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Abstract: Nutritional value and disease-preventive effects of cabbage are well-known. Levels of the
antioxidant compounds ascorbic acid (AA) and glucosinolates (GSL) in new Czech cabbage cultivars
were determined in the context of different production systems. The contents of AA and GSLs in
cabbage biomass were determined by HPLC. Individual GSLs were identified according to their exact
masses with sinigrin used as the external standard. Artificial infection with A. brassicicola generally
raised the AA levels. The major GSLs (>10 mg kg~ !) were glucobrassicin, sinigrin, and glucoiberin.
Indole and aliphatic GSLs were present, but no aromatic ones were detected. Ecological growth
conditions and the artificial fungal infection increased the total content of GSLs and, also, of the
methoxylated indole GSLs. Sulforaphane, iberin, indole-3-carbinol, and ascorbigen resulting from
the hydrolysis of GSLs were found in both cultivars. The amounts and profiles of GSLs present in
the two Czech cultivars demonstrated their good nutritional value. The decomposition products
sulforaphane, iberin, indole-3-carbinol, and ascorbigen detected improve its health-promoting
qualities and represent a suitable component of the human diet.

Keywords: head cabbage; ascorbic acid; glucosinolates; Albatros cultivar; target cultivar; integrated
system; ecological system; fungal infection; Alternaria brassicicola

1. Introduction

Head cabbage belongs to vegetables with a high nutrient-to-price ratio and contain
phytochemicals associated with potential human health benefits. The beneficial effects have been
attributed to the antioxidant-activity compounds such as ascorbic acid (AA) and glucosinolates
(GSLs) [1,2]. Cabbage is an important source of AA and GSLs in the human diet.

Various cabbage cultivars have been shown to contain concentrations of AA ranging from 316 to
676 mg kg ! [1,3,4]. They are influenced by the year, vegetation period, fertilization and geographical
conditions [5,6]. The effect of fertilization on AA content is ambiguous; the use of green manure raised
the amount of AA in cabbage whereas no effect was found when an NPK fertilizer [containing as
macronutrients nitrogen (N), phosphorus (P) and potassium (K)] or compost were used [7-9].

GSL content varies between various plant species and cultivars, type of tissue, developmental
stage, and the sulphur supply status of the plant [10-14]. GSLs accumulate in Brassica tissues as a result
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of various stresses or after infestation by pathogens. The spread of the infection and the development
of subsequent infections are inhibited [15]. The accumulation of GSLs is defined by the magnitude and
duration of the stress [16]. The main GSL side-chains occurring in cabbage are 2-propenyl-(sinigrin),
3-methylsulfinylpropyl-(iberin), and indolylmethyl-(glucobrassicin), and they are present at respective
concentrations of 0.04-1.6, 0.05-2.6 and 0.09-2 mmol kg~ ! fresh cabbage biomass. The range of
concentrations in cabbage is similar to that in broccoli, Brussels sprouts and cauliflower [16-18].
The main indole GSL in cabbage is glucobrassicin, and the content of 4-methoxy-3-indolylmethyl GSL
is two times lower [19].

Loss of the cellular integrity as a result of biological or abiotic stress leads to a hydrolysis of GSLs
by the enzyme myrosinase. The products of GSL hydrolysis are toxic to bacteria and fungi [20,21].
A study with fungal pathogen Leptosphaeria maculans demonstrated a higher toxicity of aromatic ITC,
compared to aliphatic ones, with the toxicity of the latter decreasing with the size of the side-chain [22].
Glucoerysolin was identified as the major active compound with a broad spectrum of antimicrobial
activity [23].

The purpose was to compare the production of health-beneficial phytochemicals of new Czech
cabbage Albatros and Target cultivars (cv.) with other cabbage varieties used for production in Europe,
when produced in the integrated and ecological production systems. A further aim was to evaluate
the cultivar resistance to the artificial infection with A. brassicicola and the effect of the infection on the
contents of AA and GSLs

2. Results and Discussion

2.1. Effect of Production System on AA Contents

The type of production, integrated or ecological, together with other environmental conditions
including pests, may significantly influence the consumer quality of the produced vegetables [24-26].
Table 1 summarizes the results showing the effect of the integrated, conventionally-grown and the
ecological types of production on the content of AA and GSLs. In neither production system fungicides
were applied to avoid suppression of A. brassicicola and spontaneous fungal infection.

Table 1. Effect of production system and artificial fungal infection on the content of ascorbic acid (AA)
and glucosinolates (GSLs) in Albatros and Target cultivars (cv.).

AA +SD2  Total GSLs + SD 2

Cultivar Production System Disease Severity 1 Dry Biomass (%) (mg kg_l) (g ke~ 1
Intecrated 3.04a” 10.8 4326 + 216 911 + 36

Albat & 271a™ 9.7 1713 + 86 982 + 39
e Ecological 3.63¢” 10.2 4275 + 214 1470 + 59

& 3.38b ™ 10.5 3795 + 190 1014 + 41

Integrated 329" 8.7 2933 + 147 1090 -+ 44

Target & 2.96a ™ 8.6 3271 + 186 798 + 32
Ecological 417e" 9.2 2684 + 134 1320 + 53

8 3.83¢™ 9.1 3353 + 168 916 + 37

! Disease severity is expressed using an arbitrary scale: 0 points—no visible disease damage, 1 point—few scattered
lesions (<5% leaf area damaged), 3 points—5-30% leaf area damaged, 5 points—30-60% leaf area damaged,
7 points—60-90% leaf area damaged, 9 points—>90% leaf area damaged. One-asterisk superscript indicates the
situation when the artificial infection with A. brassicicola was applied, two-asterisk superscript indicates the control
when no infection was applied, and the values represent only the spontaneous infection. The statistical analysis
used ANOVA and Fisher’s Least Significant Difference (LSD) test. Different letters indicate that the values are
statistically different (p < 0.05). 2 Contents of AA and GSLs are related to dry biomass. The figures represent the
mean £ SD values.

The contents of AA in Albatros and Target cv. were 1713-4326 and 2684-3353 mg kg~ ! dry
biomass, respectively, depending on the production system (Table 1). Similarly, studies by other
authors on cabbage and other vegetables such as carrot, onion, pea, and potato reported no significant
differences dependent on the growing system used, but they concluded that the results can be season
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dependent [27,28]. AA contents measured in both cultivars (cf. Table 1) were similar to those of
Polish’Stone head’cabbage [29], Spanish Hinova, Megaton, Alfredo, Candela, and Bronco cv. [6],
green cabbage cv. [30], and Savoy cabbage cv. [31] but were slightly lower than those detected in
Brassica oleracea L. var. capitata cv. Lennox produced under conventional or organic conditions [26].

The artificial infection with A. brassicicola was effective in both production systems as it resulted
in a higher damage to Albatros and Target cv. compared to the noninfected controls (Table 1). Albatros
was more resistant to the artificial and spontaneous infections than Target. The statistical analysis
of the results that used ANOVA and Fisher’s LSD test is shown in Table 1. The fungal infection
raised the quantity of AA in both varieties 1.3-2.5-fold irrespective of the production system (Table 1).
This confirms the observation in cucumber where a pretreatment with Trichoderma asperelloides increased
the total ascorbate content two times [32]. Similar activation of the antioxidant machinery was observed
during artificial colonization of roots of Arabidopsis, cacumber, and tomato plants by T. asperelloides and
T. harzianum. Such an activation resulted in an enhancement of tolerance to a range of abiotic stresses,
e.g., salt stress or water deficit [32,33].

2.2. Contents of GSLs in Dependence on the Production System

Albatros cv. mostly exhibited higher levels of total GSLs, compared to Target cv. The differences
did not exceed 20% (Table 1). Similarly, a 1.3-fold difference in the content of total GSLs was reported
for Herfstraap and Oleifera cv. of Brassica rapa [34]. The range of total GSL content in Albatros
and Target were comparable with numerous varieties of white cabbage (B. oleracea var. capitata),
Romanian Brassica vegetables, and green cabbage [30,35,36]. Commercial samples of white cabbage
(B. oleracea var. capitata f. alba) purchased in supermarkets in England, Belgium, Germany, and Poland
showed levels of total GSLs between 1270-3060 mg kg~! DW [37]. On the other hand, Spanish
Hinova, Megaton, Alfredo, Candella, and Bronco cabbage cultivars, Heckla and Predikant white
cabbage cultivars, and Early Round Dutch B. oleracea cv. contained higher respective levels of GSLs of
2862-7949, 5087-5803, and 6995-18045 mg kg ! DW [6,38,39], respectively.

The growth under ecological conditions increased the content of GSLs in Target and Albatros
cv. (Table 1). The infection with A. brassicicola also increased the content of total GSLs in both
varieties. In comparison, an increase of total GSLs resulting from fungal infections by L. maculans or
Fusarium oxysporum was observed in B. rapa Herfstraap cv. but not in the Oleifera cv. [34]. A similar
increase was induced by root colonization of Arabidopsis thaliana by T. asperelloides [32].

2.3. GSL Composition Profiles of Albatros and Target cv.

Table 2 shows a list of indol and aliphatic GSLs detected in samples of Albatros and Target cv.
Glucobrassicin, 4-hydroxyglucobrassicin, and methoxyglucobrassicin/neoglucobrassicin belong to the
group of indole GSLs whereas the others belong to the group of aliphatic GSLs. The GSL profile of both
cultivars is typical for cabbage with a majority of indole and aliphatic GSLs present [16]. Concerning
the latter group, molecules with propyl-, butyl-, 4-methylsulfonylbutyl-, 4-methylthiobutyl-,
and 5-methylthiopentyl side-chains were missing. On the other hand, the compounds with
4-methylsulfinylbutyl- and 4-methylsulfinylbut-3-enyl described in broccoli and radish, respectively,
were detected in Albatros and Target cv. [16]. No presence of aromatic GSLs, such as glucotropaeolin
and gluconasturtin, was found in our cabbage samples.

The major GSLs present in Albatros and Target cv. in the amounts >200 mg kg~ ! DW were
glucobrassicin and sinigrin, the contents of glucoiberin were between 100 and 200 mg kg~! DW
(Tables 3 and 4). The presence of glucobrassicin and sinigrin was discussed in connection with the
resistance to fungal infections [34,40]. The amount of progoitrin in Albatros exceeded a value of
100 mg kg~! DW only in the infected cabbage samples (Tables 3 and 4), and its amount in Target cv.
was lower (Table 4). Methoxylated indolic GSLs, 4-methoxyglucobrassicin, and neoglucobrassicin,
were present in slightly higher amounts than other minor GSLs (Tables 3 and 4). A comprehensive
survey of Brassicaceae plants mentioned glucobrassicin as the predominant indole GSL making 60% of
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the indole GSL fraction in shoots. In roots, methoxy derivatives dominated, glucobrassicin represented
only 23% [14]. Tables 3 and 4 document this dominant position of glucobrassicin also in our cultivars
where it represented 70-80% of the indole GSLs measured.

Table 2. GSLs found in Albatros and Target cv.

Glucosinolate Abbreviation Formula Ion Type mlz
Glucobrassicin GB C16H0N209S, [M —H]~ 447.0532
4-hydroxyglucobrassicin HGB C16HoN>O19S, [M — H]™ 463.0481
Methoxyglucobrassicin/neoglucobrassicin =~ MGB/NGB Ci17H2oN»>019S, [M — H]~ 477.0638
Sinigrin SINI C1oH1KNOyS,  [M — H]~ 358.0267
Glucoiberin IBER C11H21N010$3 [M - H]7 422.0249
Progoitrin PROG C11H19NO1¢S, [M —H]~ 388.0372
Glucoraphanin RAPHA C1oH3NO1S3 [M —H]~ 436.0406
Gluconapin NAPI C]]H]gNOgSZ [M - H]_ 372.0423
Glucoibervirin IBEV C11H21NOgS3 [M —H]~ 406.0300

Table 3. Effect of production system and fungal infection on the composition and amount of GSLs in
Albatros cv.

System SINI GB MGB/NGB HGB IBEV NAPI PROG IBER RAPHA Total

I* 241 289 53 19 10 59 109 106 26 912
I 188 464 78 21 7 32 63 108 22 982
E* 342 418 116 23 16 115 222 175 44 1470
E** 337 278 92 14 11 36 59 156 30 1014

I*, integrated infected system; I**, integrated noninfected system; E*, ecological infected system; E**, ecological
noninfected system. GSL amounts were quantified as sinigrin equivalent and expressed in mg kg~! cabbage
dry biomass. Abbreviations: Sinigrin (SINI), glucobrassicin (GB), Methoxyglucobrassicin/Neoglucobrassicin
(MGB/NGB), 4-hydroxyglucobrassicin (HGB), glucoibervirin (IBEV), gluconapin (NAPI), progoitrin (PROG),
glucoiberin (IBER), glucoraphanin (RAPHA).

Table 4. Effect of production system and fungal infection on the composition and amount of GSLs in
Target cv.

System SINI GB MGB/NGB HGB IBEV NAPI PROG IBER RAPHA Total

I* 294 507 98 13 8 20 34 107 9 1090
I+ 267 260 73 15 8 15 26 119 14 798
E* 436 390 99 20 13 42 88 195 37 1320
E** 208 348 84 18 5 55 82 91 25 916

I*, integrated infected system; I**, integrated noninfected system; E*, ecological infected system; E**, ecological
noninfected system. GSL amounts were quantified as sinigrin equivalent and expressed in mg kg~! cabbage
dry biomass. Abbreviations: Sinigrin (SINI), glucobrassicin (GB), Methoxyglucobrassicin/Neoglucobrassicin
(MGB/NGB), 4-hydroxyglucobrassicin (HGB), glucoibervirin (IBEV), gluconapin (NAPI), progoitrin (PROG),
glucoiberin (IBER), glucoraphanin (RAPHA).

When Albatros and Target cv. obtained in the noninfected integrated vs. noninfected ecological
production systems were compared with respect to their content of GSLs, the respective detected levels
were 982 vs. 1014 and 798 vs. 916 mg kg~! DW (Table 1). The statistical analysis of the results by
ANOVA indicated increased GSL contents in the ecological production system. This finding probably
reflected an activation of the plant defense system due to the lack of exogenous protection by pesticides.
Both cultivars showed an increase in the content of methoxylated indole GSLs when produced in
the ecological system, which is in agreement with the putative role of methoxylated indole GSLs in
plant defense [32]. The changes in the concentration of other major GSLs, sinigrin, glucobrassicin, and
glucoiberin were different in the two cultivars tested (Tables 3 and 4). In Target cv., the growth under
ecological conditions resulted in an increase of gluconapin (3.7-fold) and progoitrin (3.2-fold) (Table 4).
The fungal infection by A. brassicicola resulted in a 30-50% increase of GSLs in both cultivars, with the
exception of Albatros cv. grown in the integrated system (Tables 3 and 4). This finding is in keeping



Molecules 2018, 23, 1855 50f12

with recent studies of fungal infections [16,41]. Major GSLs contributed to the infection-dependent
increases, namely sinigrin, glucobrassicin, progoitrin, and glucoiberin, but the trends observed were
often contradictory and dependent on the production system or the cultivar. Sinigrin was implicated
in the resistance to the fungus Peronospora parasitica [40]. A 1.2-1.3-fold increase in the content of
methoxylated indole GSLs, 4-methoxyglucobrassicin, and neoglucobrassicin was observed in both
cultivars except for Albatros grown in the integrated system. This observation confirms the findings
obtained with B. rapa exposed to A. brassicicola and B. cinerea [42] and is in accordance with the
hypothesis on the role of methoxy indole GSLs in plant defense [14].

2.4. Degradation Products of the Spontaneous Enzymatic Hydrolysis of GSL

Degradation products resulting from the enzymatic hydrolysis of GSLs by myrosinases have broad
anticarcinogenic, antimicrobial and other beneficial effects on human health [43,44]. Four compounds
were identified in our cabbage samples after homogenization and extraction with ethylacetate, namely
sulforaphane, iberin, indole-3-carbinol, and ascorbigen (Table 5, Figure 1). They were produced
by hydrolysis of glucoraphanin, glucoiberin, and glucobrassicin detected in the cabbage tissue
(cf. Table 2) by inherent myrosinases after homogenization [45]. Iberin, indol-3-carbinol, and ascorbigen
were described as major breakdown GSL products in white cabbage, and they are, also, found in
other Brassica vegetables such as broccoli, cauliflower, and Brussels sprouts [44,46]. Ascorbigen is
formed by a spontaneous reaction of indole-3-carbinol, originating from the enzymatic hydrolysis of
glucobrassicin, with L-ascorbic acid. The amount of ascorbigen in homogenized white cabbage is equal
to that in cauliflower and exceeds those detected in Chinese cabbage and broccoli [47]. The occurrence
of sulforaphane was, also, reported in broccoli, Brussels sprouts, cauliflower, and some cabbage cv. [48].
Albatros and Target cv. are shown to be an important source of GSLs, and their degradation products
enrich the human diet with the GSL-based, health-beneficial compounds. These molecules were
implicated in protection against various types of cancer, high blood pressure reduction, heart disease
prevention, and the control of blood glucose level to help in the type 2 diabetes [44,48].
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Figure 1. DART-Orbitrap-MS spectrum of an ethylacetate extract of Albatros cv. (integrated production)
measured in the positive ionization mode. The identified GSL degradation products are described
in Table 5.
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Table 5. Degradation products of GSLs identified in Albatros and Target cv.

Degradation Products Summary Formula Ion Type mlz
Sulforaphane Ce¢H11NOS, [M +HJ* 178.0360
Tberin CsHyNOS, [M + HJ* 164.0204
Indole-3-carbinol CoHgNO [M+H — H,OJl* 130.0657
Ascorbigen C15H15NOq [M +H]* 306.0978

2.5. Effect of Production Systems and Fungal Infection on Albatros and Target cv. Yields

The yield of Target cv. was slightly higher than that of Albatros cv. in both production systems
(Figure 2). The artificial infection with A. brassicicola did not significantly decrease the yield of
cabbage heads probably because the disease severity measured as the proportion of foliage affected
by the artificial infection, compared to the spontaneous infection, was relatively small, exceeding the
spontaneous infection values by only 7 to 12% (Table 1). The reduction of plant green leaf area due to
the artificial infection was evidently too small to significantly reduce photosynthesis [49]. No important
effect of the type of production on the cabbage biomass yield was observed (Table 1, Figure 2).

65

60

55

50 } i

45

40

Marketable yield [tha']

35

30
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20

Albatros Target Albatros Target Cultivar
Artificial infection Spontaneous infection

Figure 2. Effects of production system and fungal infection on the crop yield of Albatros and Target
cultivars. Integrated system (unshaded columns), ecological system (shaded columns).

3. Materials and Methods

3.1. Biological Material and Chemicals

Albatros F1 and Target F1 cabbage cv. (Brassica oleracea convar. capitata (L.) Alef. var. capitata £. alba)
were obtained from Moravoseed a.s. (Muslov, Czech Republic) where they were bred. Albatros is
a hybrid, mate-ripening variety of cabbage intended for storage, having a medium-size, solid, and tight
head of average fresh weight of 2.2-2.8 kg. Target is a hybrid, semilate variety of cabbage bred for
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the production of sauerkraut and use as the fresh vegetable. It is characterized by round, solid, tight
heads of an average fresh weight of about 3.3 kg. Both varieties are exported and widely used in
eastern Europe.

Fungal pathogen Alternaria brassicicola (Schwein.) CCF 2749 was obtained from the Culture
Collection of Fungi (Charles University, Prague, Czech Republic) and maintained on potato dextrose
agar slants (Difco, USA) and reinoculated every 2-3 months.

Methanol, acetonitrile, and ethyl acetate were LC-MS purity (Honeywell, Offenbach, Germany).
Deionized water (18 M(Q) cm) was produced by a Milli-Q system (Millipore, Bedford, MA, USA).
Ammonium formate (>99%) for preparation of LC mobile phase was purchased from Sigma-Aldrich
(Steinheim, Germany). Meta-Phosphoric and ortho-Phosphoric acids in analytical grade were obtained
from Penta (Chrudim, Czech Republic).

3.2. AA Analysis

AA content in biomass was measured using a modified method of Lundegardh et al. (2008) [50].
To obtain a representative sample preparation longitudinal slices of an approximative weight of five
grams made from four cabbage samples were mixed, and the total biomass of 20 g was extracted
with metaphosphoric acid (30 g L~!) during homogenization in a laboratory blender at the room
temperature. AA was analyzed by an HPLC method with DAD detection (liquid chromatograph
HP 1200 with DAD detector, Agilent Technologies, Santa Clara, CA, USA). The conditions were:
LiChroCART, LiChrospher 100 RP-18 (Merck, Darmstadt, Germany) chromatographic column
(125 x 4 mm id., 5 um) with precolumn (4 X 4 mm id., 5 pm); mobile phase 5% methanol (v/v),
pH =3 (H3POy); flow 0.8 mL min~!; temperature 35 °C; injection volume 5 puL; UV detection at 244 nm.

The identification of AA in the samples was carried out by comparing the retention time with that
of the standard (L-ascorbic acid, Sigma Aldrich, Steinheim, Germany, purity >99%). For quantification,
an external calibration curve was used. The method characteristics were the following: repeatability
expressed as RSD 5%, recovery 95%, and LOQ 0.15 mg kg ! DW.

The cabbage dry mass was obtained by drying at 105 °C for 5 h.

3.3. GLS Analysis

A sample (20 g) taken from an intact part of the plant was immediately added to 70% methanol
(v/v) and homogenized in a laboratory blender. The extract was filtered through a membrane
filter (0.45 um) into a vial and analyzed. The analyses were performed using the UHPLC system
Acquity UPLC® (Waters, Milford, MA, USA) coupled with Orbitrap mass spectrometer ExactiveTM
(Thermo Fisher Scientific, Germany). The LC separation was performed by an Atlantis HILIC Silica
column (150 mm x 2.1 mm i.d., 3.0 um), (Waters, Milford, MA, USA). The mobile phase consisting
of (A) acetonitrile and (B) 10 mM ammonium formate was used for gradient elution. The Orbitrap
mass spectrometer was operated in both the negative and positive electrospray ionization (ESI) mode.
The parameter settings used during the measurements were as follows: capillary voltage (£700 V),
cone voltage (£25 V), source temperature (120 °C), and desolvation temperature (350 °C). Nitrogen
was used as both desolvation and cone gas at a flow rate of 800 and 10 L h~!, respectively. Full scan
MS spectra were acquired in a range of m/z 50-1000.

Individual GSLs were identified according to their exact masses, for semi-quantification of the
detected compounds, sinigrin [(—)-sinigrin hydrate, Sigma Aldrich, Steinheim, Germany, purity >99%)]
was used as the external standard. The results represent an average of four parallel measurements.

The method characteristics were the following: repeatability expressed as RSD 4%, LOQ 0.003 mg
kg~ ! DW.

3.4. Degradation Products Analysis

DART-Orbitrap-HRMS system consisted of DART-SVP ion source (IonSense, Saugus, MA,
USA) with an XZ transmission module autosampler (IonSense, Saugus, MA, USA) coupled to the
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Orbitrap mass spectrometer ExactiveTM (Thermo Fisher Scientific, Bremen, Germany). Vapur interface
(IonSense, Saugus, MA, USA) was employed to hyphenate the ion source and the mass spectrometer.
Methanolic and ethylacetate cabbage extracts were measured in both the positive and negative
ionization mode. The former extract measured in the negative ionization mode was most suitable
for detection of polar compounds whereas the latter measured in the positive ionization mode for
detection of the nonpolar ones. The preparation of samples was the following: The samples were
homogenized, kept at room temperature, and 1 h after the homogenization extracted with the solvent
by 2-min intense shaking (cabbage sample homogenate 5 g; solvent 5 mL). Then the solid phase was
removed by centrifugation (10,000 rpm, 5 min). The operation parameters of the ion source and mass
spectrometer were optimized. The final parameters and conditions of the DART-Orbitrap-HRMS
analysis are seen in Table 6.

The methanolic extracts measured in the negative ionization mode detected mostly organic acids,
such as succinate and malonate, and saccharides. The ethylacetate extracts measured in the positive
ionization mode showed decomposition products of GSLs predominantly.

Table 6. Optimized conditions used for DART-Orbitrap-MS analyses.

Ionization Mode Positive Negative
Extraction solvent EtAc! MeOH 2
Ionization gas temperature (He) 450 °C 350 °C
Ionization gas pressure (He) 5.5 bar 5.5 bar

Desorption time 7s 7s
Capillary voltage 40V —-50V
Voltage of ion optical system 250V —-150 V
Skimmer voltage 20V —20V
Capillary temperature 250 °C 250 °C
Resolution 50,000 FWHM 50,000 FWHM

! Ethylacetate (EtAc); > methanol (MeOH).

3.5. Agricultural Production Systems

The integrated system was characterized by mineral fertilization [180 kg nitrogen (N) ha—1]
and insecticide protection. The fertilization was applied in two steps, 108 kg N ha~! of the total
amount was added before the cabbage plants were planted and 72 kg N ha~! at the phase of the
eighth primary leaf. The insecticide treatment included the addition of pyridate (Lentagran, Belchim
Crop Protection, Londerzeel, Belgium, 1 kg ha’l) and deltamethrin (Decis Mega, Bayer, Germany,
0.1 L ha~') on 19th June 2013, lambda-cyhalothrin (Karate with Zeon technology 5CS, Syngenta, Basel,
Switzerland, 0.2 L ha™1!) on 1st July 2013, and deltamethrin (Decis Mega, Bayer, Germany, 0.1 L ha™1)
on 22nd August 2013.

The ecological system using ecological plots certified in keeping with the Czech legislation was
characterized by using only organic fertilization (Organica N pelleted fertilizer produced from poultry
bedding, molasses and molasses ale, Agro CS, Ceska Skalice, Czech Republic) and by the absence of
chemical protection. The fertilizer was applied at an amount of 3 tons ha~! before the cabbage plants
were planted. No insecticide was used in this production system.

The experiments were conducted at Czech University of Life Sciences experimental station in
Troja (altitude 195 m, modal fluvisol soil, pH 6.9). The experimental design included four parallel
randomized blocks, each representing 12 plants, using three factors, namely, production system,
fungal infection and the cultivar. The climatic conditions monitored in the year when the experiments
were conducted were compared to the 30-year average temperature and precipitation profiles of
the site: Except for June, the temperature was above the 30-year average values, the amount of
precipitation was decreasing in the period of May-June and then, remained below the 30-year average
level (cf. Supplementary Materials).
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3.6. Fungal Infection and Disease Assessment

The spore inoculum of A. brassicicola was prepared according to a modified method of Strandberg
(1977) [51]. The fungus was grown on the vegetable juice V8 (Campbell Soup Co., Camden, NJ, USA)
agar medium (vegetable juice 10-fold diluted with distilled water, agar 20 g L=, pH 6) in Petri dishes
inoculated with 0.5 x 0.5 cm agar blocs covered with a fungal mycelium from 2-week-old V8 agar
cultures. The agar cultures were incubated for two weeks at 24 °C in the dark at a high humidity to
ensure sporulation. A spore suspension was prepared using sterile distilled water containing Triton
X-100 (100 uL L), filtered to remove the cell debris, and adjusted to a concentration of 5 x 10°-1 x 10°
spores in 1 mL that was used for inoculation of plants by atomizer at a volume of 5 mL per plant [51,52].

Albatros and Target cv. were sown and the plants pregrown in a greenhouse at 18-20 °C for one
month and planted to an experimental field (plant spacing, 50 x 60 cm). The spore suspension was
applied to 2-month-old plants, and they were kept under a propylene textile cover for three days to
maintain a high humidity. Then the cover was removed and the plants grown in outdoor conditions
for five months. The disease severity was expressed using an arbitrary scale (cf. Table 1). Triplicates
were used in all experiments, and the infected plants were compared with the noninfected controls.

3.7. Statistical Evaluation

Statistical analysis was carried out using the STATISTICA 12.0 software system (Stat Soft, Palo Alto,
CA, USA). The data measuring the infection by fungal pathogen were analyzed by ANOVA statistical
program with the subsequent application of Fisher’s LSD test (p < 0.05).

4. Conclusions

Czech white-cabbage Albatros and Target cv. demonstrated AA and GSL contents comparable to
those of various commercial varieties of white cabbage (B. oleracea var. capitata) used worldwide for
cabbage production. No important effect of the ecological and integrated production systems on the
dry weight biomass yields was found which ensured a stable crop yield under various production
conditions. The total AA and GSL contents and profiles of the individual GSLs in both cultivars,
including the presence of enzymatic-hydrolysis products sulforaphane, iberin, indole-3-carbinol,
and ascorbigen, demonstrated a high-quality of the acknowledged human-health beneficial effects.
Used in commercial production, Albatros and Target cv. have a potential to be an important source of
valuable nutrients, antioxidants, and phytocompounds with anticancer properties in human nutrition.

Supplementary Materials: The 30-year, average temperature and precipitation profiles of the site are available as
supplementary files online: Figures S1 and S2.
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