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Abstract

From an analysis of the geometry of the yield locus and the Mohr’s circle for

determining unconfined yield strength (fc) in shear cell testing, it has been shown

that powder cohesion is proportional to fc, where the proportionality constant is a

function of angle of linearized yield locus, (1-sinq)/(2cosq). While both

parameters are routinely included in shear cell data, only one parameter is

needed to characterize flow properties of a new powder.
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1. Introduction

Powder flowability is one of the critical material attributes that affect powder

handling in several industries, including pharmaceutical manufacturing [1, 2]. For

example, high speed tableting requires the powder to have “acceptable flow proper-

ties” for consistent die filling, tablet weight, and content uniformity [3]. Powder flow

properties can be measured using different techniques [4, 5, 6], but shear cells are the

most fundamental, versatile, and reliable technique [7]. Consequently, it has been
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widely applied to characterize pharmaceutical powders to guide formulation devel-

opment and optimization [8, 9, 10, 11].

A shear cell measurement can produce a number of useful parameters to describe

powder flow properties [7, 12, 13, 14]. The unconfined yield strength (fc) is the

most commonly used parameter to quantify powder flowability. A flowability index,

ffc, defined as the ratio of major principal stress (s1) to fc [15, 16], has been used to

quantify powder flowability. In general, a powder with a higher fc at the same s1

tends to exhibit poorer powder flow. Recently, it was observed that fc and powder

cohesion, C, exhibit a peculiarly similar relationship with s1 (Fig. 1) [15], indicating

a possible intrinsic proportional relationship between these two parameters. A pro-

portionality between the two parameters is also suggested by the observation of

nearly perfect linear relationship between experimental fc and C for 25 fine powders

[17]. Here, we derive a mathematical relationship between the two parameters to

explain this phenomenon.
Fig. 1. a) Unconfined yield strength and b) cohesion plots of microcrystalline cellulose equilibrated at

different relative humidities. Data were collected at four pre-shear consolidation stresses (Ref. [15]).
2. Theory

In the classical approach of analyzing powder flowability using a shear cell, a yield

locus is experimentally determined by measuring the maximum shear stress the pow-

der can sustain under a given normal stress [18]. Repeating the measurement at

different normal stresses delineates the yield locus. According to the shear cell the-

ory, C is the intercept of a yield locus with the shear stress (t) axis. A series of semi-

circles that are below and tangent to the yield locus can be drawn to represent the

stress distribution inside the powder under different external stress conditions. The

semicircle passing the origin crosses the normal stress (sn) axis at fc (Fig. 2) [14].

An inspection of these basic elements of the figure indicates these two parameters

can be related by taking a trigonometric approach.

To solve the problem, we can connect the tangent point, D, and the center of the cir-

cle, B. The radius BD forms a right angle with the yield locus line. If the yield locus
on.2019.e01171
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Fig. 2. Illustration of the relationship between cohesion, C, and fc, derived from a yield locus.
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is extrapolated to intersect with the sn axis at point A, angle q is identified. In cases

where the yield locus is not strictly linear, this angle corresponds to the angle of line-

arized yield locus [14]. The two right triangles, ADB and AOC, are similar because

they share the same angle, q. Therefore, Eq. (1) is written by applying the rule of

proportionality between similar triangles.

AB
AC

¼ BD
CO

ð1Þ

Expressing the lengths of each side in terms of fc and C yields Eq. (2).

ð C
tanqþ fc

2Þ
C
sinq

Þ ¼ ðfc2Þ
C

ð2Þ

We can substitute tan(q) in Eq. (2) with sin(q)/cos(q) and rearrange terms to get Eq.

(3)

ðCcosq
sinq

þ fc
2
Þ$ðsinq

C
Þ ¼ fc

2C
ð3Þ

Solving for C by rearranging terms in Eq. (3) leads to Eq. (4),

C ¼ fc
ð1� sinqÞ
2cosq

ð4Þ

Eq. (4) explicitly indicates a proportionality between fc and C, with the proportion-

ality constant, (1-sinq)/(2cosq). This equation was recently suggested but derivation

was not given [19]. The proportionality between C and fc explains the similar shape

of fc and C plots shown in Fig. 1. This relation is consistent with the observed pro-

portionality between fc and C for the same material under different initial consolida-

tion stresses. The proportionality constants differed for different materials, which

may be attributed to their different q values [20].
on.2019.e01171
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Fig. 3. Relationship between C values obtained from extrapolating experimental yield locus to zero

normal stress and those calculated from Eq. (4).
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3. Results & discussion

Proportionality in Eq. (4) is a function of q, which is different among powders. To

validate this relationship, we used shear cell data of powders exhibiting a wide range

of flow properties tested under different normal stresses, i.e., limestone reference pow-

der for shear cell (pre-shear normal stresses of 3, 6, 9, 15 kPa), microcrystalline cel-

lulose (Avicel Ph105 and Avicel PH102, pre-shear normal stresses of 1, 3, 6, 9 kPa).

Data were collected using a rotational shear cell (RST-XS, Dietmar Schulze, Wolf-

enb€uttel, Germany). The angle of linearized yield locus was used to calculate the pro-

portionality constant. Subsequently, for each experimentally determined fc value, a

corresponding C value was predicted from Eq. (4), which was then plotted against

C values obtained by extrapolating the yield locus (Fig. 3). The linear regression equa-

tion has a slope of essentially unity (1.0003) and an intercept of essentially zero

(0.2981 Pa). Thus, the regression line closely resembles the ideal line, which suggests

the validity of the derived relationship between fc and C. Eq. (4) is valid as long as the

yield locus between the y-intercept and the tangency point, i.e., CD in Fig. 2, is linear.

However, when the yield locus is curved, deviations from Eq. (4) are expected. There-

fore, a gross deviation from the proportionality is a clear indication of curvature of the

yield locus in the pressure range below the tangent point, D, in Fig. 2. This occurs

usually when the powder is very cohesive and, hence, flows poorly.
4. Conclusion

The similarity between cohesion and flow function plots derived from shear cell data

is explained by the proportionality between fc and C values derived from a given
on.2019.e01171
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yield locus, where the proportionality constant is equal to (1-sinq)/(2cosq). Given

the proportionality, only one of the two flow parameters needs to be analyzed to

compare flowability among different powders or to predict flow behavior of a given

powder.
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