytridiomycosis, has been implicated in the decline and extinction of over 200 species

worldwide since the 1970s. Despite almost two decades of research, the history of Bd and

its global spread is not well understood. However, the spread of the Global Panzootic Line-

age of Bd (Bd-GPL), the lineage associated with amphibian die-offs, has been linked with

the American bullfrog (Rana [Aqurana] catesbeiana) and global trade. Interestingly, R.

catesbeiana is native to the eastern U.S., where no Bd-related declines have been observed

despite Bd’s presence since the late 1800s. In contrast Bd has been found to have emerged

in California and Mexico in the 1960s and 1970s, after which epizootics (i.e., epidemics in

wildlife) ensued. We hypothesize that Bd-GPL spread from the eastern U.S. with the intro-

duction of R. catesbeiana into the western US, resulting in epizootics and declines of native

host species. Using museum records, we investigated the historical relationship between R.

catesbeiana and Bd invasion in the western US and found that R. catesbeiana arrived in the

same year or prior to Bd in most western watersheds that had data for both species, sug-

gesting that Bd-GPL may have originated in the eastern US and R. catesbeiana may have

facilitated Bd invasion in the western US. To predict areas with greatest suitability for Bd, we

created a suitability model by integrating habitat suitability and host availability. When we

incorporated invasion history with high Bd suitability, we found that watersheds with non-

native R. catesbeiana in the mountain ranges of the West Coast have the highest disease

risk. These findings shed light on the invasion history and disease dynamics of Bd in North

America. Targeted historical surveys using archived specimens in natural history collections

and present-day field surveys along with more localized, community-level studies, monitor-

ing, and surveillance are needed to further test this hypothesis and grow our understanding

of the disease ecology and host-pathogen dynamics of Bd.
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Introduction

Chytridiomycosis is an emerging infectious disease primarily caused by the fungal pathogen

Batrachochytrium dendrobatidis (Bd). This pathogen has significantly affected global amphib-

ian biodiversity, infecting over 500 species [1] and causing declines and extinctions in at least

200 species since the 1970s [2–4]. Global trade likely played a role in the current Bd pandemic

by spreading non-native, infected animals worldwide and exposing naïve populations to Bd
[3,5–8].

Despite almost two decades of Bd research, the history of Bd and its global spread is not

well understood. However, genomic studies have led to the discovery of multiple Bd strains

that range in pathogenicity [5,9,10], which provides some insight of the evolutionary history of

Bd. Different Bd lineages have been identified in Brazil, Switzerland, South Africa, and South

Korea, where they appear to be in an enzootic state of coexistence with native amphibian pop-

ulations [5,9,11]. The Global Panzootic Lineage (Bd-GPL) is the strain that has been associated

with known epizootics (i.e., epidemics in wildlife) [9]. There is evidence that hybridization

between Bd strains is possible [5], and it has been suggested that hybridization may have led to

the origin of Bd-GPL [9]. However, genome-wide patterns suggest that mitotic recombination

via asexual reproduction is the more likely mechanism to have led to the emergence of Bd-

GPL [10].

A defining feature of Bd-GPL is the presence of specific loss of heterozygosity (LOH) events

that may have occurred as recently as 1,000 years ago [10]. The GPL consists of two clades,

GPL-1, which is most common in North America, and GPL-2, which is most common in Cen-

tral and South America [5,12]. Because GPL-2 has additional LOH events that are absent in

GPL-1, James et al. [12] hypothesize that GPL-1 is the more ancestral lineage and that GPL-2

diverged some time after it was introduced to Central and South America. Therefore, they con-

clude that Bd-GPL or its parental strain originated in the temperate zone of North America

[12].

If Bd-GPL originated in North America, then we would expect amphibian populations to

be in an enzootic state throughout, as populations never exposed to Bd are more likely to be at

greater risk of experiencing an epizootic [13–15] compared to those that have existed with the

pathogen for an extended amount of time [16–18]. Yet host-pathogen dynamics are not uni-

form across the continent. The earliest known record of Bd is from Illinois in 1888 [18], and

pathogen host dynamics east of the Rocky Mountains reflect an enzootic state with no known

declines due to Bd [18–22]. However, Bd epizootics have been documented in the western US

(California [15,23], Arizona [24,25], and Colorado [26]) and in Mexico [27]. In addition, sev-

eral studies have shown that Bd invasion occurred in areas of California and Mexico in the

1960s and 1970s [15,27–30].

The eastern US is the native range of the American bullfrog (Rana [Aquarana] catesbeiana
[31]), a known Bd reservoir [7,32] that is popular in pet and food trade and has been impli-

cated as a vector in global disease spread [3,6,7,33,34]. Rödder et al. [35] showed that Bd and R.

catesbeiana have high overlap with their realized niches, further highlighting a link between

these two species. The ability of R. catesbeiana to tolerate Bd infection and the lack of Bd-

related declines in the eastern US, while species in the western US and Mexico have experi-

enced Bd epizootics, suggest that Bd may have an evolutionary history with the R. catesbeiana
populations in the east. Thus it may be that Bd-GPL or its parental strain originated in the east-

ern US.

We hypothesize that Bd-GPL or its predecessor co-evolved with R. catesbeiana in the east-

ern US and the introduction of R. catesbeiana in the western US is an important driver of Bd
spread. To test this, we investigate the historical presence of Bd and R. catesbeiana in the
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western US. If indeed Bd-GPL originated in the eastern US and R. catesbeiana played a role in

its spread, then we would expect R. catesbeiana occurrences to coincide with or precede Bd
occurrences in the western US. We then integrate Bd habitat suitability, potential host avail-

ability, and the invasion histories of Bd and R. catesbeiana to predict areas where species may

have greatest disease risk from Bd in North America.

Materials and methods

Invasion history

To determine the invasion patterns of Bd and R. catesbeiana outside of R. catesbeiana’s native

range, we compared the historical occurrences of the two species in the watersheds outside the

native range of R. catesbeiana west of the Rocky Mountains. Watershed boundary data (hydro-

logic unit code 10, HUC10) were obtained from the United States Geological Survey (USGS)

[36]. Using 1062 Bd positive records in the western US from survey data from the Vredenburg

Lab [37] and Bd-Maps [38] we identified the earliest record of Bd in each watershed. See S1

Table for a summary of Bd-positive data from North America. We did the same for R. catesbei-
ana, using a total of 2597 occurrence records compiled from several sources: two online repos-

itories that aggregate data from hundreds of natural history collections around the world,

VertNet [39] and the Global Biodiversity Information Facility (GBIF [40]), the USGS [37], and

any R. catesbeiana occurrences from the Bd survey data. For watersheds that had occurrence

data for both species, we identified whether 1) Bd was recorded in the same year or prior to R.

catesbeiana or 2) R. catesbeiana was recorded prior to Bd. We also identified watersheds that

had only Bd occurrences or only R. catesbeiana occurrences.

Bd suitability and disease risk

We integrated abiotic and biotic factors to predict the areas in North America with the greatest

Bd suitability. We first created a presence-only habitat suitability model (HSM) driven by cli-

mate and land use factors using Maxent version 3.3.3k [41]. We used 1775 Bd occurrence rec-

ords with 988 unique localities in the North America mainland from the Vredenburg Lab [37]

and Bd-Maps [38]. See S1 Table for a summary of the Bd-positive data used. Boria et al. [42]

showed that applying a spatial filter to presence data reduces overfitting; therefore, we applied

a 10 arc-minute (~12 km2) spatial filter by randomly choosing one Bd occurrence site from

every 10 arc-minute area using R (dismo [43] and maptools [44] packages). This resulted in

746 Bd-positive sites with environmental data for model training. We further minimized sam-

pling bias by restricting background sampling areas to a minimum convex hull around the

occurrence points (S1 Fig) [45–49].

We obtained 19 bioclimatic variables from the Worldclim database (http://www.worldclim.

org/bioclim), which are a set of interpolated temperature and precipitation conditions based

on monthly averages measured at weather stations across the globe from the years 1950 to

2000, latitude, longitude, and elevation [50]. To incorporate land use patterns, we used the

global human footprint (HF), which quantifies anthropogenic influences on the terrestrial

environment based on land cover, human accessibility, land transformation, human popula-

tion density, and infrastructure between the years 1993 to 2009 [51]. Some of the bioclimatic

variables are highly correlated with each other; therefore, to reduce overfitting of the model

due to multicollinearity of the model predictors, we calculated Spearman’s rank correlations

(r) among all the variables to determine which variables were highly correlated with each

other. When variable pairs had an r2 > 0.7, we chose the higher-ranking factor. We then used

the resulting subset of 11 environmental variables to create the Bd HSM: mean diurnal temper-

ature range (Bio2), temperature seasonality (Bio4), maximum temperature of the warmest
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month (Bio5) minimum temperature of the coldest month (Bio6), mean temperature of the

wettest quarter (Bio8), precipitation of the driest quarter (Bio9), precipitation of the wettest

month (Bio13), precipitation of the driest month (Bio14), precipitation of the warmest quarter

(Bio18), precipitation of the coldest quarter (Bio19), and human footprint. These variables are

biologically relevant to Bd and have been shown to perform well in previous Bd HSMs

[6,12,52–55].

To account for variability and other uncertainties inherent in modeling, we ran 20 repli-

cates for each species using cross-validation: occurrence data were divided into 20 equal-sized

folds, or groups, and for each replicate 19 folds were used for model training and one fold was

used for model testing. We used 20 replicates because ensemble forecasts have been shown to

make models more reliable and robust than single model outputs by accounting for variability

[56]. The results were then averaged by Maxent to produce a final probabilistic density func-

tion of potentially suitable habitat.

In addition to abiotic factors, biotic factors like host availability or the presence of a vector

species are critical for disease maintenance and spread [57]. A pathogen cannot persist without

sufficient abundance of susceptible hosts; therefore, the establishment of Bd in an area with

suitable habitat depends on the presence and abundance of amphibian hosts. Information on

host abundance at the community level for a continental assessment is presently not available;

however, several studies have shown species richness can be an important factor in Bd spread,

particularly where a competent reservoir is present [1,6,30,52,58–62]. Thus, in lieu of abun-

dance data, we considered species richness in conjunction with the presence of R. catesbeiana.

To refine our predictions of Bd suitability, we calculated the product of the Bd HSM and

amphibian richness, which was then interpreted at a relative scale.

We estimated amphibian richness in mainland North America by overlaying unique species

ranges obtained from the IUCN Red List [63] and AmphibiaWeb [64]. We created a raster

dataset in which we tallied the intersecting ranges per grid cell using R (dplyr [65] and raster

[66] packages) for total amphibians. Spatial data for range maps compiled by AmphibiaWeb

are available at https://github.com/AmphibiaWeb. All range maps are viewable on Amphibia-

Web by species (http://amphibiaweb.org) [64].

The Maxent software calculates multiple threshold values for each model run to aid in

model interpretation. Areas with values above these thresholds can be interpreted as a reason-

able estimate of a species’ suitable habitat, depending on the quality of the data [67]. Because

we modified the Maxent-produced Bd HSM by incorporating amphibian richness, for our

analyses, we used two thresholds that were proportional to Maxent’s HSM thresholds. To iden-

tify areas with general Bd suitability (i.e., areas with any likelihood that Bd could establish

there) we used the minimum training presence logistic threshold, which is the mean of the

lowest probability associated with each training point (i.e., true positives) for each of the 20

replicates. To identify areas with high Bd suitability (i.e., areas where Bd is most likely to estab-

lish), we used the most conservative threshold value that gave the lowest predicted area [47],

which was the mean value at which training sensitivity and specificity were equal. We then

compared the watersheds with species emergence data to the Bd suitability model to identify

areas with the greatest risk of Bd emergence and disease spread.

Results

Invasion history

There were 603 out of 6141 western US watersheds with Bd and/or R. catesbeiana occurrence

data: 202 had only Bd records, 301 had only R. catesbeiana records, and 100 had records for

both species. Records of R. catesbeiana occurrences documented the same year or prior to Bd
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occurrences were found in 83% (83/100) of the shared watersheds. In nine of the 17 watersheds

where Bd was documented prior to R. catesbeiana, Bd records preceded R. catesbeiana by one

to seven years. Most (13/17) were adjacent to watersheds where R. catesbeiana had been docu-

mented earlier than the first Bd record of the watershed in question (often by decades).

Bd suitability and disease risk

Areas predicted to have general Bd suitability encompass the eastern half of the US, the Pacific

Northwest, portions of mountain ranges in the western US, including the Rocky Mountains

and the Sierra Nevada Mountains, and most of Mexico (Fig 1A). The areas deemed unsuitable

include the arid and semi-arid regions in the Great Plains and the desert. Approximately 95%

(940/988) of Bd-positive localities and 94% (2567/2743) of R. catesbeiana localities were found

to be in predicted general Bd suitability areas (Fig 1A). All but two western US watersheds that

had Bd occurrence records overlapped with general Bd suitability areas (300/302) (Fig 1B). See

Supplemental S2 Fig for a breakdown of the different watersheds types (i.e., where Bd was

recorded before R. catesbeiana [17/17], where R. catesbeiana was recorded in the same year or

before Bd [82/83], and where only Bd has been recorded [201/202]). Most of the watersheds

where R. catesbeiana were recorded overlapped with general Bd suitability areas (95% [286/

301] of watersheds where only R. catesbeiana were recorded and 96% [385/401] of all water-

sheds in the western US where R. catesbeiana has been recorded; S2 Fig).

Areas predicted to have high Bd suitability include mountain ranges along the West Coast

of the US, the highlands of Central Mexico, the Coastal Plains of the Southeast US, and the

Fig 1. Bd suitability and Bd-positive localities and watersheds. (A) Areas in North America predicted to have Bd suitability (increased intensity in red indicates

increased suitability). Blue dots are Bd localities. Black hash indicates the native range of R. catesbeiana. And (B) western US watersheds (in blue) containing Bd
occurrence records.

https://doi.org/10.1371/journal.pone.0188384.g001
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Ozark Plateau (Fig 1). Of the 301 watersheds where only R. catesbeiana has been recorded, 173

(57%) overlap with high Bd suitability areas (Fig 2). These areas are predicted to have the great-

est risk of Bd outbreaks.

Discussion

Chytridiomycosis has severely impacted amphibian biodiversity globally for decades, with Bd
infecting hundreds of amphibian species worldwide [1–4]. Although our knowledge of Bd is

incomplete, our understanding of this complex host-pathogen system continues to grow

through a variety of ongoing studies of its biology and disease dynamics. By investigating the

historical emergence of Bd and R. catesbeiana in the western US, we uncover evidence of a his-

torical relationship between the invasion of Bd and the introduction of R. catesbeiana. We

show that R. catesbeiana occurred prior to Bd emergence in most of the shared watersheds,

which supports Huss et al. [34] and suggests that the introduction of R. catesbeiana may have

played a significant role in spreading Bd to naïve amphibian populations in the western US.

The Bd suitability model is generally similar to those from previous studies [6,12,52,68,69].

Our model indicates that there is Bd suitability in R. catesbeiana’s native range in the eastern

Fig 2. High Bd risk. Areas in North America predicted to have high Bd suitability (deep red) and western US

watersheds containing only R. catesbeiana occurrence records (in black). Overlapping areas are predicted to have the

highest risk of Bd emergence and outbreaks.

https://doi.org/10.1371/journal.pone.0188384.g002
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US (Fig 1A); however, this likely reflects the high environmental and host suitability for Bd in

a region of endemism rather than the threat of disease from Bd to naïve amphibian popula-

tions, given that no Bd-related declines have been documented in the eastern US despite Bd’s

presence [18–22]. In addition, 94% of R. catesbeiana occurrence data and 96% of western

watersheds where R. catesbeiana has been recorded were within general Bd suitability areas

(Fig 2). This further highlights that Bd and R. catesbeiana have high niche overlap [35]. While

these results are correlational, they support a growing number of studies that link Bd emer-

gence with the presence of introduced R. catesbeiana [3,6–8,34,70–74] and are consistent with

the hypothesis that Bd-GPL (or its preceding strain) may have co-evolved with R. catesbeiana
in the eastern US.

If we consider the historical link between the emergence of Bd and R. catesbeiana in the

western US, we can identify the areas where native species are at greatest risk of disease. Thus,

species that occur in watersheds where only R. catesbeiana has been documented that overlap

with areas predicted to have high Bd suitability (Fig 2) could have increased risk of Bd emer-

gence. The presence of a reservoir host like R. catesbeiana (or others [75]) could lead to local

population declines due to disease, even well beyond the initial emergence of Bd [60]. High

risk areas include many watersheds in the Cascade Range in the Pacific Northwest, the Califor-

nia coastal ranges, and the Sierra Nevada Mountains, all areas where native amphibians have

declined [15,76–78].

Improving our understanding of the distribution and spread of Bd enhances our knowledge

of Bd’s history and provides vital information for amphibian conservation and management

strategies. Areas identified as having the highest risk of disease should be prioritized for both

historical surveys using archived specimens in natural history collections [27] and present-day

field surveys to investigate our hypothesis that the introduction of R. catesbeiana facilitates Bd
spread. In addition, proactive management efforts could minimize disease spread in these

areas [79].

It is important to consider that Bd is not the only disease threat to amphibian diversity.

Batrachochytrium salamandrivorans (Bsal), a second, more recently discovered chytrid patho-

gen that has not yet been found in North America [19,20], poses another serious threat to

North American amphibians [80,81]. The continuous spread of Bd threatens remaining unin-

fected populations, and the introduction of Bsal could compound the likelihood of more

amphibian epizootics.

The most disruptive effect of a single pathogen infection is death; however, surviving spe-

cies could incur sub-lethal effects from infection (or from fighting off infection) that could

suppress immune defenses against other stressors [82–86], such as a second deadly pathogen.

This could at least partially explain the Bsal-induced mass mortalities of European fire sala-

manders (Salamandra salamandra) in the Netherlands, where Bd was co-existing with local

amphibian populations in an enzootic state [87,88]. Thus, species surviving in areas where Bd
is already present could be more vulnerable to Bsal exposure, and the introduction of Bsal
could result in disease outbreaks.

Alternatively, species or populations previously exposed to a similar pathogen might benefit

from direct competition between pathogens or cross immunity, in which a host acquires

immunity or partial immunity to one pathogen because of previous infection from either the

same pathogen or a closely related pathogen [89]. This could potentially explain the lack of Bd-

related declines in areas where both an endemic strain of Bd and Bd-GPL are present, such as

in Brazil, South Africa, Switzerland, and South Korea [11,17,90]. Perhaps native Bd strains are

able to outcompete introduced strains like Bd-GPL, or the evolutionary history with endemic

Bd lineages has primed local amphibian populations to be able to resist or tolerate infection

from Bd-GPL [5,11]. If previous exposure to Bd leads to either Bd outcompeting Bsal for hosts
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or cross immunity to Bsal, then persisting populations in areas where Bd is in an enzootic state

may be safeguarded against Bsal infections, and amphibians in areas where Bd is more recently

established or where neither Bd nor Bsal currently occur may have the highest disease risk.

More studies are needed to understand the potential interactions of these pathogens.

Conclusion

We investigated the invasion history of R. catesbeiana and Bd in the western US and found a

pattern of Bd dynamics consistent with the hypothesis that invasion of R. catesbeiana facili-

tated Bd spread in western North America. This supports the hypothesis that Bd-GPL (or its

preceding strain) may have originated in the eastern US. We found that the historical presence

of R. catesbeiana outside its native range was highly correlated with emergence of Bd in areas

predicted to be suitable for Bd. We identified areas of increased disease risk by integrating

environmental suitability, host availability, and invasion history to provide guidance for con-

servation and management efforts. Targeted historical surveys using archived specimens in

natural history collections and present day field surveys could help test our hypotheses and fur-

ther our understanding of the spatiotemporal distribution of Bd. More localized, community-

level studies that include monitoring and surveillance are needed to further our understanding

of the disease ecology and host-pathogen dynamics of chytridiomycosis. Species susceptibility

studies could lead to the identification of the potential interactions between Bd and Bsal and

the discovery of potential defenses against disease.

Supporting information

S1 Fig. Training points and background sampling areas for the Bd habitat suitability

model.

(TIF)

S2 Fig. Invaded western US watersheds compared to Bd suitability. (A) Shared watersheds

where Bd was recorded prior to R. catesbeiana (blue) and where R. catesbeiana was recorded in

the same year or prior to Bd (black), (B) watersheds where only Bd has been recorded, and (C)

watersheds where only R. catesbeiana has been recorded.

(TIF)

S1 Table. Summary of Bd-positive records used for the Bd HSM. Species and decades in

which Bd was detected in the wild in North America.

(XLSX)
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